Advertisement

Journal of Neural Transmission

, Volume 125, Issue 5, pp 781–795 | Cite as

The IL-1β phenomena in neuroinflammatory diseases

  • Andrew S. Mendiola
  • Astrid E. CardonaEmail author
Neurology and Preclinical Neurological Studies - Review Article

Abstract

It is becoming increasingly clear that neuroinflammation has a causal role in the pathogenesis of central nervous system (CNS)-related diseases, and therefore therapeutic strategies targeting the regulation or availability of inflammatory mediators can be used to prevent or mitigate pathology. Interestingly, the proinflammatory cytokine, interleukin-1 beta (IL-1β), has been implicated in perpetuating immune responses and contributing to disease severity in a variety of CNS diseases ranging from multiple sclerosis, neurodegenerative diseases, traumatic brain injury, and diabetic retinopathy. Moreover, pharmacological blockade of IL-1 signaling has shown to be beneficial in some autoimmune and autoinflammatory diseases, making IL-1β a promising therapeutic target in neuroinflammatory conditions. This review highlights recent advances of our understanding on the multifaceted roles of IL-1β in neuroinflammatory diseases.

Keywords

IL-1β Neuroinflammation Multiple sclerosis Alzheimer’s disease Diabetic retinopathy Microglia 

Notes

Acknowledgements

The Cardona Laboratory is funded by the US National Institutes of Health Grants SC1GM095426 and R01NS078501, and the San Antonio Area Foundation.

Author contributions

ASM and AEC were involved in data acquisition, interpretation and writing of manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare they have no competing financial interests.

