Advertisement

Journal of Neural Transmission

, Volume 125, Issue 1, pp 89–102 | Cite as

A systematic meta-analysis of the association of Neuregulin 1 (NRG1), d-amino acid oxidase (DAO), and DAO activator (DAOA)/G72 polymorphisms with schizophrenia

  • Vinita Jagannath
  • Miriam Gerstenberg
  • Christoph U. Correll
  • Susanne Walitza
  • Edna GrünblattEmail author
Psychiatry and Preclinical Psychiatric Studies - Original Article

Abstract

The glutamate hypothesis of schizophrenia is related to the proposed dysregulation of d-amino acid oxidase (DAO), DAO activator (DAOA)/G72, and Neuregulin 1 (NRG1) genes. Genetic studies have shown significant associations between DAO, DAOA, NRG1 single-nucleotide polymorphisms (SNPs), and schizophrenia. The systematic literature search yielded 6, 5, and 18 new studies for DAO, DAOA, and NRG1 published after 2011 and not included in the previous SchizophreniaGene (SZGene) meta-analysis. We conducted meta-analyses of 20, 23, and 48 case–control studies, respectively, to comprehensively evaluate the association of 8 DAO, 12 DAOA, and 14 NRG1 SNPs with schizophrenia. The updated meta-analyses resulted in the following findings: the C-allele of DAO rs4623951 was associated with schizophrenia across all pooled studies [Odds ratio (OR) = 0.88, 95% confidence interval (CI) = 0.79–0.98, p = 0.02, N = 3143]; however, no new reports could be included. The G-allele of DAOA rs778293 was associated with schizophrenia in Asian patients (OR = 1.17, 95% CI = 1.08–1.27, p = 0.00008, N = 6117), and the T-allele of DAOA rs3916971 was associated with schizophrenia across all studies (OR = 0.84, 95% CI = 0.73–0.96, p = 0.01, N = 1765). Again, for both SNPs, no new eligible studies were available. After adding new reports, the T-allele of NRG1 SNP8NRG241930 (rs62510682) across all studies (OR = 0.95, 95% CI = 0.91–0.997, p = 0.04, N = 22,898) and in Caucasian samples (OR = 0.95, 95% CI = 0.90–0.99, p = 0.03, N = 16,014), and the C-allele of NRG1 rs10503929 across all studies (OR = 0.89, 95% CI = 0.81–0.97, p = 0.01, N = 6844) and in Caucasian samples (OR = 0.89, 95% CI = 0.81–0.98, p = 0.01, N = 6414) were protective against schizophrenia. Our systematic meta-analysis is the most updated one for the association of DAO, DAOA, and NRG1 SNPs with schizophrenia.

Keywords

DAO/DAAO DAOA/G72 NRG1 SNP Meta-analysis Schizophrenia 

Notes

Compliance with ethical standards

Conflict of interest

Dr. Christoph U. Correll has been a consultant and/or advisor to or has received honoraria from: Alkermes, Allergan, Bristol-Myers Squibb, Gerson Lehrman Group, IntraCellular Therapies, Janssen/J&J, LB Pharma, Lundbeck, Medavante, Medscape, Neurocrine, Otsuka, Pfizer, ProPhase, Sunovion, Takeda, and Teva. He has provided expert testimony for Bristol-Myers Squibb, Janssen, and Otsuka. He served on a Data Safety Monitoring Board for Lundbeck and Pfizer. He received grant support from Takeda. Dr. Susanne Walitza has received lecture honoraria from Eli-Lilly, Astra Zeneca, Shire, and Opopharma in the last 5 years. Outside professional activities and interests are declared under the link of the University of Zurich www.uzh.ch/prof/ssl-dir/interessenbindungen/client/web. The other authors declare no conflict of interest.

Funding

This project was supported by the Swiss Government Excellence Scholarship (2014.0826) to VJ.

