Advertisement

Journal of Neural Transmission

, Volume 125, Issue 5, pp 869–873 | Cite as

Kynurenine is correlated with IL-1β in plasma of schizophrenia patients

  • Helena P. G. Joaquim
  • Alana C. Costa
  • Wagner F. Gattaz
  • Leda Leme TalibEmail author
Psychiatry and Preclinical Psychiatric Studies - Original Article

Abstract

The etiology of schizophrenia is still unclear. It is well-known that pro-inflammatory cytokines are higher in schizophrenia patients since the first episode psychosis comparing to healthy controls. Inflammatory downstream cascades influence different cellular pathways, like the displacement of the tryptophan (TRP) metabolism to the production of kynurenine (KYN) instead of serotonin, which results in the generation of several neuro and immunoactive metabolites. The aim of this study was to determine TRP, KYN and IL-1β plasma levels in first-onset schizophrenia (n = 28) and healthy controls (n = 30). The plasmatic levels of TRP and KYN were decreased in schizophrenic patients (p = 0.004 and p = 0.002, respectively), but there was no difference in the ratio of KYN/TRP (p = 0.554) or either in IL-1β (p = 0.101). Positive correlation was observed between KYN and IL-1β only in the schizophrenia group (r = 0.461, p = 0.021). And, there was also positive correlation between KYN and Positive and Negative Symptoms Scale (PANSS) (r = 0.395, p = 0.037). There is no correlation between the other analytes and other parameters of PANSS. Although our results of KYN have been different than expected and there was no difference in the KYN/TRP ratio, we observed a positive correlation between IL-1β and KYN, corroborating findings that pro-inflammatory agents hold up the KYN pathway.

Keywords

Kynurenine IL-1β Tryptophan Schizophrenia 

Notes

Acknowledgements

The present work was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP Grants Nos. 2013/10350-9 and 2014/20913-3); Instituto Nacional de Biomarcadores em Neuropsiquiatria (Grant No. 2014/50873-3). The Laboratory of Neuroscience receives financial support from Associação Beneficente Alzira Denise Hertzog da Silva (ABADHS) and JNK Empreendimentos e Incorporações.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