References

  1. Ando DG, Clayton J, Kono D, Urban JL, Sercarz EE (1989) Encephalitogenic T cells in the B10.PL model of experimental allergic encephalomyelitis (EAE) are of the Th-1 lymphokine subtype. Cell Immunol 124(1):132–143. doi: 10.1016/0008-8749(89)90117-2 PubMedCrossRefGoogle Scholar
  2. Antonetti DA, Klein R, Gardner TW (2012) Diabetic retinopathy. N Engl J Med 366(13):1227–1239. doi: 10.1056/NEJMra1005073 PubMedCrossRefGoogle Scholar
  3. Aubé B, Lévesque SA, Paré A, Chamma É, Kébir H, Gorina R, Lécuyer M-A, Alvarez JI, De Koninck Y, Engelhardt B, Prat A, Côté D, Lacroix S (2014) Neutrophils mediate blood–spinal cord barrier disruption in demyelinating neuroinflammatory diseases. J Immunol 193(5):2438–2454. doi: 10.4049/jimmunol.1400401 PubMedCrossRefGoogle Scholar
  4. Auron PE, Webb AC, Rosenwasser LJ, Mucci SF, Rich A, Wolff SM, Dinarello CA (1984) Nucleotide sequence of human monocyte interleukin 1 precursor cDNA. Proc Natl Acad Sci USA 81(24):7907–7911PubMedPubMedCentralCrossRefGoogle Scholar
  5. Babcock AA, Ilkjær L, Clausen BH, Villadsen B, Dissing-Olesen L, Bendixen AT, Lyck L, Lambertsen KL, Finsen B (2015) Cytokine-producing microglia have an altered beta-amyloid load in aged APP/PS1 Tg mice. Brain Behav Immun 48:86–101PubMedCrossRefGoogle Scholar
  6. Bading H (2017) Therapeutic targeting of the pathological triad of extrasynaptic NMDA receptor signaling in neurodegenerations. J Exp Med 214(3):569PubMedPubMedCentralGoogle Scholar
  7. Barber AJ, Antonetti DA, Kern TS, Reiter CEN, Soans RS, Krady JK, Levison SW, Gardner TW, Bronson SK (2005) The Ins2Akita mouse as a model of early retinal complications in diabetes. Invest Ophthalmol Vis Sci 46(6):2210–2218. doi: 10.1167/iovs.04-1340 PubMedCrossRefGoogle Scholar
  8. Becher B, Spath S, Goverman J (2017) Cytokine networks in neuroinflammation. Nat Rev Immunol 17(1):49–59. doi: 10.1038/nri.2016.123 PubMedCrossRefGoogle Scholar
  9. Block ML, Hong J-S (2005) Microglia and inflammation-mediated neurodegeneration: multiple triggers with a common mechanism. Prog Neurobiol 76(2):77–98. doi: 10.1016/j.pneurobio.2005.06.004 PubMedCrossRefGoogle Scholar
  10. Blum-Degena D, Müller T, Kuhn W, Gerlach M, Przuntek H, Riederer P (1995) Interleukin-1β and interleukin-6 are elevated in the cerebrospinal fluid of Alzheimer’s and de novo Parkinson’s disease patients. Neurosci Lett 202(1):17–20CrossRefGoogle Scholar
  11. Burger D, Molnarfi N, Weber MS, Brandt KJ, Benkhoucha M, Gruaz L, Chofflon M, Zamvil SS, Lalive PH (2009) Glatiramer acetate increases IL-1 receptor antagonist but decreases T cell-induced IL-1β in human monocytes and multiple sclerosis. Proc Natl Acad Sci USA 106(11):4355–4359. doi: 10.1073/pnas.0812183106 PubMedPubMedCentralCrossRefGoogle Scholar
  12. Burm SM, Peferoen LA, Zuiderwijk-Sick EA, Haanstra KG, t Hart BA, van der Valk P, Amor S, Bauer J, Bajramovic JJ (2016) Expression of IL-1beta in rhesus EAE and MS lesions is mainly induced in the CNS itself. J Neuroinflammation 13(1):138. doi: 10.1186/s12974-016-0605-8 PubMedPubMedCentralCrossRefGoogle Scholar
  13. Cacabelos R, Alvarez X, Fernandez-Novoa L, Franco A, Mangues R, Pellicer A, Nishimura T (1994) Brain interleukin-1 beta in Alzheimer’s disease and vascular dementia. Methods Find Exp Clin Pharmacol 16(2):141–151PubMedGoogle Scholar
  14. Cannella B, Raine CS (1995) The adhesion molecule and cytokine profile of multiple sclerosis lesions. Ann Neurol 37(4):424–435. doi: 10.1002/ana.410370404 PubMedCrossRefGoogle Scholar
