Advertisement

Human tyrosine hydroxylase in Parkinson’s disease and in related disorders

  • Toshiharu Nagatsu
  • Akira Nakashima
  • Hiroshi Ichinose
  • Kazuto Kobayashi
Neurology and Preclinical Neurological Studies - Review Article
  • 12 Downloads

Abstract

Parkinson’s disease (PD) is an aging-related movement disorder mainly caused by a deficiency of neurotransmitter dopamine (DA) in the striatum of the brain and is considered to be due to progressive degeneration of nigro-striatal DA neurons. Most PD is sporadic without family history (sPD), and there are only a few percent of cases of young-onset familial PD (fPD, PARKs) with the chromosomal locations and the genes identified. Tyrosine hydroxylase (TH), tetrahydrobiopterin (BH4)-dependent and iron-containing monooxygenase, catalyzes the conversion of l-tyrosine to l-3,4-dihydroxyphenylalanine (l-DOPA), which is the initial and rate-limiting step in the biosynthesis of catecholamines (DA, noradrenaline, and adrenaline). PD affects specifically TH-containing catecholamine neurons. The most marked neurodegeneration in patients with DA deficiency is observed in the nigro-striatal DA neurons, which contain abundant TH. Accordingly, TH has been speculated to play some important roles in the pathophysiology in PD. However, this decrease in TH is thought to be secondary due to neurodegeneration of DA neurons caused by some as yet unidentified genetic and environmental factors, and thus, TH deficiency may not play a direct role in PD. This manuscript provides an overview of the role of human TH in the pathophysiology of PD, covering the following aspects: (1) structures of the gene and protein of human TH in relation to PD; (2) similarity and dissimilarity between the phenotypes of aging-related sPD and those of young-onset fPD or DOPA-responsive dystonia due to DA deficiency in the striatum with decreased TH activity caused by mutations in either the TH gene or GTP cyclohydrolase I (GCH1) gene; and (3) genetic variants of the TH gene (polymorphisms, rare variants, and mutations) in PD, as discovered recently by advanced genome analysis.

Keywords

Catecholamines Dopamine Gene therapy GTP cyclohydrolase I Parkinson’s disease Tetrahydrobiopterin Tyrosine hydroxylase 

Abbreviations

AADC

Aromatic l-amino acid decarboxylase

BH4

Tetrahydrobiopterin

DA

Dopamine

DOPA

3,4-Dihydroxyphenylalanine

GCH1

GTP cyclohydrolase I

PD

Parkinson’s disease

TH

Tyrosine hydroxylase

Notes

Acknowledgements

This study was mainly supported by Grants from the Ministry of Education, Culture, Sports, Science, and Technology of Japan and the Grants from the Health and Labor of Japan. We would like to dedicate this manuscript to Dr. Arvid Carlsson, founding Editor-in-Chief of the Journal of Neural Transmission, who recently celebrated his 95th birthday, and to the late Dr. Ulf von Euler, who discovered noradrenaline as a neurotransmitter of sympathetic nerves in 1940. Intrigued by Dr. von Euler’s discovery of noradrenaline in the sympathetic nerves and Dr. Carlsson’s discovery of dopamine as new neurotransmitter in the brain, Toshi Nagatsu started his life-long study on catecholamines. We also dedicate this manuscript to the memory of the late Dr. Sidney Udenfriend of the National Institutes of Health, Roche Institute of Molecular Biology, and Drew University, to the late Dr. Julius Axelrod of the National Institutes of Health, and to the late Dr. Keisuke Fujita, Founding President of Fujita Health University. Toshi Nagatsu discovered tyrosine hydroxylase with Dr. Sidney Udenfriend while at the National Institutes of Health. Toshi Nagatsu also thanks all of his former colleagues and international collaborators described in References, especially Drs. Ikuko Nagatsu, Makoto Sawada, Chiho Sumi Ichinose, Toshikuni Sasaoka, Makio Mogi, Takahide Nomura, and Akira Ota, as well as Dr. Peter Riederer, the former Editor-in-Chief of Journal of Neural Transmission, for their collaboration over these many years.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

