Advertisement

Journal of Neural Transmission

, Volume 124, Issue 12, pp 1607–1619 | Cite as

Changes in connectivity of the posterior default network node during visual processing in mild cognitive impairment: staged decline between normal aging and Alzheimer’s disease

  • Lenka Krajcovicova
  • Marek Barton
  • Nela Elfmarkova-Nemcova
  • Michal Mikl
  • Radek Marecek
  • Irena RektorovaEmail author
Neurology and Preclinical Neurological Studies - Original Article

Abstract

Visual processing difficulties are often present in Alzheimer’s disease (AD), even in its pre-dementia phase (i.e. in mild cognitive impairment, MCI). The default mode network (DMN) modulates the brain connectivity depending on the specific cognitive demand, including visual processes. The aim of the present study was to analyze specific changes in connectivity of the posterior DMN node (i.e. the posterior cingulate cortex and precuneus, PCC/P) associated with visual processing in 17 MCI patients and 15 AD patients as compared to 18 healthy controls (HC) using functional magnetic resonance imaging. We used psychophysiological interaction (PPI) analysis to detect specific alterations in PCC connectivity associated with visual processing while controlling for brain atrophy. In the HC group, we observed physiological changes in PCC connectivity in ventral visual stream areas and with PCC/P during the visual task, reflecting the successful involvement of these regions in visual processing. In the MCI group, the PCC connectivity changes were disturbed and remained significant only with the anterior precuneus. In between-group comparison, we observed significant PPI effects in the right superior temporal gyrus in both MCI and AD as compared to HC. This change in connectivity may reflect ineffective “compensatory” mechanism present in the early pre-dementia stages of AD or abnormal modulation of brain connectivity due to the disease pathology. With the disease progression, these changes become more evident but less efficient in terms of compensation. This approach can separate the MCI from HC with 77% sensitivity and 89% specificity.

Keywords

Dementia fMRI Posterior cingulate Precuneus Psychophysiological interactions Visual pathways 

Notes

Acknowledgements

This research was carried out under the project CEITEC 2020 (LQ1601) with financial support from the Ministry of Education, Youth and Sports of the Czech Republic under the National Sustainability Programme II. We acknowledge the core facility MAFIL of CEITEC supported by the Czech-BioImaging large RI project (LM2015062 funded by Ministry of Education, Youth and Sports of the Czech Republic) for their support with obtaining scientific data presented in this paper.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

702_2017_1789_MOESM1_ESM.docx (982 kb)
Supplementary material 1 (DOCX 981 kb)

