Advertisement

Journal of Neural Transmission

, Volume 125, Issue 6, pp 913–923 | Cite as

Expression of the ADHD candidate gene Diras2 in the brain

  • Lena Grünewald
  • Nils Becker
  • Annika Camphausen
  • Aet O‘Leary
  • Klaus-Peter Lesch
  • Florian Freudenberg
  • Andreas Reif
Translational Neurosciences - Original Article

Abstract

The distinct subgroup of the Ras family member 2 (DIRAS2) gene has been found to be associated with attention-deficit/hyperactivity disorder (ADHD) in one of our previous studies. This gene is coding for a small Ras GTPase with unknown function. DIRAS2 is highly expressed in the brain. However, the exact neural expression pattern of this gene was unknown so far. Therefore, we investigated the expressional profile of DIRAS2 in the human and murine brain. In the present study, qPCR analyses in the human and in the developing mouse brain, immunocytological double staining on murine hippocampal primary cells and RNA in situ hybridization (ISH) on brain sections of C57BL/6J wild-type mice, have been used to reveal the expression pattern of DIRAS2 in the brain. We could show that DIRAS2 expression in the human brain is the highest in the hippocampus and the cerebral cortex, which is in line with the ISH results in the mouse brain. During mouse brain development, Diras2 levels strongly increase from prenatal to late postnatal stages. Co-expression studies indicate Diras2 expression in glutamatergic and catecholaminergic neurons. Our findings support the idea of DIRAS2 as a candidate gene for ADHD as the timeline of its expression as well as the brain regions and cell types that show Diras2 expression correspond to those assumed to underlie the pathomechanisms of the disease.

Keywords

ADHD Gene expression Brain tissue Ras kinase Colocalization Glutamatergic 

Notes

Funding

This study was supported by EU FP7 Aggressotype Consortium [http://www.aggressotype.eu/, Seventh Framework Programme, Grant agreement no. 602805], EU Horizon2020 Marie Sklodowska Curie European Training Program: MiND [http://www.mind-project.eu/, Grant agreement no. 643051], EU Horizon2020 consortium CoCA [http://www.coca-project.eu/, Grant agreement no. 667302], European College of Neuropsychopharmacology, the German Research Foundation [Grant RE1632/5-1], the Interdisciplinary center for Clinical Research (IZKF), University of Würzburg, [Grant Z-3/24], the Frankfurter Nachwuchswissenschaftlerförderung: “Generation of a neuronal cell model of bipolar disorder to functionally characterize a DGKH risk gene variant” and the ECNP Network ADHD across the Lifespan (http://www.ecnp.eu/projects-initiatives/ECNP-networks.aspx).

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

702_2018_1867_MOESM1_ESM.docx (13 kb)
Supplementary material 1 (DOCX 13 kb)