References

  1. Bademci G, Edwards TL, Torres AL, Scott WK, Züchner S, Martin ER, Vance JM, Wang L (2010) A rare novel mutation of the tyrosine hydroxylase gene in Parkinson disease. Hum Mutat 31(10):E1767–E1771PubMedPubMedCentralCrossRefGoogle Scholar
  2. Bademci G, Vance JM, Wang L (2012) Tyrosine hydroxylase gene: another piece of the genetic puzzle of Parkinson’s disease. CNS Neurol Disord Drug Targets 11(4):469–481PubMedPubMedCentralCrossRefGoogle Scholar
  3. Barbeau A (1969) l-Dopa therapy in Parkinson’s disease: a critical review of nine years’ experience. Can Med Assoc J 101(13):59–68PubMedPubMedCentralGoogle Scholar
  4. Bezem MT, Baumann A, Skjærven L, Meyer R, Kursula P, Martinez A, Flydal MI (2016) Stable preparations of tyrosine hydroxylase provide the solution structure of the full-length enzyme. Sci Rep 6:30390PubMedPubMedCentralCrossRefGoogle Scholar
  5. Birkmayer W, Hornykiewicz O (1961) Der l-3,4-Dioxyphenylalanin (l-DOPA)-Effekt bei der Parkinson-Akinese. Wien Klin Wochenschr 73:787–788PubMedGoogle Scholar
  6. Blau N (ed) (2006) PKU and BH4. SPS Publications, WeinsbergGoogle Scholar
  7. Bodmer W, Bonilla C (2008) Common and rare variants in multifunctional susceptibility to common diseases. Nat Genet 40:695–701PubMedPubMedCentralCrossRefGoogle Scholar
  8. Bräutigam C, Wevers RA, Jansen RI, Smeitink JA, de Rijk-van Andel JF, Gabreëls FJ, Hoffmann GF (1998) Biochemical hallmarks of tyrosine hydroxylase deficiency. Clin Chem 44(9):1897–1904PubMedGoogle Scholar
  9. Calne DB, Stern GM, Spiers AS, Laurence DR (1969) l-Dopa in idiopathic parkinsonism. Lancet 2(7628):973–976PubMedCrossRefGoogle Scholar
  10. Carlsson A (1959) The occurrence, distribution and physiological role of catecholamines in the brain. Pharmacol Rev 11(2):490–493PubMedGoogle Scholar
  11. Carlsson A, Lindqvist M, Magnusson T (1957) 3,4-Dihydroxyphenylalanine and 5-hydroxytryptophan as reserpine antagonists. Nature 180(4596):1200PubMedCrossRefGoogle Scholar
  12. Clot F, Grabli D, Cazeneuve C, Roze E, Castelnau P, Chabrol B, Landrieu P, Nguyen K, Ponsot G, Abada A, Doummar M, Damier D, Gil P, Thobois R, Ward S, Hutchinson AJ, Toutain M, Picard A, Camuzat F, Fedirko A, San E, Bouteiller C, LeGuern D, Durr E, Vadailhet A, Brice M A (2009) Exhaustive analysis of BH4 and dopamine biosynthesis genes in patients with dopa-responsive dystonia. Brain 132:1753–1763PubMedCrossRefGoogle Scholar
  13. Colla E, Panattoni G, Ricci A, Rizzi C, Rota L, Carucci N, Valvano V, Gobbo F, Capsoni S, Lee MK, Cattaneo A (2018) Toxic properties of microsome-associated alpha-synuclein species in mouse primary neurons. Neurobiol Dis 111:36–47PubMedCrossRefGoogle Scholar
  14. Congo Carbajosa NA, Corradi G, Verrilli MA, Guil MJ, Vatta MS, Gironacci MM (2015) Tyrosine hydroxylase is short-term regulated by the ubiquitin-proteasome system in PC12 cells and hypothalamic and brainstem neurons from spontaneously hypertensive rats: possible implications in hypertension. PLoS One 10:e0116597PubMedCrossRefGoogle Scholar
  15. Cotzias GC (1968) l-Dopa for parkinsonism. N Engl J Med 278(11):630PubMedGoogle Scholar
  16. Cotzias GC, Papavasiliou PS, Gellene R (1969) Modification of parkinsonism—chronic treatment with l-dopa. N Eng J Med 280(7):337–345CrossRefGoogle Scholar
  17. Daubner SC, Le T, Wang S (2011) Tyrosine hydroxylase and regulation of dopamine synthesis. Arch Biochem Biophys 508(1):1–12PubMedCrossRefGoogle Scholar
  18. Davis GC, Williams AC, Markey SP, Ebert MH, Caine ED, Reichert CM, Kopin IJ (1979) Chronic parkinsonism secondary to intravenous injection of meperidine analog. Psychiatry Res 1(3):249–254PubMedCrossRefGoogle Scholar
  19. Dias V, Junn E, Mouradian MM (2013) The role of oxidative stress in Parkinson’s disease. J Parkinson’s Dis 3(4):461–492Google Scholar
  20. Doi D, Samata B, Katsukawa M, Kikuchi K, Morizane A, Ono Y, Sekiguchi K, Nakagawa M, Parmer M, Takahashi J (2014) Isolation of human induced pluripotent stem cell-derived dopaminergic progenitors by cell sorting for successful transplantation. Stem Cell Rep 2(3):337–350CrossRefGoogle Scholar
  21. Dumas S, Hir HL, Bodedau-Péan S, Hirsch EC, Thermes C, Mallet J (1996) New species of human tyrosine hydroxylase mRNA are produced in various amount in adrenal medulla and are overexpressed in progressive supranuclear palsy. J Neurochem 67(1):19–25PubMedCrossRefGoogle Scholar