References

  1. Albert MS et al (2011) The diagnosis of mild cognitive impairment due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7:270–279. doi: 10.1016/j.jalz.2011.03.008 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Alescio-Lautier B, Michel BF, Herrera C, Elahmadi A, Chambon C, Touzet C, Paban V (2007) Visual and visuospatial short-term memory in mild cognitive impairment and Alzheimer disease: role of attention. Neuropsychologia 45:1948–1960. doi: 10.1016/j.neuropsychologia.2006.04.033 CrossRefPubMedGoogle Scholar
  3. Berankova D, Janousova E, Mrackova M, Eliasova I, Kostalova M, Skutilova S, Rektorova I (2015) Addenbrooke’s cognitive examination and individual domain cut-off scores for discriminating between different cognitive subtypes of Parkinson’s disease. Parkinsons Dis. doi: 10.1155/2015/579417 PubMedPubMedCentralGoogle Scholar
  4. Binnewijzend MAA et al (2012) Resting-state fMRI changes in Alzheimer’s disease and mild cognitive impairment. Neurobiol Aging 33:2018–2028. doi: 10.1016/j.neurobiolaging.2011.07.003 CrossRefPubMedGoogle Scholar
  5. Bluhm RL, Clark CR, McFarlane AC, Moores KA, Shaw ME, Lanius RA (2011) Default network connectivity during a working memory task. Hum Brain Mapp 32:1029–1035. doi: 10.1002/hbm.21090 CrossRefPubMedGoogle Scholar
  6. Bokde ALW et al (2008) Functional abnormalities of the visual processing system in subjects with mild cognitive impairment: An fMRI study. Psychiatry Res Neuroimaging 163:248–259. doi: 10.1016/j.pscychresns.2007.08.013 CrossRefPubMedGoogle Scholar
  7. Bokde ALW et al (2010) Alzheimer disease: functional abnormalities in the dorsal visual pathway. Radiology 254:219–226. doi: 10.1148/radiol.2541090558 CrossRefPubMedGoogle Scholar
  8. Brier MR et al (2012) Loss of intranetwork and internetwork resting state functional connections with Alzheimer’s disease progression. J Neurosci 32:8890–8899. doi: 10.1523/jneurosci.5698-11.2012 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Browndyke JN et al (2013) Phenotypic regional functional imaging patterns during memory encoding in mild cognitive impairment and Alzheimer’s disease. Alzheimers Dement 9:284–294. doi: 10.1016/j.jalz.2011.12.006 CrossRefPubMedGoogle Scholar
  10. Bruce C, Desimone R, Gross CG (1981) Visual properties of neurons in a polysensory area in superior temporal sulcus of the macaque. J Neurophysiol 46:369–384PubMedGoogle Scholar
  11. Bublak P et al (2011) Staged decline of visual processing capacity in mild cognitive impairment and Alzheimer’s disease. Neurobiol Aging 32:1219–1230. doi: 10.1016/j.neurobiolaging.2009.07.012 CrossRefPubMedGoogle Scholar
  12. Buckner RL et al (2005) Molecular, structural, and functional characterization of Alzheimer’s disease: evidence for a relationship between default activity, amyloid, and memory. J Neurosci 25:7709–7717CrossRefPubMedGoogle Scholar
  13. Buckner RL et al (2009) Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and relation to Alzheimer’s disease. J Neurosci 29:1860–1873. doi: 10.1523/jneurosci.5062-08.2009 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10:186–198. doi: 10.1038/nrn2575 CrossRefPubMedGoogle Scholar
  15. Cavanna AE, Trimble MR (2006) The precuneus: a review of its functional anatomy and behavioural correlates. Brain 129:564–583. doi: 10.1093/brain/awl004 CrossRefPubMedGoogle Scholar
  16. Damoiseaux JS, Prater KE, Miller BL, Greicius MD (2012) Functional connectivity tracks clinical deterioration in Alzheimer’s disease. Neurobiol Aging 33:828.e819–828.e830. doi: 10.1016/j.neurobiolaging.2011.06.024 CrossRefGoogle Scholar
  17. Dickerson BC, Sperling RA (2009) Large-scale functional brain network abnormalities in Alzheimer’s disease: insights from functional neuroimaging. Behav Neurol 21:63–75. doi: 10.3233/ben-2009-0227 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Esposito R, Mosca A, Pieramico V, Cieri F, Cera N, Sensi SL (2013) Characterization of resting state activity in MCI individuals. PeerJ 1:e135. doi: 10.7717/peerj.135 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Faraco CC, Puente AN, Brown C, Terry DP, Miller LS (2013) Lateral temporal hyper-activation as a novel biomarker of mild cognitive impairment. Neuropsychologia 51:2281–2293. doi: 10.1016/j.neuropsychologia.2013.07.023 CrossRefPubMedGoogle Scholar
