Skip to main content
Log in

Effects of transcranial direct current stimulation on the auditory mismatch negativity response and working memory performance in schizophrenia: a pilot study

  • Psychiatry and Preclinical Psychiatric Studies - Original Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Cognitive impairment has been proposed to be the core feature of schizophrenia (Sz). Transcranial direct current stimulation (tDCS) is a non-invasive form of brain stimulation which can improve cognitive function in healthy participants and in psychiatric patients with cognitive deficits. tDCS has been shown to improve cognition and hallucination symptoms in Sz, a disorder also associated with marked sensory processing deficits. Recent findings in healthy controls demonstrate that anodal tDCS increases auditory deviance detection, as measured by the brain-based event-related potential, mismatch negativity (MMN), which is a putative biomarker of Sz that has been proposed as a target for treatment of Sz cognition. This pilot study conducted a randomized, double-blind assessment of the effects of pre- and post-tDCS on MMN-indexed auditory discrimination in 12 Sz patients, moderated by auditory hallucination (AH) presence, as well as working memory performance. Assessments were conducted in three sessions involving temporal and frontal lobe anodal stimulation (to transiently excite local brain activity), and one control session involving ‘sham’ stimulation (meaning with the device turned off, i.e., no stimulation). Results demonstrated a trend for pitch MMN amplitude to increase with anodal temporal tDCS, which was significant in a subgroup of Sz individuals with AHs. Anodal frontal tDCS significantly increased WM performance on the 2-back task, which was found to positively correlate with MMN-tDCS effects. The findings contribute to our understanding of tDCS effects for sensory processing deficits and working memory performance in Sz and may have implications for psychiatric disorders with sensory deficits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alho K (1995) Cerebral generators of mismatch negativity (MMN) and its magnetic counterpart (MMNm) elicited by sound changes. Ear Hear 16(1):38–51

    Article  CAS  PubMed  Google Scholar 

  • American Psychiatric Association (APA) (2000) Diagnostic and statistical manual of mental disorders (DSM-IV-TR), 4th edn. American Psychiatric Association, Washington, DC

    Google Scholar 

  • Andrade C (2013) Once-to twice-daily, 3-year domiciliary maintenance transcranial direct current stimulation for severe, disabling, clozapine-refractory continuous auditory hallucinations in schizophrenia. J ECT 29(3):239–242

    Article  PubMed  Google Scholar 

  • Boggio PS, Ferrucci R, Rigonatti SP, Covre P, Nitsche M, Pascual-Leone A et al (2006) Effects of transcranial direct current stimulation on working memory in patients with Parkinson’s disease. J Neurol Sci 249:31–38

    Article  PubMed  Google Scholar 

  • Boggio PS, Khoury LP, Martins DC, Martins OE, Macedo EC, Fregni F (2008) Temporal cortex DC stimulation enhances performance on a visual recognition memory task in Alzheimer’s disease. J Neurol Neurosurg Psychiatry 80:444–447

    Article  PubMed  Google Scholar 

  • Braff DL, Light GA (2004) Preattentional and attentional cognitive deficits as targets for treating Sz. Psychopharmacology 174:75–85

    Article  CAS  PubMed  Google Scholar 

  • Brunelin J, Mondino M, Gassab L, Haesebaert F, Gaha L, Suaud-Chagny MF, Poulet E (2012) Examining transcranial direct-current stimulation (tDCS) as a treatment for hallucinations in schizophrenia. Am J Psychiatry 169(7):719–724

    Article  PubMed  Google Scholar 

  • Brunoni AR, Vanderhasselt MA (2014) Working memory improvement with non-invasive brain stimulation of the dorsolateral prefrontal cortex: a systematic review and meta-analysis. Brain Cogn 86:1–9

    Article  PubMed  Google Scholar 

  • Brunoni AR, Nitsche MA, Bolognini N, Bikson M, Wagner T, Merabet L, Ferrucci R (2012) Clinical research with transcranial direct current stimulation (tDCS): challenges and future directions. Brain Stimul 5(3):175–195