References

  1. Barry S, Clarke G, Scully P, Dinan TG (2009) Kynurenine pathway in psychosis: evidence of increased tryptophan degradation. J Psychopharmacol 23:287–294CrossRefPubMedGoogle Scholar
  2. Bramon E, Sham PC (2001) The common genetic liability between schizophrenia and bipolar disorder: a review. Curr Psychiatry Rep 3:332–337CrossRefPubMedGoogle Scholar
  3. Brown AS, Susser ES (2002) In utero infection and adult schizophrenia. Ment Retard Dev Disabil Res Rev 8:51–57CrossRefPubMedGoogle Scholar
  4. Campbell BM, Charych E, Lee AW, Möller T (2014) Kynurenines in CNS disease: regulation by inflammatory cytokines. Front Neurosci 8:12CrossRefPubMedPubMedCentralGoogle Scholar
  5. Dounay AB, Tuttle JB, Verhoest PR (2015) Challenges and opportunities in the discovery of new therapeutics targeting the kynurenine pathway. J Med Chem 58:8762–8782CrossRefPubMedGoogle Scholar
  6. Eaton WW, Byrne M, Ewald H, Mors O, Chen CY, Agerbo E et al (2006) Association of schizophrenia and autoimmune diseases: linkage of Danish national registers. Am J Psychiatry 163:521–528CrossRefPubMedGoogle Scholar
  7. Erhardt S, Oberg H, Mathé JM, Engberg G (2001) Pharmacological elevation of endogenous kynurenic acid levels activates nigral dopamine neurons. Amino Acids 20:353–362CrossRefPubMedGoogle Scholar
  8. Erhardt S, Schwieler L, Imbeault S, Engberg G (2017) The kynurenine pathway in schizophrenia and bipolar disorder. Neuropharmacology 112:297–306CrossRefPubMedGoogle Scholar
  9. Fazio F, Lionetto L, Curto M, Iacovelli L, Cavallari M, Zappulla C, Ulivieri M, Napoletano F, Capo M, Corigliano V, Scaccionoce S, Caruso A, Miele J, De Fusco A, Di Menna L, Comparelli A, De Carolis A, Grandini R, Nistico R, De Blasi A, Girardi P, Bruno V, Battaglia G, Nicoletti F, Simmaco M (2015) Xanthurenic acid activates mGlu2/3 metabotropic glutamate receptors and is a potential trait marker for schizophrenia. Sci Rep 5:17799CrossRefPubMedPubMedCentralGoogle Scholar
  10. Fillman SG, Cloonan N, Miller LC, Weickert CS (2013) Markers of inflammation in the prefrontal cortex of individuals with schizophrenia. Mol Psychiatry 18:133CrossRefPubMedGoogle Scholar
  11. First MB, Spitzer RL, Gibbon M, Williams JBW (2002) Structured clinical interview for DSM-IV-TR axis I disorders. Research version. Non-patient edition (SCID-I/NP). Biometrics Research, New York State Psychiatric Institute, New YorkGoogle Scholar
  12. Fujigaki H, Saito K, Fujigaki S, Takemura M, Sudo K, Ishiguro H, Seishima M (2006) The signal transducer and activator of transcription 1 alpha and interferon regulatory factor 1 are not essential for the induction of indoleamine 2,3-dioxygenase by lipopolysaccharide: involvement of p38 mitogen-activated protein kinase and nuclear factor-kappaB pathways, and synergistic effect of several proinflammatory cytokines. J Biochem 139:655–662CrossRefPubMedGoogle Scholar
  13. Fukui S, Schwarcz R, Rapoport SI, Takada Y, Smith QR (1991) Blood-brain barrier transport of kynurenines: implications for brain synthesis and metabolism. J Neurochem 56:2007–2017CrossRefPubMedGoogle Scholar
  14. Fukushima T, Iizuka H, Yokota A, Suzuki T, Ohno C, Kono Y, Nishikiori M, Seki A, Ichiba H, Watanabe Y, Hongo S, Ursonomiya M, Nakatani M, Sadamoto K, Yoshio T (2014) Quantitative analyses of schizophrenia-associated metabolites in serum: serum D-lactate levels are negatively correlated with gamma-glutamylcysteine in medicated schizophrenia patients. PLoS One 9:101652CrossRefGoogle Scholar
  15. Gal EM, Sherman AD (1980) l-Kynurenine: its synthesis and possible regulatory function in brain. Neurochem Res 5:223–239CrossRefPubMedGoogle Scholar
  16. Garver DL, Tamas RL, Holcomb JÁ (2003) Elevated interleukin-6 in the cerebrospinal fluid of a previously delineated schizophrenia subtype. Neuropsychopharmacology 28:1515–1520CrossRefPubMedGoogle Scholar