  22. Dunkley PR, Bobrovskaya L, Graham ME, von Nagy-Felsobuki EI, Dickson PW (2004) Tyrosine hydroxylase phosphorylation: regulation and consequences. J Neurochem 91:1025–1043PubMedCrossRefGoogle Scholar
  23. Eberling JL, Jagust WJ, Christine CW, Starr P, Larson P, Bankiewicz KS, Aminoff MJ (2008) Results from a phase I safety trial of hAADC gene therapy for Parkinson disease. Neurology 70(21):1980–1983PubMedCrossRefGoogle Scholar
  24. Ehringer H, Hornykiewicz O (1960) Verteilung von Noradrenalin und Dopamin im Gehirn des Menschen und ihr Verhlten bei Erkrankungen des extrapyramidalen System. Klin Wochenschr 38(24):1236–1239PubMedCrossRefGoogle Scholar
  25. Fahn S (2015) The medical treatment of Parkinson disease from James Parkinson to George Cotzias. Mov Disord 30(1):4–18PubMedCrossRefGoogle Scholar
  26. Fitzpatrick PF (1999) Tetrahydropterin-dependent amino acid hydroxylases. Annu Rev Biochem 68:355–381PubMedCrossRefGoogle Scholar
  27. Fitzpatrick PF (2015) Structural insights into the regulation of aromatic amino acid hydroxylation. Curr Opin Struct Biol 35:1–6PubMedPubMedCentralCrossRefGoogle Scholar
  28. Fossbakk A, Kleppe R, Knappskog PM, Martinez A, Haavik J (2014) Functional studies of tyrosine hydroxylase missense variants reveal distinct patterns of molecular defects in dopa-responsive dystonia. Hum Mutat 35(7):880–890PubMedPubMedCentralCrossRefGoogle Scholar
  29. Fujisawa H, Okuno S (2005) Regulatory mechanism of tyrosine hydroxylase activity. Biochem Biophys Res Commun 338(1):271–276PubMedCrossRefGoogle Scholar
  30. Furukawa Y, Graf WD, Wong H, Shimadzu M, Kish SJ (2001) Dopa-responsive dystonia simulating spastic paraplegia due to tyrosine hydroxylase (TH) gene mutations. Neurology 56:260–263PubMedCrossRefGoogle Scholar
  31. Goldstein DS, Sullivan P, Holmes C, Miller GW, Alter S, Strong R, Mash DC, Kopin IJ, Sharabi Y (2013) Determination of buildup of the toxic dopamine metabolite (DOPAL) in Parkinson’s disease. J Neurochem 126(5):591–603PubMedPubMedCentralCrossRefGoogle Scholar
  32. Goodwill KE, Sabatier C, Marks C, Raag R, Fitzpatrick PF, Stevens RC (1997) Crystal structure of tyrosine hydroxylase at 2.5 A and its implication for inherited neurodegenerative diseases. Nat Struct Biol 4(9):578–585PubMedCrossRefGoogle Scholar
  33. Grima B, Lamouroux A, Boni C, Julian J-F, Javoy-Agid F, Mallet J (1987) A single human gene encoding multiple tyrosine hydroxylase with different functional characteristics. Nature 326(6114):707–711PubMedCrossRefGoogle Scholar
  34. Haugarvoll K, Bindoff LA (2011) A novel compound heterozygous tyrosine hydroxylase mutation (p.R441P) with complex phenotype. J Parkinson’s Dis 1:119–122Google Scholar
  35. Hertz JM, Ostergaard K, Juncker I, Pedersen S, Romstad A, Møller LB, Güttler F, Dupont E (2006) Low frequency of Parkin, tyrosine hydroxylase, and GTP cyclohydrolase I gene mutations in a Danish population of early-onset Parkinson’s disease. Eur J Neurol 13:385–390PubMedCrossRefGoogle Scholar
  36. Hirsch EC, Vyas S, Hunot S (2012) Neuroinflammation in Parkinson’s disease. Parkinsonism Relat Disord 18(Suppl 1):S210–S212PubMedCrossRefGoogle Scholar
  37. Hoffmann GF, Assmann B, Bräutigam C, Dionisi-Vici C, Häusler M, de Klert JBC, Naumann M, Steenbergen-Spanjers GCH, Strassburg H-M, Wevers RA (2003) Tyrosine hydroxylase deficiency causes progressive encephalopathy and dopa-nonresponsive dystonia. Ann Neurol 54(6):S56–S65PubMedCrossRefGoogle Scholar
  38. Hwu WL, Muramatsu S, Tseng SH, Tzen KY, Lee NC, Chien YH, Snyder RO, Byrne BJ, Tai CH, Wu RM (2012) Gene therapy for aromatic l-amino acid decarboxylase deficiency. Sci Transl Med 4(134):134ra61PubMedCrossRefGoogle Scholar
  39. Ichikawa S, Ichinose H, Nagatsu T (1990) Multiple mRNAs of monkey tyrosine hydroxylase. Biochem Biophys Res Commun 173(3):1331–1336PubMedCrossRefGoogle Scholar
  40. Ichikawa S, Sasaoka T, Nagatsu T (1991) Primary structure of mouse tyrosine hydroxylase deduced form its cDNA. Biochem Biophys Res Commun 176(3):1610–1616PubMedCrossRefGoogle Scholar
  41. Ichinose H, Ohye T, Fujita K, Yoshida M, Ueda S, Nagatsu T (1993) Increased heterogeneity of tyrosine hydroxylase in humans. Biochem Biophys Res Commun 195(1):158–165PubMedCrossRefGoogle Scholar