  20. Filippini N et al (2009) Distinct patterns of brain activity in young carriers of the APOE-epsilon4 allele. Proc Natl Acad Sci USA 106:7209–7214. doi: 10.1073/pnas.0811879106 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Greicius MD, Krasnow B, Reiss AL, Menon V (2003) Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci USA 100:253–258. doi: 10.1073/pnas.0135058100 CrossRefPubMedGoogle Scholar
  22. Greiner M, Pfeiffer D, Smith RD (2000) Principles and practical application of the receiver-operating characteristic analysis for diagnostic tests. Prev Vet Med 45:23–41. doi: 10.1016/s0167-5877(00)00115-x CrossRefPubMedGoogle Scholar
  23. Gusnard DA, Raichle ME (2001) Searching for a baseline: functional imaging and the resting human brain. Nat Rev Neurosci 2:685–694CrossRefPubMedGoogle Scholar
  24. Hagmann P, Cammoun L, Gigandet X, Meuli R, Honey CJ, Wedeen VJ, Sporns O (2008) Mapping the structural core of human cerebral cortex. PLoS Biol 6:e159. doi: 10.1371/journal.pbio.0060159 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Hummelová-Fanfrdlová Z et al (2009) Czech adaptation of Addenbrooke’s cognitive examination. Ceskoslovenska Psychol 53:376–388Google Scholar
  26. Jack CR et al (2013) Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol 12:207–216CrossRefPubMedPubMedCentralGoogle Scholar
  27. Jacobs HIL, van Boxtel MPJ, Jolles J, Verhey FRJ, Uylings HBM (2012) Parietal cortex matters in Alzheimer’s disease: an overview of structural, functional and metabolic findings. Neurosci Biobehav Rev 36:297–309. doi: 10.1016/j.neubiorev.2011.06.009 CrossRefPubMedGoogle Scholar
  28. Jacobs HIL, Radua J, Luckmann HC, Sack AT (2013) Meta-analysis of functional network alterations in Alzheimer’s disease: toward a network biomarker. Neurosci Biobehav Rev 37:753–765. doi: 10.1016/j.neubiorev.2013.03.009 CrossRefPubMedGoogle Scholar
  29. Jacobs HIL et al (2015) Visuospatial processing in early Alzheimer’s disease: a multimodal neuroimaging study. Cortex 64:394–406. doi: 10.1016/j.cortex.2012.01.005 CrossRefPubMedGoogle Scholar
  30. Jones DT et al (2011) Age-related changes in the default mode network are more advanced in Alzheimer disease. Neurology 77:1524–1531. doi: 10.1212/WNL.0b013e318233b33d CrossRefPubMedPubMedCentralGoogle Scholar
  31. Kirby E, Bandelow S, Hogervorst E (2010) Visual impairment in Alzheimer’s disease: a critical review. J Alzheimers Dis 21:15–34. doi: 10.3233/jad-2010-080785 CrossRefPubMedGoogle Scholar
  32. Krajcovicova L, Mikl M, Marecek R, Rektorova I (2012a) The default mode network integrity in patients with Parkinson’s disease is levodopa equivalent dose-dependent. J Neural Transm 119:443–454. doi: 10.1007/s00702-011-0723-5 CrossRefPubMedGoogle Scholar
  33. Krajcovicova L, Mikl M, Marecek R, Rektorova I (2012b) The default mode network integrity in patients with Parkinson’s disease is levodopa equivalent dose-dependent. J Neural Transm 119:443–454. doi: 10.1007/s00702-011-0723-5 CrossRefPubMedGoogle Scholar
  34. Krajcovicova L, Marecek R, Mikl M, Rektorova I (2014a) Disruption of resting functional connectivity in Alzheimer’s patients and at-risk subjects. Curr Neurol Neurosci Rep 14:7. doi: 10.1007/s11910-014-0491-3 CrossRefGoogle Scholar
  35. Krajcovicova L, Mikl M, Marecek R, Rektorova I (2014b) Disturbed default mode network connectivity patterns in Alzheimer’s disease associated with visual processing. J Alzheimers Dis 41:1229–1238. doi: 10.3233/jad-131208 PubMedGoogle Scholar
  36. Lehmann M et al (2015) Loss of functional connectivity is greater outside the default mode network in nonfamilial early-onset Alzheimer’s disease variants. Neurobiol Aging 36:2678–2686. doi: 10.1016/j.neurobiolaging.2015.06.029 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Lundstrom BN, Petersson KM, Andersson J, Johansson M, Fransson P, Ingvar M (2003) Isolating the retrieval of imagined pictures during episodic memory: activation of the left precuneus and left prefrontal cortex. Neuroimage 20:1934–1943. doi: 10.1016/j.neuroimage.2003.07.017 CrossRefPubMedGoogle Scholar
  38. Lundstrom BN, Ingvar M, Petersson KM (2005) The role of precuneus and left inferior frontal cortex during source memory episodic retrieval. Neuroimage 27:824–834. doi: 10.1016/j.neuroimage.2005.05.008 CrossRefPubMedGoogle Scholar
  39. Machulda MM et al (2011) Effect of APOE epsilon4 status on intrinsic network connectivity in cognitively normal elderly subjects. Arch Neurol 68:1131–1136. doi: 10.1001/archneurol.2011.108 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Mandal PK, Joshi J, Saharan S (2012) Visuospatial perception: an emerging biomarker for Alzheimer’s disease. J Alzheimers Dis 31:S117–S135. doi: 10.3233/jad-2012-120901 PubMedGoogle Scholar