References

  1. Asherson P et al (2008) A high-density SNP linkage scan with 142 combined subtype ADHD sib pairs identifies linkage regions on chromosomes 9 and 16. Mol Psychiatry 13:514–521.  https://doi.org/10.1038/sj.mp.4002140 CrossRefPubMedGoogle Scholar
  2. Cardinal RN, Pennicott DR, Sugathapala CL, Robbins TW, Everitt BJ (2001) Impulsive choice induced in rats by lesions of the nucleus accumbens core. Science 292:2499–2501.  https://doi.org/10.1126/science.1060818 CrossRefPubMedGoogle Scholar
  3. Celio MR (1990) Calbindin D-28k and parvalbumin in the rat nervous system. Neuroscience 35:375–475CrossRefPubMedGoogle Scholar
  4. Clancy B, Darlington RB, Finlay BL (2001) Translating developmental time across mammalian species. Neuroscience 105:7–17CrossRefPubMedGoogle Scholar
  5. Del Campo N, Chamberlain SR, Sahakian BJ, Robbins TW (2011) The roles of dopamine and noradrenaline in the pathophysiology and treatment of attention-deficit/hyperactivity disorder. Biol Psychiatry 69:e145–e157.  https://doi.org/10.1016/j.biopsych.2011.02.036 CrossRefPubMedGoogle Scholar
  6. Dobbing J, Sands J (1973) Quantitative growth and development of human brain. Arch Dis Child 48:757–767CrossRefPubMedPubMedCentralGoogle Scholar
  7. Fallon JH, Moore RY (1978) Catecholamine innervation of the basal forebrain. IV. Topography of the dopamine projection to the basal forebrain and neostriatum. J Comp Neurol 180:545–580.  https://doi.org/10.1002/cne.901800310 CrossRefPubMedGoogle Scholar
  8. Faraone SV, Perlis RH, Doyle AE, Smoller JW, Goralnick JJ, Holmgren MA, Sklar P (2005) Molecular genetics of attention-deficit/hyperactivity disorder. Biol Psychiatry 57:1313–1323.  https://doi.org/10.1016/j.biopsych.2004.11.024 CrossRefPubMedGoogle Scholar
  9. Kang HJ et al (2011) Spatio-temporal transcriptome of the human brain. Nature 478:483–489.  https://doi.org/10.1038/nature10523 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Kontani K, Tada M, Ogawa T, Okai T, Saito K, Araki Y, Katada T (2002) Di-Ras, a distinct subgroup of ras family GTPases with unique biochemical properties. J Biol Chem 277:41070–41078.  https://doi.org/10.1074/jbc.M202150200 CrossRefPubMedGoogle Scholar
  11. Krauel K et al (2010) Increased echogenicity of the substantia nigra in children and adolescents with attention-deficit/hyperactivity disorder. Biol Psychiatry 68:352–358.  https://doi.org/10.1016/j.biopsych.2010.01.013 CrossRefPubMedGoogle Scholar
  12. Lesch KP et al (2008) Molecular genetics of adult ADHD: converging evidence from genome-wide association and extended pedigree linkage studies. J Neural Transm 115:1573–1585.  https://doi.org/10.1007/s00702-008-0119-3 CrossRefPubMedGoogle Scholar
  13. Lu Z et al (2008) The tumor suppressor gene ARHI regulates autophagy and tumor dormancy in human ovarian cancer cells. J Clin Investig 118:3917–3929.  https://doi.org/10.1172/JCI35512 PubMedPubMedCentralGoogle Scholar
  14. Miller EM, Thomas TC, Gerhardt GA, Glaser PEA (2013) Dopamine and glutamate interactions in ADHD: implications for the future neuropharmacology of ADHD. In: Banerjee S (ed) Attention deficit hyperactivity disorder in children and adolescents. InTech.  https://doi.org/10.5772/54207
  15. Miller JA et al (2014) Transcriptional landscape of the prenatal human brain. Nature 508:199–206.  https://doi.org/10.1038/nature13185 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Ogita Y, Egami S, Ebihara A, Ueda N, Katada T, Kontani K (2015) Di-Ras2 protein forms a complex with SmgGDS protein in brain cytosol in order to be in a low affinity state for guanine nucleotides. J Biol Chem 290:20245–20256.  https://doi.org/10.1074/jbc.M115.637769 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Palop JJ, Roberson ED, Cobos I (2011) Step-by-step in situ hybridization method for localizing gene expression changes in the brain. Methods Mol Biol 670:207–230.  https://doi.org/10.1007/978-1-60761-744-0_15 CrossRefPubMedGoogle Scholar
  18. Plessen KJ et al (2006) Hippocampus and amygdala morphology in attention-deficit/hyperactivity disorder. Arch Gen Psychiatry 63:795–807.  https://doi.org/10.1001/archpsyc.63.7.795 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Ramakers C, Ruijter JM, Deprez RH, Moorman AF (2003) Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci Lett 339:62–66CrossRefPubMedGoogle Scholar