  42. Ichinose H, Ohye T, Fujita K, Pantucek F, Lange K, Riederer P, Nagatsu T (1994a) Quantification of mRNA of tyrosine hydroxylase and aromatic l-amino acid decarboxylase in the substantia nigra in Parkinson’s disease and schizophrenia. J Neural Transm Parkinson Dis Dement Sect 8(1–2):149–158CrossRefGoogle Scholar
  43. Ichinose H, Ohye T, Takahashi E, Seki N, Hori T, Segawa M, Nomura Y, Endo K, Tanaka H, Tsuji S, Fujita K, Nagatsu T (1994b) Hereditary progressive dystonia with marked diurnal fluctuation caused by mutations in the GTP cyclohydrolase I gene. Nat Genet 8(3):236–242PubMedCrossRefGoogle Scholar
  44. Ichinose H, Ohye T, Matsuda Y, Hori T, Blau N, Burlina A, Rouse B, Matalon R, Fujita K, Nagatsu T (1995) Characterization of mouse and human GTP cyclohydrolase I genes: mutations in patients with GTP cyclohydrolase I deficiency. J Biol Chem 270(17):10062–10071PubMedCrossRefGoogle Scholar
  45. Ichinose H, Suzuki T, Inagaki H, Ohye T, Nagatsu T (1999) Molecular genetics of dopa-responsive dystonia. Biol Chem 380(12):1355–1364PubMedCrossRefGoogle Scholar
  46. Imamura K, Hishikawa N, Ono K, Suzuki H, Sawada M, Nagatsu T, Yoshida M, Hashizume Y (2005) Cytokine production of activated microglia and decrease in neurotrophic factors in neurons of hippocampus of Lewy body disease brain. Acta Neuropathol 109(2):141–150PubMedCrossRefGoogle Scholar
  47. Ishikawa S, Taira T, Takahashi-Niki K, Niki T, Ariga H, Iguchi-Ariga SM (2010) Human DJ-1-specific transcriptional activation of tyrosine hydroxylase gene. J Biol Chem 285(51):39718–39731PubMedPubMedCentralCrossRefGoogle Scholar
  48. Ishikawa T, Imamura K, Kondo T, Koshiba Y, Hara S, Ichinose H, Furujo M, Kinoshita M, Oeda T, Takahashi J, Takahashi R, Inoue H (2016) Genetic and pharmacological correction of aberrant dopamine synthesis using patient iPSCs with BH4 metabolic disorders. Hum Mol Genet 25(23):5188–5197PubMedPubMedCentralGoogle Scholar
  49. Iwata N, Kobayashi K, Sasaoka T, Hidaka H, Nagatsu T (1992) Structure of the mouse tyrosine hydroxylase gene. Biochem Biophy Res Commun 182(1):348–354CrossRefGoogle Scholar
  50. Janssen RJJ, Wevers RA, Häussler M, Luyten JA, Steenbergen-Spanjers GC, Hoffmann GF, Nagatsu T, Van den Heuvel LPJ (2000) A branch site mutation leading to aberrant splicing of the human tyrosine hydroxylase gene in a child with a severe extrapyramidal movement disorder. Ann Hum Genet 64(5):375–382PubMedCrossRefGoogle Scholar
  51. Joh T, Son JH, Tinti C, Centi B, Kim SJ, Cho S (1998) Unique and cell-type specific tyrosine hydroxylase gene expression. Adv Pharmacol 42:33–36PubMedCrossRefGoogle Scholar
  52. Jung-Klawitter S, Blau N, Sebe A, Ebersold J, Göhring G, Opladen T (2016) Generation of an iPSC line from a patient with tyrosine hydroxylase (TH) deficiency: TH-1 iPSC. Stem Cell Res 17(3):580–583PubMedCrossRefGoogle Scholar
  53. Kaneda N, Kobayashi K, Ichinose H, Kishi F, Nakazawa A, Kurosawa Y, Fujita K, Nagatsu T (1987) Isolation of a novel cDNA for human tyrosine hydroxylase: alternative RNA splicing produces four kinds of mRNA from a single gene. Biochem Biophys Res Commun 146(3):971–975PubMedCrossRefGoogle Scholar
  54. Kaneda N, Sasaoka T, Kobayashi K, Kiuchi K, Nagatsu I, Kurosawa Y, Fujita K, Yokoyama M, Nomura T, Katsuki M, Nagatsu T (1991) Tissue-specific and high-level expression of the human tyrosine hydroxylase gene in transgenic mice. Neuron 6(4):583–594PubMedCrossRefGoogle Scholar
  55. Kastner A, Hirsch EC, Agid Y, Javoy-Agid F (1993a) Tyrosine hydroxylase protein and messenger RNA in the dopaminergic nigral neurons of patients with Parkinson’s disease. Brain Res 606:341–345PubMedCrossRefGoogle Scholar
  56. Kastner E, Hirsch EC, Herrero T, Javoy-Agid F, Agid Y (1993b) Immunocytochemical quantification of tyrosine hydroxylase at a cellular level in the mesencephalon of control subjects and Parkinson’s and Alzheimer’s disease. J Neurochem 61:1024–1034PubMedCrossRefGoogle Scholar
  57. Katus LE, Frucht SJ (2017) An unusual presentation of tyrosine hydroxylase deficiency. J Clin Mov Disord 4:18PubMedPubMedCentralCrossRefGoogle Scholar
  58. Kaufman S (1963) The structure of the phenylalanine-hydroxylation cofactor. Proc Nat Acad Sci 50:1085–1093PubMedCrossRefGoogle Scholar
  59. Kawahata I, Tokuoka H, Parvez H, Ichinose H (2009) Accumulation of phosphorylated tyrosine hydroxylase into insoluble protein aggregates by inhibition of a ubiquitin-proteasome system in PC12D cells. J Neural Transm 116(12):1571–1578PubMedCrossRefGoogle Scholar