    Article  PubMed  Google Scholar 

  • Brunoni AR, Shiozawa P, Truong D, Javitt DC, Elkis H, Fregni F, Bikson M (2014) Understanding tDCS effects in schizophrenia: a systematic review of clinical data and an integrated computation modeling analysis. Expert Rev Med Devices 11(4):383–394

    Article  CAS  PubMed  Google Scholar 

  • Butler PD, Chen Yue, Ford JM, Geyer MA, Silverstein SM, Green MF (2012) Perceptual measurement in schizophrenia: promising electrophysiology and neuroimaging paradigms from CNTRICS: CNTRICS. Schizophr Bull 38:81–91

    Article  PubMed  Google Scholar 

  • Chen J, Hammerer D, Strigaro G, Liou LM, Tsai CH, Rothwell JC, Edwards MJ (2014) Domain-specific suppression of auditory mismatch negativity with transcranial direct current stimulation. Clin Neurophysiol 125(3):585–592

    Article  CAS  PubMed  Google Scholar 

  • Costa TL, Lapenta OM, Boggio PS, Ventura DF (2015) Transcranial direct current stimulation as a tool in the study of sensory-perceptual processing. Atten Percept Psychophys 77(6):1813–1840

    Article  PubMed  Google Scholar 

  • Demirtas-Tatlidede A, Vahabzadeh-Hagh AM, Pascual-Leone A (2013) Can noninvasive brain stimulation enhance cognition in neuropsychiatric disorders? Neuropharmacology 64:566–578

    Article  CAS  PubMed  Google Scholar 

  • Dondé C, Luck D, Grot S, Leitman DI, Brunelin J, Haesebaert F (2017) Tone-matching ability in patients with schizophrenia: a systematic review and meta-analysis. Schizophr Res 181:94–99

    Article  PubMed  Google Scholar 

  • Dunn W, Rassovsky Y, Wynn J, Wu AD, Iacoboni M, Hellemann G, Green MF (2017) The effect of bilateral transcranial direct current stimulation on early auditory processing in schizophrenia: a preliminary study. J Neural Transm 124(9):1145–1149

  • Elvevag B, Goldberg TE (2000) Cognitive impairment in schizophrenia is the core of the disorder. Crit Rev Neurobiol 14(1):1–21

  • Erickson MA, Ruffle A, Gold JM (2016) A meta-analysis of mismatch negativity in schizophrenia: from clinical risk to disease specificity and progression. Biol Psychiatry 79(12):980–987

    Article  PubMed  Google Scholar 

  • Ferrucci R, Mameli F, Guidi I, Mrakic-Sposta S, Vergari M, Marceglia S et al (2008) Transcranial direct current stimulation improves recognition memory in Alzheimer disease. Neurology 71:493–498

    Article  CAS  PubMed  Google Scholar 

  • Ferrucci R, Bortolomasi M, Tessari E, Bellomo E, Trabucchi L, Gainelli G, Priori A (2014) EPA-1392—transcranial direct-current stimulation (tDCS) in patients with schizophrenia. Eur Psychiatry 29:1

    Article  Google Scholar 

  • Fisher DJ, Labelle A, Knott VJ (2008) The right profile: mismatch negativity in schizophrenia with and without auditory hallucinations as measured by a multi-feature paradigm. Clin Neurophysiol 119(4):909–921

    Article  PubMed  Google Scholar 

  • Fisher DJ, Grant B, Smith DM, Borracci G, Labelle A, Knott J (2011) Effects of auditory hallucinations on the mismatch negativity (MMN) in schizophrenia as measured by a modified ‘optimal’ multi-feature paradigm. Int J Psychophysiol 81(3):245–251

    Article  PubMed  Google Scholar 

  • Fisher DJ, Labelle A, Knott VJ (2012) Alterations of mismatch negativity (MMN) in schizophrenia patients with auditory hallucinations experiencing acute exacerbation of illness. Schizophr Res 139(1):237–245