  20. Reif A et al (2011) DIRAS2 is associated with adult ADHD, related traits, and co-morbid disorders. Neuropsychopharmacology 36:2318–2327.  https://doi.org/10.1038/npp.2011.120 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Renner TJ, Gerlach M, Romanos M, Herrmann M, Reif A, Fallgatter AJ, Lesch KP (2008) Neurobiology of attention-deficit hyperactivity disorder. Nervenarzt 79:771–781.  https://doi.org/10.1007/s00115-008-2513-3 CrossRefPubMedGoogle Scholar
  22. Romanos M et al (2008) Genome-wide linkage analysis of ADHD using high-density SNP arrays: novel loci at 5q13.1 and 14q12. Mol Psychiatry 13:522–530.  https://doi.org/10.1038/mp.2008.12 CrossRefPubMedGoogle Scholar
  23. Romanos M et al (2010) Structural abnormality of the substantia nigra in children with attention-deficit hyperactivity disorder. J Psychiatry Neurosci 35:55–58CrossRefPubMedPubMedCentralGoogle Scholar
  24. Schubert D, Martens GJ, Kolk SM (2015) Molecular underpinnings of prefrontal cortex development in rodents provide insights into the etiology of neurodevelopmental disorders. Mol Psychiatry 20:795–809.  https://doi.org/10.1038/mp.2014.147 CrossRefPubMedGoogle Scholar
  25. Seamans JK, Lapish CC, Durstewitz D (2008) Comparing the prefrontal cortex of rats and primates: insights from electrophysiology. Neurotox Res 14:249–262.  https://doi.org/10.1007/BF03033814 CrossRefPubMedGoogle Scholar
  26. Seshadri S et al (2007) Genetic correlates of brain aging on MRI and cognitive test measures: a genome-wide association and linkage analysis in the Framingham study. BMC Med Genet 8:S15.  https://doi.org/10.1186/1471-2350-8-s1-s15 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Sheehan TP, Chambers RA, Russell DS (2004) Regulation of affect by the lateral septum: implications for neuropsychiatry. Brain Res Brain Res Rev 46:71–117.  https://doi.org/10.1016/j.brainresrev.2004.04.009 CrossRefPubMedGoogle Scholar
  28. Shen EH, Overly CC, Jones AR (2012) The Allen Human Brain Atlas: comprehensive gene expression mapping of the human brain. Trends Neurosci 35:711–714.  https://doi.org/10.1016/j.tins.2012.09.005 CrossRefPubMedGoogle Scholar
  29. Simon V, Czobor P, Balint S, Meszaros A, Bitter I (2009) Prevalence and correlates of adult attention-deficit hyperactivity disorder: meta-analysis. Br J Psychiatry J Ment Sci 194:204–211.  https://doi.org/10.1192/bjp.bp.107.048827 CrossRefGoogle Scholar
  30. Thapar A, Cooper M (2016) Attention deficit hyperactivity disorder. Lancet 387:1240–1250.  https://doi.org/10.1016/S0140-6736(15)00238-X CrossRefPubMedGoogle Scholar
  31. Uylings HB, Groenewegen HJ, Kolb B (2003) Do rats have a prefrontal cortex? Behav Brain Res 146:3–17CrossRefPubMedGoogle Scholar
  32. Van De Werd HJ, Rajkowska G, Evers P, Uylings HB (2010) Cytoarchitectonic and chemoarchitectonic characterization of the prefrontal cortical areas in the mouse. Brain Struct Funct 214:339–353.  https://doi.org/10.1007/s00429-010-0247-z CrossRefGoogle Scholar
  33. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:RESEARCH0034Google Scholar
  34. Wennerberg K, Rossman KL, Der CJ (2005) The Ras superfamily at a glance. J Cell Sci 118:843–846.  https://doi.org/10.1242/jcs.01660 CrossRefPubMedGoogle Scholar
  35. Wylie CJ et al (2010) Distinct transcriptomes define rostral and caudal serotonin neurons. J Neurosci 30:670–684.  https://doi.org/10.1523/jneurosci.4656-09.2010 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Yu Y et al (2003) Epigenetic regulation of ARHI in breast and ovarian cancer cells. Ann N Y Acad Sci 983:268–277CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • Lena Grünewald
    • 1
  • Nils Becker
    • 2
  • Annika Camphausen
    • 2
  • Aet O‘Leary
    • 1
  • Klaus-Peter Lesch
    • 2
  • Florian Freudenberg
    • 1
  • Andreas Reif
    • 1
  1. 1.Department of Psychiatry, Psychosomatic Medicine and PsychotherapyUniversity Hospital FrankfurtFrankfurtGermany
  2. 2.Department of Psychiatry, Psychosomatic Medicine and PsychotherapyUniversity Hospital of WürzburgWürzburgGermany

Personalised recommendations