  60. Kawahata I, Ohtaku S, Tomioka Y, Ichinose H, Yamakuni T (2015) Dopamine or biopterin deficiency potentiates phosphorylation at Ser40 and ubiquitination of tyrosine hydroxylase to be degraded by the ubiquitin proteasome system. Biochem Biophys Res Commun 465:53–58PubMedCrossRefGoogle Scholar
  61. Kitada T, Asakawa S, Hattori H, Yamamura S, Minoshima S, Yokochi M, Mizuno Y, Shimizu N (1998) Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392(6676):605–608PubMedCrossRefGoogle Scholar
  62. Knappskog PM, Flatmark T, Mallet J, Lüdecke B, Bartholomé K (1995) Recessively inherited l-DOPA-responsive dystonia by a point mutation (Q381K) in the tyrosine hydroxylase gene. Hum Mol Genet 4(7):1209–1212PubMedCrossRefGoogle Scholar
  63. Kobayashi K, Nagatsu T (2005) Molecular genetics of tyrosine 3-monooxygenase and inherited diseases. Biochem Biophys Res Commun 338:267–270PubMedCrossRefGoogle Scholar
  64. Kobayashi K, Nagatsu T (2012) Tyrosine hydroxylase. In: Robertson D, Biggioni I, Burnstock G, Low PA, Paton JFR (eds) Primers on the autosomal nervous system. Academic Press/Elsevier, Oxford, pp 45–47CrossRefGoogle Scholar
  65. Kobayashi K, Kaneda N, Ichinose H, Kishi F, Nakazawa A, Kurosawa Y, Fujita K, Nagatsu T (1987) Isolation of a full-length cDNA clone encoding human tyrosine hydroxylase type 3. Nucleic Acids Res 15(16):733CrossRefGoogle Scholar
  66. Kobayashi K, Kaneda N, Ichinose H, Kishi F, Nakazawa A, Kurosawa Y, Fujita K, Nagatsu T (1988) Structure of the human tyrosine hydroxylase gene: alternative splicing from a single gene accounts for generation of four mRNA types. J Biochem 103(6):907–912PubMedCrossRefGoogle Scholar
  67. Kumer SC, Vrana KE (1996) Intricate regulation of tyrosine hydroxylase activity and gene expression. J Neurochem 67(2):443–462PubMedCrossRefGoogle Scholar
  68. Kunugi H, Kawada Y, Hattori M, Ueki A, Otsuka M, Nanko S (1998) Association study of structural mutations of the tyrosine hydroxylase gene with schizophrenia and Parkinson’s disease. Am J Med Genet 81(12):131–133PubMedCrossRefGoogle Scholar
  69. Kvetnansky R, Sabban EL, Palkovits M (2009) Catecholaminergic systems in stress: structural and molecular genetic approaches. Physiol Rev 89(2):535–606PubMedCrossRefGoogle Scholar
  70. La Cognata V, Morello G, D’Agata VD, Cavallaro S (2017) Copy number variability in Parkinson’s disease: assembling the puzzle through a systems biology approach. Hum Genet 136:13–37PubMedCrossRefGoogle Scholar
  71. Lamouroux A, Faucon Biguet N, Samolyk D, Privat A, Salmon JC, Pujol JF, Mallet JC (1982) Identification of cDNA clones coding for rat tyrosine hydroxylase antigen. Proc Natl Acad Sci USA 79(12):3881–3885PubMedCrossRefGoogle Scholar
  72. Langston JW, Ballard P, Tetrud JW, Irwin I (1983) Chronic parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219(4587):979–980PubMedCrossRefGoogle Scholar
  73. Lee NC, Muramatsu S, Chien YH, Liu WS, Wang WH, Cheng CH, Hu MK, Chen PW, Tzen KY, Byrne BJ, Hwu WL (2015) Benefits of neuronal preferential systemic gene therapy for neurotransmitter deficiency. Mol Ther 23(10):1572–1581PubMedPubMedCentralCrossRefGoogle Scholar
  74. Lehmann IT, Bobrovskaya L, Gordon SL, Dunkley PR, Dickson PW (2006) Differential regulation of the human tyrosine hydroxylase isoforms via hierarchical phosphorylation. J Biol Chem 281(26):17644–17651PubMedCrossRefGoogle Scholar
  75. Lewis DA, Melchitzky DS, Haycock JW (1993) Four isoforms of human tyrosine hydroxylase are expressed in human brain. Neuroscience 54(2):477–492PubMedCrossRefGoogle Scholar
  76. Lewis DA, Melchitzky DS, Haycock JW (1994) Expression and distribution of two isoforms of tyrosine hydroxylase in macaque monkey brain. Brain Res 656(1):1–13PubMedCrossRefGoogle Scholar
  77. Lloyd KG, Davidson L, Hornykiewicz O (1975) The neurochemistry of Parkinson’s disease: effect of l-DOPA therapy. J Pharmacol Exp Therap 195(3):453–464Google Scholar
  78. Lüdecke B, Dworniczak B, Bartholomé K (1995) A point mutation in the tyrosine hydroxylase gene associated with Segawa’s syndrome. Hum Genet 95(1):123–125PubMedCrossRefGoogle Scholar