  17. Haber R, Bessette D, Hulihan-Giblin B, Durcan MJ, Goldman D (1993) Identification of tryptophan 2,3-dioxygenase RNA in rodent brain. J Neurochem 60:1159–1162CrossRefPubMedGoogle Scholar
  18. Hilmas C, Pereira EF, Alkondon M, Rassoulpour A, Schwarcz R, Albuquerque EX (2001) The brain metabolite kynurenic acid inhibits alpha7 nicotinic receptor activity and increases non-alpha7 nicotinic receptor expression: physiopathological implications. J Neurosci 21:7463–7473CrossRefPubMedGoogle Scholar
  19. Jospeh MH, Baker HF, Crow TJ, Riley GJ, Risby D (1979) Brain tryptophan metabolism in schizophrenia: a post mortem study of metabolites of the serotonin and kynurenine pathways in schizophrenic and control subjects. Psychopharmacology 62:279–285CrossRefPubMedGoogle Scholar
  20. Kay SR, Fiszbein A, Opler LA (1987) The positive and negative syndrome scale for schizophrenia. Schizophr Bull 13:261–276CrossRefPubMedGoogle Scholar
  21. Kegel ME, Svensson CI, Erhardt S (2011) IL-1 induces IDO and TDO transcription and provokes the release of kynurenic acid from human astrocytes in vitro. Progr No 24019/E7 Neurosci Meet Planner Washington, DC. Soc Neurosci OnlineGoogle Scholar
  22. Lake CR, Hurwitz N (2007) Schizoaffective disorder merges schizophrenia and bipolar disorders as one disease—there is no schizoaffective disorder. Curr Opin Psychiatry 20:365–379CrossRefPubMedGoogle Scholar
  23. Lichtenstein P, Yip BH, Björk C, Pawitan Y, Cannon TD, Sullivan PF, Hultman CM (2009) Common genetic determinants of schizophrenia and bipolar disorder in Swedish families: a population-based study. Lancet 373:234–239CrossRefPubMedGoogle Scholar
  24. Linderholm KR, Skogh E, Olsson SK, Dahl ML, Holtze M, Engberg G, Samuelsson M, Erhardt S (2012) Increased levels of kynurenine and kynurenic acid in the CSF of patients with schizophrenia. Schizophr Bull 38:426–432CrossRefPubMedGoogle Scholar
  25. Mándi Y, Vécsei L (2012) The kynurenine system and immunoregulation. J Neural Transm 119:197–209CrossRefPubMedGoogle Scholar
  26. Miller CL, Llenos IC, Dulay JR, Weis S (2006) Upregulation of the initiating step of the kynurenine pathway in postmortem anterior cingulate cortex from individuals with schizophrenia and bipolar disorder. Brain Res 1074:25–37CrossRefGoogle Scholar
  27. Myint AM, Schwarz MJ, Verkerk R, Mueller HH, Zach J, Scharpe S, Steinbusch HW, Leonard BE, Kim YK (2011) Reversal of imbalance between kynurenic acid and 3-hydroxykynurenine by antipsychotics in medication-naive and medication-free schizophrenic patients. Brain Behav Immun 25:1576–1581CrossRefPubMedGoogle Scholar
  28. Okusaga O, Fuchs D, Reeves G, Giegling I, Hartmann AM, Konte B, Friedl M, Groer M, Cook TB, Stearns-Yoder KA, Pandey JP, Kelly DL, Hoisington AJ, Lowry CA, Eaton WW, Brenner LA, Rujescu D, Postolache TT (2016) Kynurenine and tryptophan levels in patients with schizophrenia and elevated antigliadin immunoglobulin G antibodies. Psychosom Med 78:931–939CrossRefPubMedPubMedCentralGoogle Scholar
  29. Owen MJ, Craddock N (2009) Diagnosis of functional psychoses: time to face the future. Lancet 373:190–191CrossRefPubMedGoogle Scholar
  30. Plitman E, Iwata Y, Caravaggio F, Nakajima S, Chung JK, Gerretsen P, Kim J, Takeuchi H, Chakravarty MM, Remington G, Graff-Guerrero A (2017) Kynurenic acid in schizophrenia: a systematic review and meta-analysis. Schizophr Bull 43:764–777CrossRefPubMedGoogle Scholar
  31. Raison CL, Miller AH (2004) Brain–immune system interaction: relevance to the pathophysiology and treatment of neuropsychiatric disorders. In: Schatzberg AF, Nemeroff CB (eds) The American psychiatric publishing textbook of psychopharmacology, 3rd edn. American Psychiatric Press, Washington, pp 147–162Google Scholar
  32. Rao JS, Kim HW, Harry GJ, Rapoport SI, Reese EA (2013) Increased neuroinflammatory and arachidonic acid cascade markers, and reduced synaptic proteins, in the postmortem frontal cortex from schizophrenia patients. Schizophr Res 147:24–31CrossRefPubMedGoogle Scholar