Supplementary material

702_2017_1782_MOESM1_ESM.docx (5.5 mb)
Supplementary material 1 (DOCX 5629 kb)

References

  1. Allen NC, Bagade S, McQueen MB, Ioannidis JP, Kavvoura FK, Khoury MJ, Tanzi RE, Bertram L (2008) Systematic meta-analyses and field synopsis of genetic association studies in schizophrenia: the SzGene database. Nat Genet 40(7):827–834. doi: 10.1038/ng.171 CrossRefPubMedGoogle Scholar
  2. American Psychiatric Association (2013) Diagnostic and statistical manual of mental disorders (5th ed) American Psychiatric Publishing, ArlingtonGoogle Scholar
  3. Balu DT, Coyle JT (2015) The NMDA receptor ‘glycine modulatory site’ in schizophrenia: d-serine, glycine, and beyond. Curr Opin Pharmacol 20:109–115. doi: 10.1016/j.coph.2014.12.004 CrossRefPubMedGoogle Scholar
  4. Bax L, Yu LM, Ikeda N, Tsuruta H, Moons KG (2006) Development and validation of MIX: comprehensive free software for meta-analysis of causal research data. BMC Med Res Methodol 6:50. doi: 10.1186/1471-2288-6-50 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Begg CB, Mazumdar M (1994) Operating characteristics of a rank correlation test for publication bias. Biometrics 50(4):1088–1101CrossRefPubMedGoogle Scholar
  6. Borenstein M, Hedges LV, Higgins JP, Rothstein HR (2010) A basic introduction to fixed-effect and random-effects models for meta-analysis. Res Synth Methods 1(2):97–111. doi: 10.1002/jrsm.12 CrossRefPubMedGoogle Scholar
  7. Brisch R, Saniotis A, Wolf R, Bielau H, Bernstein HG, Steiner J, Bogerts B, Braun K, Jankowski Z, Kumaratilake J, Henneberg M, Gos T (2014) The role of dopamine in schizophrenia from a neurobiological and evolutionary perspective: old fashioned, but still in vogue. Front Psychiatry 5:47. doi: 10.3389/fpsyt.2014.00047 PubMedPubMedCentralGoogle Scholar
  8. Burnet PW, Eastwood SL, Bristow GC, Godlewska BR, Sikka P, Walker M, Harrison PJ (2008) D-amino acid oxidase activity and expression are increased in schizophrenia. Mol Psychiatry 13(7):658–660. doi: 10.1038/mp.2008.47 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Carlsson A, Waters N, Holm-Waters S, Tedroff J, Nilsson M, Carlsson ML (2001) Interactions between monoamines, glutamate, and GABA in schizophrenia: new evidence. Annu Rev Pharmacol Toxicol 41:237–260. doi: 10.1146/annurev.pharmtox.41.1.237 CrossRefPubMedGoogle Scholar
  10. Catts VS, Lai YL, Weickert CS, Weickert TW, Catts SV (2016) A quantitative review of the postmortem evidence for decreased cortical N-methyl-D-aspartate receptor expression levels in schizophrenia: how can we link molecular abnormalities to mismatch negativity deficits? Biol Psychol 116:57–67. doi: 10.1016/j.biopsycho.2015.10.013 CrossRefPubMedGoogle Scholar
  11. Chang SL, Hsieh CH, Chen YJ, Wang CM, Shih CS, Huang PW, Mir A, Lane HY, Tsai GE, Chang HT (2014) The C-terminal region of G72 increases d-amino acid oxidase activity. Int J Mol Sci 15(1):29–43. doi: 10.3390/ijms15010029 CrossRefGoogle Scholar
  12. Chen J, Xu Y, Zhang J, Liu Z, Xu C, Zhang K, Shen Y, Xu Q (2013) A combined study of genetic association and brain imaging on the DAOA gene in schizophrenia. Am J Med Genet Part B Neuropsychiatr Genet 162B(2):191–200. doi: 10.1002/ajmg.b.32131 CrossRefGoogle Scholar