  15. Cardona SM, Mendiola AS, Yang Y-C, Adkins SL, Torres V, Cardona AE (2015) Disruption of fractalkine signaling leads to microglial activation and neuronal damage in the diabetic retina. ASN Neuro 7(5). doi: 10.1177/1759091415608204
  16. Carmo A, Cunha-Vaz JG, Carvalho AP, Lopes MC (2000) Effect of cyclosporin-A on the blood–retinal barrier permeability in streptozotocin-induced diabetes. Mediat Inflamm 9(5):243–248. doi: 10.1080/09629350020025764 CrossRefGoogle Scholar
  17. Carson MJ (2002) Microglia as liaisons between the immune and central nervous systems: functional implications for multiple sclerosis. Glia 40(2):218–231. doi: 10.1002/glia.10145 PubMedPubMedCentralCrossRefGoogle Scholar
  18. Cavelti-Weder C, Babians-Brunner A, Keller C, Stahel MA, Kurz-Levin M, Zayed H, Solinger AM, Mandrup-Poulsen T, Dinarello CA, Donath MY (2012) Effects of gevokizumab on glycemia and inflammatory markers in type 2 diabetes. Diabetes Care 35(8):1654–1662. doi: 10.2337/dc11-2219 PubMedPubMedCentralCrossRefGoogle Scholar
  19. Cerani A, Tetreault N, Menard C, Lapalme E, Patel C, Sitaras N, Beaudoin F, Leboeuf D, De Guire V, Binet F, Dejda A, Rezende Flavio A, Miloudi K, Sapieha P (2013) Neuron-derived semaphorin 3A is an early inducer of vascular permeability in diabetic retinopathy via neuropilin-1. Cell Metab 18(4):505–518. doi: 10.1016/j.cmet.2013.09.003 PubMedCrossRefGoogle Scholar
  20. Cherry JD, Olschowka JA, O’Banion MK (2015) Arginase 1+ microglia reduce Abeta plaque deposition during IL-1beta-dependent neuroinflammation. J Neuroinflammation 12:203. doi: 10.1186/s12974-015-0411-8 PubMedPubMedCentralCrossRefGoogle Scholar
  21. Chung Y, Chang SH, Martinez GJ, Yang XO, Nurieva R, Kang HS, Ma L, Watowich SS, Jetten AM, Tian Q, Dong C (2009) Critical regulation of early Th17 cell differentiation by interleukin-1 signaling. Immunity 30(4):576–587. doi: 10.1016/j.immuni.2009.02.007 PubMedPubMedCentralCrossRefGoogle Scholar
  22. Codarri L, Gyulveszi G, Tosevski V, Hesske L, Fontana A, Magnenat L, Suter T, Becher B (2011) ROR[gamma]t drives production of the cytokine GM-CSF in helper T cells, which is essential for the effector phase of autoimmune neuroinflammation. Nat Immunol 12(6):560–567. doi: 10.1038/ni.2027 PubMedCrossRefGoogle Scholar
  23. Condello C, Yuan P, Schain A, Grutzendler J (2015) Microglia constitute a barrier that prevents neurotoxic protofibrillar Aβ42 hotspots around plaques. Nat Commun 6:6176. doi: 10.1038/ncomms7176 PubMedPubMedCentralCrossRefGoogle Scholar
  24. Croxford AL, Lanzinger M, Hartmann FJ, Schreiner B, Mair F, Pelczar P, Clausen BE, Jung S, Greter M, Becher B (2015) The cytokine GM-CSF drives the inflammatory signature of CCR2+ monocytes and licenses autoimmunity. Immunity 43(3):502–514. doi: 10.1016/j.immuni.2015.08.010 PubMedCrossRefGoogle Scholar
  25. Cunningham C (2013) Microglia and neurodegeneration: the role of systemic inflammation. Glia 61(1):71–90. doi: 10.1002/glia.22350 PubMedCrossRefGoogle Scholar
  26. Daria A, Colombo A, Llovera G, Hampel H, Willem M, Liesz A, Haass C, Tahirovic S (2016) Young microglia restore amyloid plaque clearance of aged microglia. EMBO J. doi: 10.15252/embj.201694591 PubMedPubMedCentralCrossRefGoogle Scholar
  27. Davalos D, Akassoglou K (2012) Fibrinogen as a key regulator of inflammation in disease. Semin Immunopathol 34(1):43–62. doi: 10.1007/s00281-011-0290-8 PubMedCrossRefGoogle Scholar