  33. Ravikumar A, Deepadevi KV, Arun P, Manojkumar V, Kurup PA (2000) Tryptophan and tyrosine catabolic pattern in neuropsychiatric disorders. Neurol India 48:231–238PubMedGoogle Scholar
  34. Saito K, Crowley JS, Markey SP, Heyes MP (1993) A mechanism for increased quinolinic acid formation following acute systemic immune stimulation. J Biol Chem 268:15496–15503PubMedGoogle Scholar
  35. Sasayama D, Hattori K, Wakabayashi C, Teraishi T, Hori H, Ota M, Yoshida S, Arima K, Higuchi T, Amano N, Kunugi H (2013) Increased cerebrospinal fluid interleukin-6 levels in patients with schizophrenia and those with major depressive disorder. J Psychiatr Res 47:401–406CrossRefPubMedGoogle Scholar
  36. Sathyasaikumar KV, Stachowski EK, Wonodi I, Roberts RC, Rassoulpour A, McMahon RP, Schwarcz R (2011) Impaired kynurenine pathway metabolism in the prefrontal cortex of individuals with schizophrenia. Schizophr Bull 37:1147–1156CrossRefPubMedGoogle Scholar
  37. Schwarcz R, Rassoulpour A, Wu HQ, Medoff D, Tamminga CA, Roberts RC (2001) Increased cortical kynurenate content in schizophrenia. Biol Psychiatry 50:521–530CrossRefPubMedGoogle Scholar
  38. Schwarcz R, Bruno JP, Muchowski PJ, Wu HQ (2012) Kynurenines in the mammalian brain: when physiology meets pathology. Nat Rev Neurosci 13:465–477CrossRefPubMedPubMedCentralGoogle Scholar
  39. Schwieler L, Larsson MK, Skogh E, Kegel ME, Orhan F, Abdelmoaty S, Finn A, Bhat M, Samuelsson M, Lundberg K, Dahl ML, Sellgren C, Schuppe-Koistinen I, Svensson C, Erhardt S, Engberg G (2015) Increased levels of IL-6 in the cerebrospinal fluid of patients with chronic schizophrenia-significance for activation of the kynurenine pathway. J Psychiatry Neurosci 40:126–133PubMedPubMedCentralGoogle Scholar
  40. Sellgren CM, Kegel ME, Bergen SE, Ekman CJ, Olsson S, Larsson M, Vawter MP, Backlund L, Sullivan PF, Sklar P, Smoller JW, Magnusson PK, Hultman CM, Walther-Jallow L, Svensson CI, Lichtenstein P, Schalling M, Engberg G, Erhardt S, Landén M (2016) A genome-wide association study of kynurenic acid in cerebrospinal fluid: implications for psychosis and cognitive impairment in bipolar disorder. Mol Psychiatry 21:1342–1350CrossRefPubMedGoogle Scholar
  41. Söderlund J, Schröder J, Nordin C, Samuelsson M, Walther-Jallow L, Karlsson H, Erhardt S, Engberg G (2009) Activation of brain interleukin-1beta in schizophrenia. Mol Psychiatry 14:1069–1107CrossRefPubMedPubMedCentralGoogle Scholar
  42. Stone TW (1993) Neuropharmacology of quinolinic and kynurenic acids. Pharmacol Rev 45:309–379PubMedGoogle Scholar
  43. Stone TW, Forrest CM, Mackay GM, Stoy N, Darlington LG (2007) Tryptophan, adenosine, neurodegeneration and neuroprotection. Metab Brain Dis 22:337–352CrossRefPubMedGoogle Scholar
  44. Upthegrove R, Manzanares-Teson N, Barnes NM (2014) Cytokine function in medication-naive first episode psychosis: a systematic review and meta-analysis. Schizophr Res 155:101–108CrossRefPubMedGoogle Scholar
  45. Vécsei L, Szalárdy L, Fülöp F, Toldi J (2013) Kynurenines in the CNS: recent advances and new questions. Nat Rev Drug Discov 12:64–82CrossRefPubMedGoogle Scholar
  46. Wonodi I, Schwarcz R (2010) Cortical kynurenine pathway metabolism: a novel target for cognitive enhancement in schizophrenia. Schizophr Bull 36(2):211–218CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • Helena P. G. Joaquim
    • 1
    • 2
  • Alana C. Costa
    • 1
    • 2
  • Wagner F. Gattaz
    • 1
    • 2
  • Leda Leme Talib
    • 1
    • 2
    Email author
  1. 1.Laboratory of Neuroscience, LIM 27, Department and Institute of Psychiatry, Faculty of MedicineUniversity of Sao PauloSão PauloBrazil
  2. 2.Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN), Conselho Nacional de Desenvolvimento Cientifico e TecnológicoSao PauloBrazil

Personalised recommendations