  79. Lüdecke B, Knappskog PM, Clayton PT, Surtees RAH, Clelland JD, Heales SJR, Brand MP, Bartholomé K, Flattmark T (1996) Recessively inherited l-DOPA-responsive parkinsonism in infancy caused by a point mutation (L205P) in the the tyrosine hydroxylase gene. Hum Mol Genet 5(7):1023–1028PubMedCrossRefGoogle Scholar
  80. Matsuura S, Sugimoto T, Murata S, Sugawara Y, Iwasaki H (1985) Stereochemistry of biopterin cofactor and facile methods for determination of the stereochemistry of a biologically active 5,6,7,8-tetrahydropterin. J Biochem 98(5):1341–1348PubMedCrossRefGoogle Scholar
  81. McGeer PL, McGeer EG (1995) The inflammatory response system of brain: implications for therapy of Alzheimer and other neurodegenerative diseases. Brain Res Rev 21(2):195–218PubMedCrossRefGoogle Scholar
  82. Michel PP, Hirsch EC, Hunot S (2016) Understanding dopaminergic cell death pathways in Parkinson disease. Neuron 90(4):675–691PubMedCrossRefGoogle Scholar
  83. Mizuno Y, Ohta S, Tanaka M, Takamiya S, Suzuki K, Sato T, Oya H, Ozawa T, Kagawa Y (1989) Deficiencies in complex I subunits of the respiratory chain in Parkinson’s disease. Biochem Bophys Res Commun 163(3):1450–1455CrossRefGoogle Scholar
  84. Mogi M, Harada N, Kiuchi K, Kojima K, Kondo T, Narabayashi H, Rausch D, Riederer P, Jellinger K, Nagatsu T (1988a) Homospecific activity (activity per enzyme protein) of tyrosine hydroxylase increases in parkinsonian brain. J Neural Transm 72:221–232CrossRefGoogle Scholar
  85. Mogi M, Harada M, Kojima K, Inagaki H, Kondo T, Narabayashi H, Arai T, Teradaira R, Fujita K, Kiuchi K, Nagatsu T (1988b) Sandwich enzyme immunoassay of dopamine beta-hydroxylase in cerebrospinal fluid from control and Parkinsonian patients. Neurochem Int 12(2):187–191PubMedCrossRefGoogle Scholar
  86. Morizane A, Doi D, Kikuchi T, Okita K, Hotta A, Kawasaki T, Hayashi T, Onoe H, Shiina T, Yamanaka S, Takahashi J (2013) Direct comparison of autologous and allogenic transplantation of iPS-derived neural cells in the brain of a non-human primate. Stem Cell Rep 1(4):283–292CrossRefGoogle Scholar
  87. Muramatsu S, Fujimoto K, Ikeguchi K, Shizuma N, Kawasaki K, Ono F, Shen Y, Wang LJ, Mizukami H, Kume A, Matsumura M, Nagatsu I, Urano F, Ichinose H, Nagatsu T, Terano K, Nakano I, Ozawa K (2002) Behavioral recovery in a primate model of Parkinson’s disease by triple transduction of cells with adeno-associated viral vectors expressing dopamine-synthesizing enzymes. Hum Gene Ther 13(3):345–354PubMedCrossRefGoogle Scholar
  88. Muramatsu S, Fujimoto K, Kato S, Mizukami H, Asari S, Ikeguchi K, Kawakami T, Urabe M, Kume A, Sato T, Watanabe E, Ozawa K, Nakano I (2010) A phase I study of aromatic l-amino acid decarboxylase gene therapy for Parkinson’s disease. Mol Ther 18(9):1731–1735PubMedPubMedCentralCrossRefGoogle Scholar
  89. Nagatsu T (1991) Genes for human catecholamine-synthesizing enzymes. Neurosci Res 12(2):315–345PubMedCrossRefGoogle Scholar
  90. Nagatsu T (1995) Tyrosine hydroxylase: human isoforms, structure and regulation in physiology and pathology. Essays Biochem 30:15–35PubMedGoogle Scholar
  91. Nagatsu T (2006) The catecholamine system in health and disease: relation to tyrosine 3-monooxygenase and other catecholamine-synthesizing enzymes. Proc Jpn Acad Ser B 82(10):388–415CrossRefGoogle Scholar
  92. Nagatsu T (2014) Tyrosine hydroxylase. In: Nagatsu T, Takahashi A, Yanagisawa N, Mizuno Y, Kondo T, Takahashi R, Mezaki T, Riederer P (eds) From East to West: pioneers in Parkinson’s disease in Japan. QOL Laboratory Corp, Tokyo, pp 68–69Google Scholar
  93. Nagatsu T, Ichinose H (1991) Comparative studies on the structure of human tyrosine hydroxylase with those of the enzymes of various mammals. Comp Biochem Physiol C 98(1):203–210PubMedCrossRefGoogle Scholar
  94. Nagatsu T, Nagatsu I (2016) Tyrosine hydroxylase (TH), its cofactor tetrahydrobiopterin (BH4), other catecholamine-related enzymes, and their human genes in relation to the drug and gene therapies of Parkinson’s disease (PD): historical overview and future prospects. J Neural Transm 123:1255–1278PubMedCrossRefGoogle Scholar
  95. Nagatsu T, Sawada M (2005) Inflammatory process in Parkinson’s disease: role of cytokines. Curr Pharm Des 11(8):999–1016PubMedCrossRefGoogle Scholar
  96. Nagatsu T, Sawada M (2009) l-dopa therapy for Parkinson’s disease: past, present, and future. Parkinsonism Relat Disord 15(1):S3–S8CrossRefGoogle Scholar