  28. Davis BK, Wen H, Ting JP (2011) The inflammasome NLRs in immunity, inflammation, and associated diseases. Annu Rev Immunol 29:707PubMedPubMedCentralCrossRefGoogle Scholar
  29. de Jong BA, Huizinga TWJ, Bollen ELEM, Uitdehaag BMJ, Bosma GPT, van Buchem MA, Remarque EJ, Burgmans ACS, Kalkers NF, Polman CH, Westendorp RGJ (2002) Production of IL-1β and IL-1Ra as risk factors for susceptibility and progression of relapse-onset multiple sclerosis. J Neuroimmunol 126(1–2):172–179. doi: 10.1016/S0165-5728(02)00056-5 PubMedCrossRefGoogle Scholar
  30. Demircan N, Safran BG, Soylu M, Ozcan AA, Sizmaz S (2005) Determination of vitreous interleukin-1 (IL-1) and tumour necrosis factor (TNF) levels in proliferative diabetic retinopathy. Eye 20(12):1366–1369. doi: 10.1038/sj.eye.6702138 PubMedCrossRefGoogle Scholar
  31. Dendrou CA, Fugger L, Friese MA (2015) Immunopathology of multiple sclerosis. Nat Rev Immunol 15(9):545–558. doi: 10.1038/nri3871 PubMedCrossRefGoogle Scholar
  32. Dinarello CA (2009) Immunological and inflammatory functions of the interleukin-1 family. Annu Rev Immunol 27(1):519–550. doi: 10.1146/annurev.immunol.021908.132612 PubMedCrossRefGoogle Scholar
  33. Dinarello CA (2011) Interleukin-1 in the pathogenesis and treatment of inflammatory diseases. Blood 117(14):3720–3732. doi: 10.1182/blood-2010-07-273417 PubMedPubMedCentralCrossRefGoogle Scholar
  34. Dinarello CA, Simon A, van der Meer JWM (2012) Treating inflammation by blocking interleukin-1 in a broad spectrum of diseases. Nat Rev Drug Discov 11(8):633–652. doi: 10.1038/nrd3800 PubMedPubMedCentralCrossRefGoogle Scholar
  35. Dror E, Dalmas E, Meier DT, Wueest S, Thevenet J, Thienel C, Timper K, Nordmann TM, Traub S, Schulze F, Item F, Vallois D, Pattou F, Kerr-Conte J, Lavallard V, Berney T, Thorens B, Konrad D, Boni-Schnetzler M, Donath MY (2017) Postprandial macrophage-derived IL-1[beta] stimulates insulin, and both synergistically promote glucose disposal and inflammation. Nat Immunol 18(3):283–292. doi: 10.1038/ni.3659 PubMedCrossRefGoogle Scholar
  36. Du Y, Veenstra A, Palczewski K, Kern TS (2013) Photoreceptor cells are major contributors to diabetes-induced oxidative stress and local inflammation in the retina. Proc Natl Acad Sci USA 110(41):16586–16591. doi: 10.1073/pnas.1314575110 PubMedPubMedCentralCrossRefGoogle Scholar
  37. Eandi CM, Messance HC, Augustin S, Dominguez E, Lavalette S, Forster V, Hu SJ, Siquieros L, Craft CM, Sahel J-A (2016) Subretinal mononuclear phagocytes induce cone segment loss via IL-1β. eLife 5:e16490. doi: 10.7554/eLife.16490 PubMedPubMedCentralCrossRefGoogle Scholar
  38. El-Behi M, Ciric B, Dai H, Yan Y, Cullimore M, Safavi F, Zhang G-X, Dittel BN, Rostami A (2011) The encephalitogenicity of TH17 cells is dependent on IL-1- and IL-23-induced production of the cytokine GM-CSF. Nat Immunol 12(6):568–575. doi: 10.1038/ni.2031 PubMedPubMedCentralCrossRefGoogle Scholar
  39. Freeman LC, Ting JP (2016) The pathogenic role of the inflammasome in neurodegenerative diseases. J Neurochem 136(Suppl 1):29–38. doi: 10.1111/jnc.13217 PubMedCrossRefGoogle Scholar
  40. Fu AKY, Hung K-W, Yuen MYF, Zhou X, Mak DSY, Chan ICW, Cheung TH, Zhang B, Fu W-Y, Liew FY, Ip NY (2016) IL-33 ameliorates Alzheimer’s disease-like pathology and cognitive decline. Proc Natl Acad Sci USA 113(19):E2705–E2713. doi: 10.1073/pnas.1604032113 PubMedPubMedCentralCrossRefGoogle Scholar