    Article  PubMed  Google Scholar 

  • Fregni F, Boggio PS, Nitsche M, Bermpohl F, Antal A, Feredoes E et al (2005) Anodal transcranial direct current stimulation of prefrontal cortex enhances working memory. Exp Brain Res 166:23–30

    Article  PubMed  Google Scholar 

  • Fregni F, Boggio PS, Nitsche MA, Marcolin MA, Rigonatti SP, Pascual-Leone A (2006a) Treatment of major depression with transcranial direct current stimulation. Bipolar Disord 8:203–204

    Article  PubMed  Google Scholar 

  • Fregni F, Boggio PS, Lima MC, Ferreira MJ, Wagner T, Rigonatti SP et al (2006b) A sham-controlled phase II trial of transcranial direct current stimulation for the treatment of central pain in traumatic spinal cord injury. Pain 122:197–209

    Article  PubMed  Google Scholar 

  • Fregni F, Nitsche MA, Loo CK, Brunoni AR, Marangolo P, Leite J, Simis M (2014) Regulatory considerations for the clinical and research use of transcranial direct current stimulation (tDCS): review and recommendations from an expert panel. Clin Res Regul Aff 32(1):22–35

    Article  PubMed Central  Google Scholar 

  • Gandiga PC, Hummel FC, Cohen LG (2006) Transcranial DC stimulation (tDCS): a tool for double-blind sham-controlled clinical studies in brain stimulation. Clin Neurophysiol 177:845–850

    Article  Google Scholar 

  • Garrido MI, Kilner JM, Stephan KE, Friston KJ (2009) The mismatch negativity: a review of underlying mechanisms. Clin Neurophysiol 120(3):453–463

    Article  PubMed  PubMed Central  Google Scholar 

  • Gil-da-Costa R, Stoner GR, Fung R, Albright TD (2013) Nonhuman primate model of schizophrenia using a noninvasive EEG method. Proc Natl Acad Sci USA 110(38):15425–15430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gray JA, Roth BL (2007) Molecular targets for treating cognitive dysfunction in schizophrenia. Schizophr Bull 33(5):1100–1119

    Article  PubMed  PubMed Central  Google Scholar 

  • Green MF, Kern RS, Braff DL, Mintz J (2000) Neurocognitive deficits and functional outcome in Sz: are we measuring the “right stuff”. Schiz Bull 26(1):119–136

    Article  CAS  Google Scholar 

  • Haddock G, McCarron J, Tarrier N, Faragher EB (1999) Scales to measure dimensions of hallucinations and delusions: the psychotic symptom rating scales (PSYRATS). Psycholl Med 29:879–888

    Article  CAS  Google Scholar 

  • Heekeren K, Daumann J, Neukirch A, Stock C, Kawohl W, Norra C, Gouzoulis-Mayfrank E (2008) Mismatch negativity generation in the human 5HT2A agonist and NMDA antagonist model of psychosis. Psychopharmacology 199(1):77–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heimrath K, Breitling C, Krauel K, Heinze HJ, Zaehle T (2015) Modulation of pre-attentive spectro-temporal feature processing in the human auditory system by HD-tDCS. Eur J Neurosci 41(12):1580–1586

    Article  PubMed  Google Scholar 

  • Hill AT, Fitzgerald PB, Hoy KE (2015) Effects of anodal transcranial direct current stimulation on working and recognition memory: A systematic review and meta-analysis of findings from healthy and neuropsychiatric populations. Brain Stimul Basic Transl Clin Res Neuromodulation 8(2):331

  • Hoffman RE, Hampson M (2011) Functional connectivity studies of patients with auditory verbal hallucinations. Front Hum Neurosci 6:6

    PubMed  Google Scholar 

  • Horton J, Millar A, Labelle A, Knott VJ (2011) MMN responsivity to manipulations of frequency and duration deviants in chronic clozapine-treated schizophrenia patients. Schizophr Res 126(1):202–211