  97. Nagatsu T, Levitt M, Udenfriend S (1964) Tyrosine hydroxylase. The initial step in norepinephrine biosynthesis. J Biol Chem 239(9):2910–2917PubMedGoogle Scholar
  98. Nagatsu T, Kato T, Numata Y, Ikuta K, Sano M, Nagatsu I, Kondo Y, Inagaki S, Iizuka R, Hori A, Narabayashi H (1977) Phenylethanolamine N-methyltransferase activity and other enzymes of catecholamine metabolism in human brain. Clin Chim Acta 75:221–232PubMedCrossRefGoogle Scholar
  99. Nakashima A, Mori K, Kaneko YS, Hayashi N, Nagatsu T, Ota A (2011) Phosphorylation of the N-terminal portion of tyrosine hydroxylase triggers proteasomal digestion of the enzyme. Biochem Biophys Res Commun 407:343–347PubMedCrossRefGoogle Scholar
  100. Nakashima A, Ota A, Kaneko YS, Mori K, Nagasaki H, Nagatsu T (2013a) A possible pathophysiological role of tyrosine hydroxylase in Parkinson’s disease suggested by postmortem brain biochemistry: a contribution for the special 70th birthday symposium in honor of Prof. Peter Riederer. J Neural Transm 120:49–54PubMedCrossRefGoogle Scholar
  101. Nakashima A, Kaneko YS, Kodani Y, Mori K, Nagasaki H, Nagatsu T, Ota A (2013b) Intracellular stability of tyrosine hydroxylase: phosphorylation and proteasomal digestion of the enzyme. Adv Pharmacol 68:3–11PubMedCrossRefGoogle Scholar
  102. Nakashima A, Ohnuma S, Kodani Y, Kaneko YS, Nagasaki H, Nagatsu T, Ota A (2016) Inhibition of deubiquitinating activity of USP14 decreases tyrosine hydroxylase phosphorylated at Ser19 in PC12D cells. Biochim Biophys Res Commun 427:598–602CrossRefGoogle Scholar
  103. Nakashima A, Kodani Y, Kaneko YS, Nagasaki H, Ota A (2018) Proteasome-mediated degradation of tyrosine hydroxylase triggered by its phosphorylation: a new question as to the intracellular location at which the degradation occurs. J Neural Trans 125:9–15CrossRefGoogle Scholar
  104. O’Malley KL, Anhalt MJ, Martin BM, Kalsoe JR, Winfield SL, Ginns EI (1987) Isolation and characterization of human tyrosine hydroxylase gene: identification of 5′-alternative splice sites responsible for multiple mRNAs. Biochemistry 26(22):6910–6914PubMedCrossRefGoogle Scholar
  105. Ohye T, Ichinose H, Ogawa M, Yoshida M, Nagatsu T (1995) Alternative splicing in multiple tyrosine hydroxylase mRNA in the substantia nigra, locus coeruleus and adrenal gland of MPTP-treated parkinsonian monkeys. Neurodegeneration 4(1):157–160CrossRefGoogle Scholar
  106. Ohye T, Ichinose H, Yoshizawa T, Kanazawa I, Nagatsu T (2001) A new splicing variant for human tyrosine hydroxylase in the adrenal medulla. Neurosci Lett 312(3):157–160PubMedCrossRefGoogle Scholar
  107. Palfi S, Grruchaga JM, Ralph GS, Lepetit H, Lavisse S, Buttery PC, Watts C, Miskin J, Kellleher M, Deeley S, Iwamuro H, Lefaucheur JP, Thiriez C, Fenelon G, Lucas C, Burugières P, Grabriel I, Abhay K, Drout X, Tani N, Kas A, Ghaleh B, Le Corvoisier P, Dolphin P, Breen DP, Mason S, Guzman NV, Mazarakis ND, Radclifffe PA, Harrop R, Kingsman SM, Rascol O, Naylor S, Baker RA, Hantraye P, Remy P, Cessaro P, Mitrophanous KA (2014) Long-term safety and tolerability of ProSavin, a lentiviral vector-based gene therapy for Parkinson’s disease: a dose escalation, open-label, phase 1/2 trial. Lancet 383(9923):1138–1146PubMedCrossRefGoogle Scholar
  108. Planté-Bordeneuve V, Davis MB, Maraganore DM, Marsden CD, Harding AE (1994) Tyrosine hydroxylase polymorphism in familial and sporadic Parkinson’s disease. Mov Disord 9(3):337–339PubMedCrossRefGoogle Scholar
  109. Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, Pike B, Root H, Rubenstein J, Boyer R, Stenroos ES, Chandrasekharappa S, Athannassiadou A, Papapetropoulos T, Johnson WG, Lazzarini AM, Duvosin RC, Di Iorio G, Golbe LI, Nussbaum RL (1997) Mutation in the alpha-synuclein gene identified in familial Parkinson’s disease. Science 276(5321):2045–2047PubMedCrossRefGoogle Scholar
  110. Reichmann H, Riederer P (1989) Biochemische Analyse der Atmugskettenkomplexe verschiedener Hirnregionen von Forschung und Technologie (BMBF). Bad Kissingen (Germany), 23–25 Apr, 1.2.6; p 44Google Scholar
  111. Sano I (1960) Biochemistry of the extrapyramidal system. Shinkei Kennkyu No Shinppo (Japanese). Adv Neurol Sci 5:42–48 (ISSN:0001-8724) Google Scholar
  112. Sano A (2000) Biochemistry of the extrapyramidal system (translation of the reference Sano I (1960) from Japanese into English). Parkinsonism Relat Disord 6:3–6PubMedCrossRefGoogle Scholar