  13. Chu CS, Chow PC, Cohen-Woods S, Gaysina D, Tang KY, McGuffin P (2017) The DAOA gene is associated with schizophrenia in the Taiwanese population. Psychiatry Res 252:201–207. doi: 10.1016/j.psychres.2017.03.013 CrossRefPubMedGoogle Scholar
  14. Chumakov I, Blumenfeld M, Guerassimenko O, Cavarec L, Palicio M, Abderrahim H, Bougueleret L, Barry C, Tanaka H, La Rosa P, Puech A, Tahri N, Cohen-Akenine A, Delabrosse S, Lissarrague S, Picard FP, Maurice K, Essioux L, Millasseau P, Grel P, Debailleul V, Simon AM, Caterina D, Dufaure I, Malekzadeh K, Belova M, Luan JJ, Bouillot M, Sambucy JL, Primas G, Saumier M, Boubkiri N, Martin-Saumier S, Nasroune M, Peixoto H, Delaye A, Pinchot V, Bastucci M, Guillou S, Chevillon M, Sainz-Fuertes R, Meguenni S, Aurich-Costa J, Cherif D, Gimalac A, Van Duijn C, Gauvreau D, Ouellette G, Fortier I, Raelson J, Sherbatich T, Riazanskaia N, Rogaev E, Raeymaekers P, Aerssens J, Konings F, Luyten W, Macciardi F, Sham PC, Straub RE, Weinberger DR, Cohen N, Cohen D (2002) Genetic and physiological data implicating the new human gene G72 and the gene for D-amino acid oxidase in schizophrenia. Proc Natl Acad Sci USA 99(21):13675–13680. doi: 10.1073/pnas.182412499 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Cuthbert BN, Insel TR (2013) Toward the future of psychiatric diagnosis: the seven pillars of RDoC. BMC Med 11:126. doi: 10.1186/1741-7015-11-126 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Diez A, Cieza-Borrella C, Suazo V, Gonzalez-Sarmiento R, Papiol S, Molina V (2014) Cognitive outcome and gamma noise power unrelated to neuregulin 1 and 3 variation in schizophrenia. Ann Gen Psychiatry 13:18. doi: 10.1186/1744-859X-13-18 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Egger M, Davey Smith G, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315(7109):629–634CrossRefPubMedPubMedCentralGoogle Scholar
  18. Eggers AE (2013) A serotonin hypothesis of schizophrenia. Med Hypotheses 80(6):791–794. doi: 10.1016/j.mehy.2013.03.013 CrossRefPubMedGoogle Scholar
  19. Elvevag B, Goldberg TE (2000) Cognitive impairment in schizophrenia is the core of the disorder. Crit Rev Neurobiol 14(1):1–21CrossRefPubMedGoogle Scholar
  20. Faul F, Erdfelder E, Buchner A, Lang AG (2009) Statistical power analyses using G*Power 3.1: tests for correlation and regression analyses. Behav Res Methods 41(4):1149–1160. doi: 10.3758/BRM.41.4.1149 CrossRefPubMedGoogle Scholar
  21. Fioravanti M, Bianchi V, Cinti ME (2012) Cognitive deficits in schizophrenia: an updated metanalysis of the scientific evidence. BMC Psychiatry 12:64. doi: 10.1186/1471-244X-12-64 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Grigoroiu-Serbanescu M, Herms S, Diaconu CC, Jamra RA, Meier S, Bleotu C, Neagu AI, Prelipceanu D, Sima D, Gherghel M, Mihailescu R, Rietschel M, Nothen MM, Cichon S, Muhleisen TW (2010) Possible association of different G72/G30 SNPs with mood episodes and persecutory delusions in bipolar I Romanian patients. Prog Neuropsychopharmacol Biol Psychiatry 34(4):657–663. doi: 10.1016/j.pnpbp.2010.03.008 CrossRefPubMedGoogle Scholar
  23. Gutierrez-Fernandez A, Palomino A, Gonzalez-Pinto A, Ugarte A, Hernanz M, Mendibil B, Etxebeste M, Pacheco L, Gonzalez-Garcia G, Matute C (2014) Novel association of Neuregulin 1 gene with bipolar disorder but not with schizophrenia. Schizophr Res 159(2–3):552–553. doi: 10.1016/j.schres.2014.09.001 CrossRefPubMedGoogle Scholar