    Article  PubMed  Google Scholar 

  • Hoy KE, Arnold SL, Emonson MR, Daskalakis ZJ, Fitzgerald PB (2014a) An investigation into the effects of tDCS dose on cognitive performance over time in patients with schizophrenia. Schizophr Res 155:96–100

    Article  PubMed  Google Scholar 

  • Hoy KE, Arnold SL, Emonson MR, Daskalakis ZJ, Fitzgerald PB (2014b) An investigation into the effects of tDCS dose on cognitive performance over time in patients with schizophrenia. Schizophr Res 155:96–100

    Article  PubMed  Google Scholar 

  • Impey D, Knott V (2015) Effect of transcranial direct current stimulation (tDCS) on MMN-indexed auditory discrimination: a pilot study. J Neural Transm 122:1175–1185

    Article  PubMed  Google Scholar 

  • Impey D, de la Salle S, Knott V (2016a) Assessment of anodal and cathodal transcranial direct current stimulation (tDCS) on MMN-indexed auditory sensory processing. Brain Cogn 105:46–54

    Article  PubMed  Google Scholar 

  • Impey D, de la Salle S, Baddeley A, Knott V (2016b) Effects of an NMDA antagonist on the auditory mismatch negativity response to transcranial direct current stimulation. J Psychopharmacol 31(5):614–624

  • Iyer MB, Mattu U, Grafman J, Lomarev M, Sato S, Wassermann EM (2005) Safety and cognitive effect of frontal DC brain polarization in healthy individuals. Neurology 64:872–875

    Article  CAS  PubMed  Google Scholar 

  • Javitt DC (1996) Glutamate receptors and schizophrenia: opportunities and caveats. Mol Psychiatry 1(1):16

  • Javitt DC (2004) Glutamate as a therapeutic target in psychiatric disorders. Mol Psychiatry 9(11):984–997

    Article  CAS  PubMed  Google Scholar 

  • Javitt DC (2007) Glutamate and schizophrenia: phencyclidine N-Methyl-d-aspartate receptors and dopamine-glutamate interactions. Int Rev Neurobiol 78:69–108

    Article  CAS  PubMed  Google Scholar 

  • Javitt DC (2010) Glutamatergic theories of schizophrenia. Isr J Psychiatry Relat Sci 47(1):4

    PubMed  Google Scholar 

  • Javitt DC, Doneshka P, Grochowski S, Ritter W (1995) Impaired mismatch negativity generation reflects widespread dysfunction of working memory in schizophrenia. Arch Gen Psychiatry 52(7):550–558

    Article  CAS  PubMed  Google Scholar 

  • Javitt DC, Steinschneider M, Schroeder CE, Arezzo JC (1996) Role of cortical N-methyl-d-aspartate receptors in auditory sensory memory and mismatch negativity generation: implications for Sz. PNAS 93:11962–11967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Javitt DC, Shelley AM, Ritter W (2000) Associated deficits in mismatch negativity generation and tone matching in schizophrenia. Clin Neurophysiol 111(10):1733–1737

  • Javitt DC, Spencer KM, Thaker GK, Winterer G, Hajós M (2008) Neurophysiological biomarkers for drug development in Sz. Nat Rev Drug Discov 7(1):68–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jo JM, Kim Y, Ko M, Ohn S, Joen B, Lee KH (2009) Enhancing the Working Memory of Stroke Patients Using tDCS. Am J Phys Med Rehabil 88:404–409

    Article  PubMed  Google Scholar 

  • Jurcak V, Tsuzuki D, Dan I (2007) 10/20, 10/10, and 10/5 systems revisited: their validity as relative head-surface-based positioning systems. Neuroimage 34(4):1600–1611