  113. Sano I, Gamo T, Kakimoto Y, Taniguchi K, Takesada M, Nishinuma K (1959) Distribution of catechol compounds in human brain. Biochim Biophys Acta 32:586–587PubMedCrossRefGoogle Scholar
  114. Sawada M, Imamura K, Hashizume Y, Nagatsu T (2007) Role of cytokines in inflammatory process in Parkinson’s disease: interaction between dopaminergic neurons and microglia. CNS Drugs 1:3–10Google Scholar
  115. Schapira AHV, Cooper JM, Dexter D, Jenner P, Clark JB, Marsden CD (1989) Mitochondrial complex I deficiency in Parkinson’s disease. Lancet 1:1269PubMedCrossRefGoogle Scholar
  116. Segawa M (2011) Hereditary progressive dystonia with marked diurnal fluctuation. Brain Dev 33(3):195–201PubMedCrossRefGoogle Scholar
  117. Segawa M, Ohmi K, Itoh S, Aoyama M, Hayakawa H (1971) Hereditary progressive basal ganglia disease with marked diurnal fluctuation (in Japanese). SHINRYO (Japanese) 24:667–672Google Scholar
  118. Segura-Aguilar J, Huenchguala S (2018) Aminochrome induces irreversible mitochondrial dysfunction by inducing autophagy dysfunction in Parkinson’s disease. Front Neurosci 12:106PubMedPubMedCentralCrossRefGoogle Scholar
  119. Stewart HJ, Ralph GS, Fong-Wong L, Strickland I, McCloskey L, Barnes L, Blount I, Wells O, Truran CJ, Kingsman AJ, Palfi S, Mitrophanous KA (2016) Optimizing transgene configuration and protein fusions to maximize dopamine production for the gene therapy of Parkinson’s disease. Human Gene Ther Clin Dev 27(3):100–110CrossRefGoogle Scholar
  120. Strömberg I, Kehr J, Andbjer B, Fuxe K (2000) Fetal ventral mesencephalic grafts functionally reduce the dopamine D2 receptor supersensitivity in partially dopamine reinnervated host striatum. Exp Neurol 161(1):154–165CrossRefGoogle Scholar
  121. Sumi-Ichinose C, Ichinose H, Takahashi E, Hori T, Nagatsu T (1992) Molecular cloning of genomic DNA and chromosomal assignment of the gene for human aromatic l-amino acid decarboxylase, the enzyme for catecholamine and serotonin biosynthesis. Biochemistry 31(8):2229–2238PubMedCrossRefGoogle Scholar
  122. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676PubMedCrossRefGoogle Scholar
  123. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872PubMedCrossRefGoogle Scholar
  124. Van den Heuvel LP, Luiten B, Smeitink JA, de Rijk-van Andel JF, Hyland K, Steenbergen-Spanjers GC, Janssen LP, Wevers RA (1998) A common point mutation in the tyrosine hydroxylase gene in autosomal recessive l-DOPA-responsive dystonia in the Dutch population. Human Genet 102(6):644–646CrossRefGoogle Scholar
  125. Wider C, Melquist S, Hauf M, Solida A, Cobb SA, Kachergus JM, Gass J, Coon KD, Baker M, Cannon A, Stephan DA, Shorderet DF, Ghika J, Burkhard PR, Kapatos G, Hutton M, Farrer MJ, Wszolek ZK, Vingerhoets FJ (2008) Study of a Swiss dopa-responsive dystonia family with a deletion in GCH1: redefining DYT14 as DYT5. Neurology 70(16 Pt2):1377–1383PubMedCrossRefGoogle Scholar
  126. Willemsen MA, Verbeek MM, Kamsteeg EJ, de Rijk-van Andel JF, Aeby A, Blau N, Burlina A, Donati MA, Geurtz B, Grattan-Smith PJ, Haeussler M, Hoffmann GF, Jung H, de Klerk JB, van der Knaap MS, Kok F, Leuzzi V, de Lonlay P, Megarbane A, Monaghan H, Renier WO, Rondot P, Ryan MM, Seeger J, Smeitink JA, Steenbergen-Spanjers GC, Wassmer E, Weschke B, Wijburg FA, Wilcken B, Zafeiriou DI, Wevers RA (2010) Tyrosine hydroxylase deficiency: a treatable disorder of brain catecholamine biosynthesis. Brain 133(Pt 6):1810–1822PubMedCrossRefGoogle Scholar
  127. Winklhofer KF, Haass C (2010) Mitochondrial dysfunction in Parkinson’s disease. Biochem Biophys Acta 1802(1):29–44PubMedGoogle Scholar
  128. Zhang S, Huang T, Ilangovan U, Hinck AP, Fitzpatrick PF (2014) The solution structure of the regulatory domain of tyrosine hydroxylase. J Mol Biol 426(7):1483–1497PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • Toshiharu Nagatsu
    • 1
  • Akira Nakashima
    • 2
  • Hiroshi Ichinose
    • 3
  • Kazuto Kobayashi
    • 4
  1. 1.School of MedicineFujita Health UniversityToyoakeJapan
  2. 2.Department of Physiological Chemistry, School of MedicineFujita Health UniversityToyoakeJapan
  3. 3.School of Life Science and TechnologyTokyo Institute of TechnologyYokohamaJapan
  4. 4.Department of Molecular Genetics, Institute of Biomedical SciencesFukushima Medical UniversityFukushimaJapan

Personalised recommendations