  41. Furlan R, Martino G, Galbiati F, Poliani PL, Smiroldo S, Bergami A, Desina G, Comi G, Flavell R, Su MS, Adorini L (1999) Caspase-1 regulates the inflammatory process leading to autoimmune demyelination. J Immunol 163(5):2403–2409PubMedGoogle Scholar
  42. Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S, Mehler MF, Conway SJ, Ng LG, Stanley ER, Samokhvalov IM, Merad M (2010) Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330(6005):841. doi: 10.1126/science.1194637 PubMedPubMedCentralCrossRefGoogle Scholar
  43. Grathwohl SA, Kalin RE, Bolmont T, Prokop S, Winkelmann G, Kaeser SA, Odenthal J, Radde R, Eldh T, Gandy S, Aguzzi A, Staufenbiel M, Mathews PM, Wolburg H, Heppner FL, Jucker M (2009) Formation and maintenance of Alzheimer’s disease [beta]-amyloid plaques in the absence of microglia. Nat Neurosci 12(11):1361–1363. doi: 10.1038/nn.2432 PubMedPubMedCentralCrossRefGoogle Scholar
  44. Gray EJ, Gardner TW (2015) Retinal failure in diabetes: a feature of retinal sensory neuropathy. Curr Diabetes Rep 15(12):107. doi: 10.1007/s11892-015-0683-5 CrossRefGoogle Scholar
  45. Grebing M, Nielsen HH, Fenger CD, Jensen K, von Linstow CU, Clausen BH, Söderman M, Lambertsen KL, Thomassen M, Kruse TA (2016) Myelin-specific T cells induce interleukin-1beta expression in lesion-reactive microglial-like cells in zones of axonal degeneration. Glia 64(3):407–424. doi: 10.1002/glia.22937 PubMedCrossRefGoogle Scholar
  46. Griffin W, Stanley L, Ling C, White L, MacLeod V, Perrot L, White C, Araoz C (1989) Brain interleukin 1 and S-100 immunoreactivity are elevated in Down syndrome and Alzheimer disease. Proc Natl Acad Sci USA 86(19):7611–7615PubMedPubMedCentralCrossRefGoogle Scholar
  47. Grigsby JG, Cardona SM, Pouw CE, Muniz A, Mendiola AS, Tsin AT, Allen DM, Cardona AE (2014) The role of microglia in diabetic retinopathy. J Ophthalmol 2014:705783. doi: 10.1155/2014/705783 PubMedPubMedCentralCrossRefGoogle Scholar
  48. Guarda G, Braun M, Staehli F, Tardivel A, Mattmann C, Förster I, Farlik M, Decker T, Du Pasquier Renaud A, Romero P, Tschopp J (2011) Type I interferon inhibits interleukin-1 production and inflammasome activation. Immunity 34(2):213–223. doi: 10.1016/j.immuni.2011.02.006 PubMedCrossRefGoogle Scholar
  49. Gulen MF, Kang Z, Bulek K, Youzhong W, Kim TW, Chen Y, Altuntas CZ, Sass Bak-Jensen K, McGeachy MJ, Do J-S, Xiao H, Delgoffe GM, Min B, Powell JD, Tuohy VK, Cua DJ, Li X (2010) The receptor SIGIRR suppresses Th17 cell proliferation via inhibition of the interleukin-1 receptor pathway and mTOR kinase activation. Immunity 32(1):54–66. doi: 10.1016/j.immuni.2009.12.003 PubMedPubMedCentralCrossRefGoogle Scholar
  50. Halle A, Hornung V, Petzold GC, Stewart CR, Monks BG, Reinheckel T, Fitzgerald KA, Latz E, Moore KJ, Golenbock DT (2008) The NALP3 inflammasome is involved in the innate immune response to amyloid-[beta]. Nat Immunol 9(8):857–865. doi: 10.1038/ni.1636 PubMedPubMedCentralCrossRefGoogle Scholar
  51. Hanamsagar R, Hanke ML, Kielian T (2012) Toll-like receptor (TLR) and inflammasome actions in the central nervous system. Trends Immunol 33(7):333–342PubMedPubMedCentralCrossRefGoogle Scholar
  52. Heneka MT, Kummer MP, Stutz A, Delekate A, Schwartz S, Vieira-Saecker A, Griep A, Axt D, Remus A, Tzeng T-C, Gelpi E, Halle A, Korte M, Latz E, Golenbock DT (2013) NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice. Nature 493(7434):674–678. doi: 10.1038/nature11729 PubMedCrossRefGoogle Scholar