    Article  PubMed  Google Scholar 

  • Kawakubo Y, Kamio S, Nose T, Iwanami A, Nakagome K, Fukuda M, Kato N, Rogers MA, Kasai K (2007) Phonetic mismatch negativity predicts social skills acquisition in schizophrenia. Psychiatry Res 152(2): 261–265

  • Kay SR, Opler LA, Lindenmeyer JP (1989) The positive and negative syndrome scale (PANSS): rationale and standardization. Br J Psychiatr 155(Suppl 7):59–65

    Google Scholar 

  • Knechtel L, Thienel R, Cooper G, Case V, Schall U (2014) Transcranial direct current stimulation of prefrontal cortex: an auditory event-related potential study in schizophrenia. Neurol Psychiatry Brain Res 20(4):102–106

    Article  Google Scholar 

  • Korostenskaja M, Dapsys K, Siurkute A, Maciulis V, Ruksenas O, Kähkönen S (2005) Effects of olanzapine on auditory P300 and mismatch negativity (MMN) in schizophrenia spectrum disorders. Prog Neuropsychopharmacol Biol Psychiatry 29(4):543–548

    Article  CAS  PubMed  Google Scholar 

  • Kuo MF, Paulus W, Nitsche MA (2014) Therapeutic effects of non-invasive brain stimulation with direct currents (tDCS) in neuropsychiatric diseases. Neuroimage 85:948–960

    Article  PubMed  Google Scholar 

  • Li LM, Uehara K, Hanakawa T (2015) The contribution of interindividual factors to variability of response in transcranial direct current stimulation studies. Front Cell Neurosci 9:181

  • Liebetanz D, Nitsche MA, Tergau F, Paulus W (2002) Pharmacological approach to the mechanisms of transcranial DC-stimulation-induced after-effects of human motor cortex excitability. Brain 125:2238–2247

    Article  PubMed  Google Scholar 

  • Light GA, Näätänen R (2013) Mismatch negativity is a breakthrough biomarker for understanding and treating psychotic disorders. Proc Natl Acad Sci 110(38):15175–15176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Light GA, Swerdlow NR (2014) Neurophysiological biomarkers informing the clinical neuroscience of schizophrenia: mismatch negativity and prepulse inhibition of startle In: Kumari V, Bob P, Boutros N (eds) Electrophysiology and psychophysiology in psychiatry and psychopharmacology. Springer International Publishing, Switzerland, pp 293–314

  • Light GA, Swerdlow NR, Rissling AJ, Radant A, Sugar CA, Sprock J, Braff DL (2012) Characterization of neurophysiologic and neurocognitive biomarkers for use in genomic and clinical outcome studies of schizophrenia. PLoS One 7(7):e39434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michie PT (2001) What has MMN revealed about the auditory system in schizophrenia? Int J Psychophys 42:177–194

    Article  CAS  Google Scholar 

  • Mondino M, Brunelin J, Palm UR, Brunoni A, Poulet E, Fecteau S (2015a) Transcranial direct current stimulation for the treatment of refractory symptoms of schizophrenia. Curr Evid Future Dir Curr Pharm Des 21(23):3373–3383

    Article  CAS  Google Scholar 

  • Mondino M, Haesebaert F, Poulet E, Suaud-Chagny MF, Brunelin J (2015b) Fronto-temporal transcranial direct current stimulation (tDCS) reduces source-monitoring deficits and auditory hallucinations in patients with schizophrenia. Schizophr Res 161(2):515–516

    Article  PubMed  Google Scholar 

  • Mondino M, Jardri R, Suaud-Chagny MF, Saoud M, Poulet E, Brunelin J (2015c) Effects of fronto-temporal transcranial direct current stimulation on auditory verbal hallucinations and resting-state functional connectivity of the left temporo-parietal junction in patients with schizophrenia. Schizophr Bull 42(2):318–326

  • Näätänen R, Kähkönen S (2009) Central auditory dysfunction in Sz as revealed by the mismatch negativity (MMN) and its magnetic equivalent MMNm: a review. Int J Neuropsychopharmacol 12:125–135