  24. Harrison PJ, Law AJ (2006) Neuregulin 1 and schizophrenia: genetics, gene expression, and neurobiology. Biol Psychiat 60(2):132–140. doi: 10.1016/j.biopsych.2005.11.002 CrossRefPubMedGoogle Scholar
  25. He BS, Zhang LY, Pan YQ, Lin K, Zhang LL, Sun HL, Gao TY, Su TQ, Wang SK, Zhu CB (2016) Association of the DISC1 and NRG1 genetic polymorphisms with schizophrenia in a Chinese population. Gene 590(2):293–297. doi: 10.1016/j.gene.2016.05.035 CrossRefPubMedGoogle Scholar
  26. Heresco-Levy U, Durrant AR, Ermilov M, Javitt DC, Miya K, Mori H (2015) Clinical and electrophysiological effects of d-serine in a schizophrenia patient positive for anti-N-methyl-D-aspartate receptor antibodies. Biol Psychiat 77(6):e27–29. doi: 10.1016/j.biopsych.2014.08.023 CrossRefPubMedGoogle Scholar
  27. Hu W, MacDonald ML, Elswick DE, Sweet RA (2015) The glutamate hypothesis of schizophrenia: evidence from human brain tissue studies. Ann N Y Acad Sci 1338:38–57. doi: 10.1111/nyas.12547 CrossRefPubMedGoogle Scholar
  28. Insel T, Cuthbert B, Garvey M, Heinssen R, Pine DS, Quinn K, Sanislow C, Wang P (2010) Research domain criteria (RDoC): toward a new classification framework for research on mental disorders. Am J Psychiatr 167(7):748–751. doi: 10.1176/appi.ajp.2010.09091379 CrossRefPubMedGoogle Scholar
  29. Kang C, Yang X, Xu X, Liu H, Su P, Yang J (2012) Association study of neuregulin 1 gene polymorphisms with auditory P300 in schizophrenia. Am J Med Genet Part B Neuropsychiatr Genet 159B(4):422–428. doi: 10.1002/ajmg.b.32045 CrossRefGoogle Scholar
  30. Kantrowitz JT, Epstein ML, Lee M, Lehrfeld N, Nolan KA, Shope C, Petkova E, Silipo G, Javitt DC (2017) Improvement in mismatch negativity generation during d-serine treatment in schizophrenia: correlation with symptoms. Schizophr Res. doi: 10.1016/j.schres.2017.02.027 Google Scholar
  31. Kartalci Ş, Acar C (2016) An association study of d-amino acid oxidase and d-amino acid oxidase activator polymorphisms and schizophrenia in patients from Turkey. Anadolu Psikiyatri Dergisi-Anatolian J Psychiatr 17(5):341–346CrossRefGoogle Scholar
  32. Kim JH, Park BL, Pasaje CF, Bae JS, Park CS, Cha B, Kim BJ, Lee M, Choi WH, Shin TM, Choi IG, Hwang J, Koh I, Woo SI, Shin HD (2012) Lack of associations of neuregulin 1 variations with schizophrenia and smooth pursuit eye movement abnormality in a Korean population. J Mol Neurosci 46(3):476–482. doi: 10.1007/s12031-011-9619-y CrossRefPubMedGoogle Scholar
  33. Kvajo M, Dhilla A, Swor DE, Karayiorgou M, Gogos JA (2008) Evidence implicating the candidate schizophrenia/bipolar disorder susceptibility gene G72 in mitochondrial function. Mol Psychiatr 13(7):685–696. doi: 10.1038/sj.mp.4002052 CrossRefGoogle Scholar
  34. Ledonne A, Nobili A, Latagliata EC, Cavallucci V, Guatteo E, Puglisi-Allegra S, D’Amelio M, Mercuri NB (2015) Neuregulin 1 signalling modulates mGluR1 function in mesencephalic dopaminergic neurons. Mol Psychiatr 20(8):959–973. doi: 10.1038/mp.2014.109 CrossRefGoogle Scholar