  41. Mathuranath PS, Nestor PJ, Berrios GE, Rakowicz W, Hodges JR (2000) A brief cognitive test battery to differentiate Alzheimer’s disease and frontotemporal dementia. Neurology 55:1613–1620CrossRefPubMedGoogle Scholar
  42. Mayer JS, Roebroeck A, Maurer K, Linden DEJ (2010) Specialization in the default mode: task-induced brain deactivations dissociate between visual working memory and attention. Hum Brain Mapp 31:126–139. doi: 10.1002/hbm.20850 PubMedGoogle Scholar
  43. McKhann GM et al (2011) The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7:263–269. doi: 10.1016/j.jalz.2011.03.005 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Petersen RC et al (2001) Current concepts in mild cognitive impairment. Arch Neurol 58:1985–1992. doi: 10.1001/archneur.58.12.1985 CrossRefPubMedGoogle Scholar
  45. Petrella JR, Sheldon FC, Prince SE, Calhoun VD, Doraiswamy PM (2011) Default mode network connectivity in stable vs progressive mild cognitive impairment. Neurology 76:511–517. doi: 10.1212/WNL.0b013e31820af94e CrossRefPubMedPubMedCentralGoogle Scholar
  46. Prvulovic D et al (2002) Functional imaging of visuospatial processing in Alzheimer’s disease. Neuroimage 17:1403–1414. doi: 10.1006/nimg.2002.1271 CrossRefPubMedGoogle Scholar
  47. Rabin ML et al (2004) Functional MRI predicts post-surgical memory following temporal lobectomy. Brain 127:2286–2298CrossRefPubMedGoogle Scholar
  48. Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL (2001) A default mode of brain function. Proc Natl Acad Sci USA 98:676–682CrossRefPubMedPubMedCentralGoogle Scholar
  49. Rektorova I, Krajcovicova L, Marecek R, Mikl M (2012) Default mode network and extrastriate visual resting state network in patients with Parkinson’s disease dementia. Neurodegener Dis 10:232–237. doi: 10.1159/000334765 CrossRefPubMedGoogle Scholar
  50. Rektorova I, Krajcovicova L, Marecek R, Novakova M, Mikl M (2014) Default mode network connectivity patterns associated with visual processing at different stages of Parkinson’s disease. J Alzheimers Dis 42:S217–S228. doi: 10.3233/jad-132684 PubMedGoogle Scholar
  51. Rowe JB (2010) Connectivity analysis is essential to understand neurological disorders. Front Syst Neurosci. doi: 10.3389/fnsys.2010.00144 PubMedPubMedCentralGoogle Scholar
  52. Sala-Llonch R et al (2010) Greater default-mode network abnormalities compared to high order visual processing systems in amnestic mild cognitive impairment: an integrated multi-modal MRI study. J Alzheimers Dis 22:523–539. doi: 10.3233/jad-2010-101038 CrossRefPubMedGoogle Scholar
  53. Tippett WJ, Black SE (2008) Regional cerebral blood flow correlates of visuospatial tasks in Alzheimer’s disease. J Int Neuropsychol Soc 14:1034–1045. doi: 10.1017/s1355617708081241 CrossRefPubMedGoogle Scholar
  54. Uddin LQ, Kelly AMC, Biswal BB, Castellanos FX, Milham MP (2009) Functional connectivity of default mode network components: correlation. Anticorrel Causality Hum Brain Mapp 30:625–637. doi: 10.1002/hbm.20531 CrossRefPubMedGoogle Scholar
  55. Vannini P, Almkvist O, Dierks T, Lehmann C, Wahlund LO (2007) Reduced neuronal efficacy in progressive mild cognitive impairment: A prospective fMRI study on visuospatial processing. Psychiatry Res Neuroimaging 156:43–57. doi: 10.1016/j.pscychresns.2007.02.003 CrossRefPubMedGoogle Scholar
  56. Vannini P, Lehmann C, Dierks T, Jann K, Viitanen M, Wahlund LO, Almkvist O (2008) Failure to modulate neural response to increased task demand in mild Alzheimer’s disease: fMRI study of visuospatial processing. Neurobiol Dis 31:287–297. doi: 10.1016/j.nbd.2008.04.013 CrossRefPubMedGoogle Scholar
  57. Yetkin FZ, Rosenberg RN, Weiner MF, Purdy PD, Cullum CM (2006) FMRI of working memory in patients with mild cognitive impairment and probable Alzheimer’s disease. Eur Radiol 16:193–206. doi: 10.1007/s00330-005-2794-x CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria 2017

Authors and Affiliations

  1. 1.First Department of Neurology, St. Anne’s Teaching Hospital and School of MedicineMasaryk UniversityBrnoCzech Republic
  2. 2.Applied Neuroscience Research Group, CEITEC-Central European Institute of TechnologyMasaryk UniversityBrnoCzech Republic
  3. 3.Multimodal and Functional Imaging Research Group, CEITEC-Central European Institute of TechnologyMasaryk UniversityBrnoCzech Republic

Personalised recommendations