    Article  PubMed  Google Scholar 

  • Näätänen R, Jacobsen T, Winkler I (2005) Memory-based or afferent processes in mismatch negativity (MMN): a review of the evidence. Int J Psychophysiol 42:25–32

    Article  Google Scholar 

  • Näätänen R, Paavilainen P, Rinne T, Alho K (2007) The mismatch negativity (MMN) in basic research of central auditory processing: a review. Clin Neurophysiol 118(12):2544–2590

    Article  PubMed  Google Scholar 

  • Näätänen R, Kujala T, Escera C, Baldeweg T, Kreegipuu K, Carlson S, Ponton C (2012) The mismatch negativity (MMN)—a unique window to disturbed central auditory processing in ageing and different clinical conditions. Clin Neurophysiol 123(3):424–458

    Article  PubMed  Google Scholar 

  • Näätänen R, Shiga T, Asano S, Yabe H (2015a) Mismatch negativity (MMN) deficiency: a break-through biomarker in predicting psychosis onset. Int J Psychophysiol 95(3):338–344

    Article  PubMed  Google Scholar 

  • Näätänen R, Todd J, Schall U (2015b) Mismatch negativity (MMN) as biomarker predicting psychosis in clinically at-risk individuals. Biol Psychol 116:36–40

    Article  PubMed  Google Scholar 

  • Nawani H, Kalmady SV, Bose A, Shivakumar V, Rakesh G, Subramaniam A, Venkatasubramanian G (2014) Neural basis of tDCS effects on auditory verbal hallucinations in schizophrenia: a case report evidence for cortical neuroplasticity modulation. J ECT 30(1):e2–e4

    Article  PubMed  Google Scholar 

  • Neuling T, Rach S, Herrmann CS (2013) Orchestrating neuronal networks: sustained after-effects of transcranial alternating current stimulation depend upon brain states. Front Hum Neurosci 7:161

  • Nitsche MA, Liebetanz D, Antal A, Lang N, Tergau F, Paulus W (2003a) Modulation of cortical excitability by weak direct current stimulation—technical safety and functional aspects. Suppl Clin Neurophysiol 56:255–276

    Article  PubMed  Google Scholar 

  • Nitsche MA, Liebetanz D, Lang N, Antal A, Tergau F, Paulus W (2003b) Safety criteria for transcranial direct current stimulation (tDCS) in humans. Clin Neurophysiol 114:2220–2222

    Article  PubMed  Google Scholar 

  • Nitsche MA, Jaussi W, Liebetanz D, Lang N, Tergau F, Paulus W (2004) Consolidation of human motor cortical neuroplasticity by d-cycloserine. Neuropsychopharmacology 29:1573–1578

    Article  CAS  PubMed  Google Scholar 

  • Nitsche MA, Seeber A, Frommann K, Klein CC, Rochford C, Nitsche MS, Fricke K, Liebetanz D, Lang N, Antal A, Paulus W, Tergau F (2005) Modulating parameters of excitability during and after transcranial direct current stimulation of the human motor cortex. J Physiol 568:291–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nitsche MA, Cohen LG, Wassermann EM, Priori A, Lang N, Antal A, Pascual-Leone A (2008) Transcranial direct current stimulation: state of the art 2008. Brain Stimul 1(3):206–223

    Article  PubMed  Google Scholar 

  • Nitsche MA, Polania R, Kuo MF (2015) Transcranial direct current stimulation: modulation of brain pathways and potential clinical applications. In: Reti IM (ed) Brain stimulation, methodologies and interventions. John Wiley & Sons, Inc, Hoboken, NJ, USA, pp 233–254

  • Opitz B, Rinne T, Mecklinger A, Von Cramon DY, Schröger E (2002) Differential contribution of frontal and temporal cortices to auditory change detection: fMRI and ERP results. Neuroimage 15(1):167–174