  35. Li B, Woo RS, Mei L, Malinow R (2007) The neuregulin-1 receptor erbB4 controls glutamatergic synapse maturation and plasticity. Neuron 54(4):583–597. doi: 10.1016/j.neuron.2007.03.028 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gotzsche PC, Ioannidis JP, Clarke M, Devereaux PJ, Kleijnen J, Moher D (2009) The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS Med 6(7):e1000100. doi: 10.1371/journal.pmed.1000100 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Liu YL, Wang SC, Hwu HG, Fann CSJ, Yang UC, Yang WC, Hsu PC, Chang CC, Wen CC, Tsai-Wu JJ, Hwang TJ, Hsieh MH, Liu CC, Chien YL, Fang CP, Faraone SV, Tsuang MT, Chen WJ, Liu CM (2016) Haplotypes of the D-Amino Acid Oxidase Gene Are Significantly Associated with Schizophrenia and Its Neurocognitive Deficits. PLoS One. doi: 10.1371/journal.pone.0150435 Google Scholar
  38. Loh HC, Tang PY, Tee SF, Chow TJ, Choong CY, Lim SY, Yong HS (2013) Neuregulin-1 (NRG-1) and its susceptibility to schizophrenia: a case-control study and meta-analysis. Psychiatr Res 208(2):186–188. doi: 10.1016/j.psychres.2013.01.022 CrossRefGoogle Scholar
  39. Ma L, Wu DD, Ma SL, Tan L, Chen X, Tang NL, Yao YG (2014) Molecular evolution in the CREB1 signal pathway and a rare haplotype in CREB1 with genetic predisposition to schizophrenia. J Psychiatr Res 57:84–89. doi: 10.1016/j.jpsychires.2014.06.008 CrossRefPubMedGoogle Scholar
  40. Machiela MJ, Chanock SJ (2015) LDlink: a web-based application for exploring population-specific haplotype structure and linking correlated alleles of possible functional variants. Bioinformatics 31(21):3555–3557. doi: 10.1093/bioinformatics/btv402 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Madeira C, Freitas ME, Vargas-Lopes C, Wolosker H, Panizzutti R (2008) Increased brain D-amino acid oxidase (DAAO) activity in schizophrenia. Schizophr Res 101(1–3):76–83. doi: 10.1016/j.schres.2008.02.002 CrossRefPubMedGoogle Scholar
  42. Mechelli A, Prata D, Papagni SA, Tognin S, Kambeitz J, Fu C, Picchioni M, Walshe M, Toulopoulou T, Bramon E, Murray R, McGuire P (2012) Genetic vulnerability to psychosis and cortical function: epistatic effects between DAAO and G72. Curr Pharm Des 18(4):510–517CrossRefPubMedGoogle Scholar
  43. Mei L, Nave KA (2014) Neuregulin-ERBB signaling in the nervous system and neuropsychiatric diseases. Neuron 83(1):27–49. doi: 10.1016/j.neuron.2014.06.007 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Mohamad Shariati SA, Behmanesh M, Galehdari H (2011) A Study of the Association between SNP8NRG241930 in the 5′ End of Neuroglin 1 Gene with Schizophrenia in a Group of Iranian Patients. Cell J 13(2):91–96PubMedPubMedCentralGoogle Scholar
  45. Mostaid MS, Mancuso SG, Liu C, Sundram S, Pantelis C, Everall IP, Bousman CA (2017) Meta-analysis reveals associations between genetic variation in the 5′ and 3′ regions of Neuregulin-1 and schizophrenia. Trans Psychiatr 7(1):e1004. doi: 10.1038/tp.2016.279 CrossRefGoogle Scholar
  46. Nakazawa K, Zsiros V, Jiang Z, Nakao K, Kolata S, Zhang S, Belforte JE (2012) GABAergic interneuron origin of schizophrenia pathophysiology. Neuropharmacology 62(3):1574–1583. doi: 10.1016/j.neuropharm.2011.01.022 CrossRefPubMedGoogle Scholar
  47. Naz M, Riaz M, Saleem M (2011) Potential role of Neuregulin 1 and TNF-alpha (-308) polymorphism in schizophrenia patients visiting hospitals in Lahore. Pak Mol Biol Rep 38(7):4709–4714. doi: 10.1007/s11033-010-0606-0 CrossRefGoogle Scholar