  53. Heneka MT, Carson MJ, El Khoury J, Landreth GE, Brosseron F, Feinstein DL, Jacobs AH, Wyss-Coray T, Vitorica J, Ransohoff RM, Herrup K, Frautschy SA, Finsen B, Brown GC, Verkhratsky A, Yamanaka K, Koistinaho J, Latz E, Halle A, Petzold GC, Town T, Morgan D, Shinohara ML, Perry VH, Holmes C, Bazan NG, Brooks DJ, Hunot S, Joseph B, Deigendesch N, Garaschuk O, Boddeke E, Dinarello CA, Breitner JC, Cole GM, Golenbock DT, Kummer MP (2015) Neuroinflammation in Alzheimer’s disease. Lancet Neurol 14(4):388–405. doi: 10.1016/s1474-4422(15)70016-5 PubMedCrossRefPubMedCentralGoogle Scholar
  54. Heppner FL, Ransohoff RM, Becher B (2015) Immune attack: the role of inflammation in Alzheimer disease. Nat Rev Neurosci 16(6):358–372. doi: 10.1038/nrn3880 PubMedCrossRefGoogle Scholar
  55. Holmes C, Cunningham C, Zotova E, Woolford J, Dean C, Kerr S, Culliford D, Perry VH (2009) Systemic inflammation and disease progression in Alzheimer disease. Neurology 73(10):768–774. doi: 10.1212/WNL.0b013e3181b6bb95 PubMedPubMedCentralCrossRefGoogle Scholar
  56. Hu SJ, Calippe B, Lavalette S, Roubeix C, Montassar F, Housset M, Levy O, Delarasse C, Paques M, Sahel J-A, Sennlaub F, Guillonneau X (2015) Upregulation of P2RX7 in Cx3cr1-deficient mononuclear phagocytes leads to increased interleukin-1β secretion and photoreceptor neurodegeneration. J Neurosci 35(18):6987–6996. doi: 10.1523/jneurosci.3955-14.2015 PubMedCrossRefGoogle Scholar
  57. Inoue M, Williams KL, Gunn MD, Shinohara ML (2012) NLRP3 inflammasome induces chemotactic immune cell migration to the CNS in experimental autoimmune encephalomyelitis. Proc Natl Acad Sci USA 109(26):10480–10485. doi: 10.1073/pnas.1201836109 PubMedPubMedCentralCrossRefGoogle Scholar
  58. Jacobs CA, Baker PE, Roux ER, Picha KS, Toivola B, Waugh S, Kennedy MK (1991) Experimental autoimmune encephalomyelitis is exacerbated by IL-1 alpha and suppressed by soluble IL-1 receptor. J Immunol 146(9):2983–2989PubMedGoogle Scholar
  59. Jäger A, Dardalhon V, Sobel RA, Bettelli E, Kuchroo VK (2009) Th1, Th17, and Th9 effector cells induce experimental autoimmune encephalomyelitis with different pathological phenotypes. J Immunol 183(11):7169–7177. doi: 10.4049/jimmunol.0901906 PubMedPubMedCentralCrossRefGoogle Scholar
  60. Jay TR, Miller CM, Cheng PJ, Graham LC, Bemiller S, Broihier ML, Xu G, Margevicius D, Karlo JC, Sousa GL, Cotleur AC, Butovsky O, Bekris L, Staugaitis SM, Leverenz JB, Pimplikar SW, Landreth GE, Howell GR, Ransohoff RM, Lamb BT (2015) TREM2 deficiency eliminates TREM2+ inflammatory macrophages and ameliorates pathology in Alzheimer’s disease mouse models. J Exp Med 212(3):287–295. doi: 10.1084/jem.20142322 PubMedPubMedCentralCrossRefGoogle Scholar
  61. Jiang Y, Liu L, Curtiss E, Steinle JJ (2017) Epac1 blocks NLRP3 inflammasome to reduce IL-1β in retinal endothelial cells and mouse retinal vasculature. Mediat Inflamm. doi: 10.1155/2017/2860956 CrossRefGoogle Scholar
  62. Kanwar M, Chan P-S, Kern TS, Kowluru RA (2007) Oxidative damage in the retinal mitochondria of diabetic mice: possible protection by superoxide dismutase. Invest Ophthalmol Vis Sci 48(8):3805–3811. doi: 10.1167/iovs.06-1280 PubMedCrossRefGoogle Scholar