    Article  PubMed  Google Scholar 

  • Pascual-Leone A, Amedi A, Fregni F, Merabet LB (2005) The plastic human brain cortex. Annu Rev Neurosci 28:377–401

    Article  CAS  PubMed  Google Scholar 

  • Rosburg T, Kreitschmann-Andermahr I (2015) The effects of ketamine on the mismatch negativity (MMN) in humans—a meta-analysis. Clin Neurophysiol 127(2):1387–1394

  • Sommer IE, Clos M, Meijering AL, Diederen KM, Eickhoff SB (2012) Resting state functional connectivity in patients with chronic hallucinations. PLoS One 7(9):e43516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turetsky BI, Dress EM, Braff DL, Calkins ME, Green MF, Greenwood TA, Radant AD (2015) The utility of P300 as a schizophrenia endophenotype and predictive biomarker: clinical and socio-demographic modulators in COGS-2. Schizophr Res 163(1):53–62

    Article  PubMed  Google Scholar 

  • Umbricht D, Krljes S (2005) Mismatch negativity in schizophrenia: a meta-analysis. Schizophr Res 76(1): 1–23

  • Umbricht D, Javitt D, Novak G, Bates J, Pollack S, Lieberman J, Kane J (1998) Effects of clozapine on auditory event-related potentials in schizophrenia. Biol Psychiatry 44(8):716–725

    Article  CAS  PubMed  Google Scholar 

  • Umbricht D, Koller R, Vollenweider FX, Schmid L (2002) Mismatch negativity predicts psychotic experiences induced by NMDA receptor antagonist in healthy volunteers. Biol Psychiatry 51(5):400–406

    Article  CAS  PubMed  Google Scholar 

  • Vercammen A, Rushby JA, Loo C, Short B, Weickert CS, Weickert TW (2011) Transcranial direct current stimulation influences probabilistic association learning in Sz. Sz Res 131(1):198–205

    Google Scholar 

  • Vines BW, Schnider NM, Schlaug G (2006) Testing for causality with transcranial direct current stimulation: pitch memory and the left supramarginal gyrus. Neuroreport 17:1047–1050

    Article  PubMed  PubMed Central  Google Scholar 

  • Weigl M, Mecklinger A, Rosburg T (2016) Transcranial direct current stimulation over the left dorsolateral prefrontal cortex modulates auditory mismatch negativity. Clin Neurophysiol 127(5):2263–2272

    Article  PubMed  Google Scholar 

  • Wood JN, Grafman J (2003) Human prefrontal cortex: processing and representational perspectives. Nat Rev Neurosci 4:139–147

    Article  CAS  PubMed  Google Scholar 

  • Youn T, Park HJ, Kim JJ, Kim MS, Kwon JS (2003) Altered hemispheric asymmetry and positive symptoms in schizophrenia: equivalent current dipole of auditory mismatch negativity. Schizophr Res 59(2):253–260

    Article  PubMed  Google Scholar 

  • Zaehle T, Beretta M, Jancke L, Herrmann CS, Sandmann P (2001) Excitability changes induced in the human auditory cortex by transcranial direct current stimulation: direct electrophysiological evidence. Exp Brain Res 215:135–140

    Article  Google Scholar 

Download references

Acknowledgements

Thank you to Dr. Alain Labelle for participant referrals and to Ashley Baddeley, Renee Nelson, Sara De La Salle and Adam Belair for the help with data collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Verner Knott.

Ethics declarations

Conflict of interest

There is no conflict of interest including any financial or personal relationships to report.

Funding

This study was funded by a Natural Sciences and Engineering Research Council of Canada (NSERC) Grant (210572-152799-2001) awarded to V. Knott.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Impey, D., Baddeley, A., Nelson, R. et al. Effects of transcranial direct current stimulation on the auditory mismatch negativity response and working memory performance in schizophrenia: a pilot study. J Neural Transm 124, 1489–1501 (2017). https://doi.org/10.1007/s00702-017-1783-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-017-1783-y

Keywords

Navigation