  48. Otte DM, Rasko T, Wang M, Dreiseidler M, Drews E, Schrage H, Wojtalla A, Hohfeld J, Wanker E, Zimmer A (2014) Identification of the mitochondrial MSRB2 as a binding partner of LG72. Cell Mol Neurobiol 34(8):1123–1130. doi: 10.1007/s10571-014-0087-0 CrossRefPubMedGoogle Scholar
  49. Papagni SA, Mechelli A, Prata DP, Kambeitz J, Fu CH, Picchioni M, Walshe M, Toulopoulou T, Bramon E, Murray RM, Collier DA, Bellomo A, McGuire P (2011) Differential effects of DAAO on regional activation and functional connectivity in schizophrenia, bipolar disorder and controls. Neuro Image 56(4):2283–2291. doi: 10.1016/j.neuroimage.2011.03.037 PubMedGoogle Scholar
  50. Papiol S, Begemann M, Rosenberger A, Friedrichs H, Ribbe K, Grube S, Schwab MH, Jahn H, Gunkel S, Benseler F, Nave KA, Ehrenreich H (2011) A phenotype-based genetic association study reveals the contribution of neuregulin1 gene variants to age of onset and positive symptom severity in schizophrenia. Am J Med Genet Part B Neuropsychiatr Genet 156B(3):340–345. doi: 10.1002/ajmg.b.31168 CrossRefGoogle Scholar
  51. Pepper E, Cardno GA (2014) Genetics of schizophrenia and other psychotic disorders. Curr Psychiatr Rev 10(2):133–142CrossRefGoogle Scholar
  52. Rethelyi JM, Bakker SC, Polgar P, Czobor P, Strengman E, Pasztor PI, Kahn RS, Bitter I (2010) Association study of NRG1, DTNBP1, RGS4, G72/G30, and PIP5K2A with schizophrenia and symptom severity in a Hungarian sample. Am J Med Genet Part B Neuropsychiatr Genet 153B(3):792–801. doi: 10.1002/ajmg.b.31049 Google Scholar
  53. Roussos P, Giakoumaki SG, Adamaki E, Georgakopoulos A, Robakis NK, Bitsios P (2011) The association of schizophrenia risk d-amino acid oxidase polymorphisms with sensorimotor gating, working memory and personality in healthy males. Neuropsychopharmacology 36(8):1677–1688. doi: 10.1038/npp.2011.49 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Sacchetti E, Scassellati C, Minelli A, Valsecchi P, Bonvicini C, Pasqualetti P, Galluzzo A, Pioli R, Gennarelli M (2013) Schizophrenia susceptibility and NMDA-receptor mediated signalling: an association study involving 32 tagSNPs of DAO, DAOA, PPP3CC, and DTNBP1 genes. BMC Med Genet 14:33. doi: 10.1186/1471-2350-14-33 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Sacchi S, Bernasconi M, Martineau M, Mothet JP, Ruzzene M, Pilone MS, Pollegioni L, Molla G (2008) pLG72 modulates intracellular d-serine levels through its interaction with D-amino acid oxidase: effect on schizophrenia susceptibility. J Biol Chem 283(32):22244–22256. doi: 10.1074/jbc.M709153200 CrossRefPubMedGoogle Scholar
  56. Sacchi S, Cappelletti P, Giovannardi S, Pollegioni L (2011) Evidence for the interaction of d-amino acid oxidase with pLG72 in a glial cell line. Mol Cell Neurosci 48(1):20–28. doi: 10.1016/j.mcn.2011.06.001 CrossRefPubMedGoogle Scholar
  57. Sacchi S, Binelli G, Pollegioni L (2016) G72 primate-specific gene: a still enigmatic element in psychiatric disorders. Cell Mol Life Sci 73(10):2029–2039. doi: 10.1007/s00018-016-2165-6 CrossRefPubMedGoogle Scholar
  58. Schizophrenia Working Group of the Psychiatric Genomics Consortium (2014) Biological insights from 108 schizophrenia-associated genetic loci. Nature 511(7510):421–427. doi: 10.1038/nature13595 CrossRefGoogle Scholar
  59. Shi J, Gershon ES, Liu C (2008) Genetic associations with schizophrenia: meta-analyses of 12 candidate genes. Schizophr Res 104(1–3):96–107. doi: 10.1016/j.schres.2008.06.016 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Stefansson H, Sigurdsson E, Steinthorsdottir V, Bjornsdottir S, Sigmundsson T, Ghosh S, Brynjolfsson J, Gunnarsdottir S, Ivarsson O, Chou TT, Hjaltason O, Birgisdottir B, Jonsson H, Gudnadottir VG, Gudmundsdottir E, Bjornsson A, Ingvarsson B, Ingason A, Sigfusson S, Hardardottir H, Harvey RP, Lai D, Zhou M, Brunner D, Mutel V, Gonzalo A, Lemke G, Sainz J, Johannesson G, Andresson T, Gudbjartsson D, Manolescu A, Frigge ML, Gurney ME, Kong A, Gulcher JR, Petursson H, Stefansson K (2002) Neuregulin 1 and susceptibility to schizophrenia. Am J Hum Genet 71(4):877–892. doi: 10.1086/342734 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Sun J, Kuo PH, Riley BP, Kendler KS, Zhao Z (2008) Candidate genes for schizophrenia: a survey of association studies and gene ranking. Am J Med Genet Part B Neuropsychiatr Genet 147B(7):1173–1181. doi: 10.1002/ajmg.b.30743 CrossRefGoogle Scholar
  62. Tan J, Lin Y, Su L, Yan Y, Chen Q, Jiang H, Wei Q, Gu L (2014) Association between DAOA gene polymorphisms and the risk of schizophrenia, bipolar disorder and depressive disorder. Prog Neuropsychopharmacol Biol Psychiatr 51:89–98. doi: 10.1016/j.pnpbp.2014.01.007 CrossRefGoogle Scholar
  63. Terzic T, Kastelic M, Dolzan V, Plesnicar BK (2015) Genetic variability testing of neurodevelopmental genes in schizophrenic patients. J Mol Neurosci 56(1):205–211. doi: 10.1007/s12031-014-0482-5 CrossRefPubMedGoogle Scholar
  64. Veerman SR, Schulte PF, de Haan L (2014) The glutamate hypothesis: a pathogenic pathway from which pharmacological interventions have emerged. Pharmacopsychiatry 47(4–5):121–130. doi: 10.1055/s-0034-1383657 PubMedGoogle Scholar
  65. Weickert CS, Tiwari Y, Schofield PR, Mowry BJ, Fullerton JM (2012) Schizophrenia-associated HapICE haplotype is associated with increased NRG1 type III expression and high nucleotide diversity. Trans Psychiatr 2:e104. doi: 10.1038/tp.2012.25 CrossRefGoogle Scholar
  66. Yang JZ, Si TM, Ruan Y, Ling YS, Han YH, Wang XL, Zhou M, Zhang HY, Kong QM, Liu C, Zhang DR, Yu YQ, Liu SZ, Ju GZ, Shu L, Ma DL, Zhang D (2003) Association study of neuregulin 1 gene with schizophrenia. Mol Psychiatr 8(7):706–709. doi: 10.1038/sj.mp.4001377 CrossRefGoogle Scholar
  67. Yoshimi A, Suda A, Hayano F, Nakamura M, Aoyama-Uehara K, Konishi J, Asami T, Kishida I, Kawanishi C, Inoue T, McCarley RW, Shenton ME, Hirayasu Y (2016) Effects of NRG1 genotypes on orbitofrontal sulcogyral patterns in Japanese patients diagnosed with schizophrenia. Psychiatr Clin Neurosci 70(7):261–268. doi: 10.1111/pcn.12384 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria 2017

Authors and Affiliations

  1. 1.Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, Centre for Child and Adolescent Psychiatry ResearchUniversity of ZurichSchlierenSwitzerland
  2. 2.The Zucker Hillside Hospital, Psychiatry Research, Northwell HealthGlen OaksUSA
  3. 3.Hofstra Northwell School of MedicineHempsteadUSA
  4. 4.The Feinstein Institute for Medical ResearchManhassetUSA
  5. 5.Neuroscience Center ZurichUniversity of Zurich and ETH ZurichZurichSwitzerland
  6. 6.Zurich Center for Integrative Human PhysiologyUniversity of ZurichZurichSwitzerland

Personalised recommendations