  63. Kara EE, McKenzie DR, Bastow CR, Gregor CE, Fenix KA, Ogunniyi AD, Paton JC, Mack M, Pombal DR, Seillet C, Dubois B, Liston A, MacDonald KPA, Belz GT, Smyth MJ, Hill GR, Comerford I, McColl SR (2015) CCR2 defines in vivo development and homing of IL-23-driven GM-CSF-producing Th17 cells. Nat Commun 6:8644. doi: 10.1038/ncomms9644 PubMedPubMedCentralCrossRefGoogle Scholar
  64. Kawana N, Yamamoto Y, Ishida T, Saito Y, Konno H, Arima K, Ji Satoh (2013) Reactive astrocytes and perivascular macrophages express NLRP3 inflammasome in active demyelinating lesions of multiple sclerosis and necrotic lesions of neuromyelitis optica and cerebral infarction. Clin Exp Neuroimmunol 4(3):296–304. doi: 10.1111/cen3.12068 CrossRefGoogle Scholar
  65. Kierdorf K, Erny D, Goldmann T, Sander V, Schulz C, Perdiguero EG, Wieghofer P, Heinrich A, Riemke P, Holscher C, Muller DN, Luckow B, Brocker T, Debowski K, Fritz G, Opdenakker G, Diefenbach A, Biber K, Heikenwalder M, Geissmann F, Rosenbauer F, Prinz M (2013) Microglia emerge from erythromyeloid precursors via Pu.1- and Irf8-dependent pathways. Nat Neurosci 16(3):273–280. doi: 10.1038/nn.3318 PubMedCrossRefGoogle Scholar
  66. Kitazawa M, Cheng D, Tsukamoto MR, Koike MA, Wes PD, Vasilevko V, Cribbs DH, LaFerla FM (2011) Blocking IL-1 signaling rescues cognition, attenuates tau pathology, and restores neuronal β-catenin pathway function in an Alzheimer’s disease model. J Immunol 187(12):6539–6549. doi: 10.4049/jimmunol.1100620 PubMedPubMedCentralCrossRefGoogle Scholar
  67. Kohno H, Chen Y, Kevany BM, Pearlman E, Miyagi M, Maeda T, Palczewski K, Maeda A (2013) Photoreceptor proteins initiate microglial activation via Toll-like receptor 4 in retinal degeneration mediated by all-trans-retinal. J Biol Chem 288(21):15326–15341. doi: 10.1074/jbc.M112.448712 PubMedPubMedCentralCrossRefGoogle Scholar
  68. Kowluru RA, Odenbach S (2004) Role of interleukin-1β in the development of retinopathy in rats: effect of antioxidants. Invest Ophthalmol Vis Sci 45(11):4161–4166. doi: 10.1167/iovs.04-0633 PubMedCrossRefGoogle Scholar
  69. Krady JK, Basu A, Allen CM, Xu Y, LaNoue KF, Gardner TW, Levison SW (2005) Minocycline reduces proinflammatory cytokine expression, microglial activation, and caspase-3 activation in a rodent model of diabetic retinopathy. Diabetes 54(5):1559–1565. doi: 10.2337/diabetes.54.5.1559 PubMedCrossRefGoogle Scholar
  70. Langrish CL, Chen Y, Blumenschein WM, Mattson J, Basham B, Sedgwick JD, McClanahan T, Kastelein RA, Cua DJ (2005) IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med 201(2):233–240. doi: 10.1084/jem.20041257 PubMedPubMedCentralCrossRefGoogle Scholar
  71. LaRock CN, Todd J, LaRock DL, Olson J, O’Donoghue AJ, Robertson AAB, Cooper MA, Hoffman HM, Nizet V (2016) IL-1β is an innate immune sensor of microbial proteolysis. Sci Immunol 1(2):eaah3539. doi: 10.1126/sciimmunol.aah3539 PubMedCentralCrossRefPubMedGoogle Scholar
  72. Larsen CM, Faulenbach M, Vaag A, Vølund A, Ehses JA, Seifert B, Mandrup-Poulsen T, Donath MY (2007) Interleukin-1-receptor antagonist in type 2 diabetes mellitus. N Engl J Med 356(15):1517–1526. doi: 10.1056/NEJMoa065213 PubMedCrossRefGoogle Scholar
  73. Larsen CM, Faulenbach M, Vaag A, Ehses JA, Donath MY, Mandrup-Poulsen T (2009) Sustained effects of interleukin-1 receptor antagonist treatment in type 2 diabetes. Diabetes Care 32(9):1663–1668. doi: 10.2337/dc09-0533 PubMedPubMedCentralCrossRefGoogle Scholar
  74. Lee SC, Liu W, Brosnan CF, Dickson DW (1994) GM-CSF promotes proliferation of human fetal and adult microglia in primary cultures. Glia 12(4):309–318PubMedCrossRefGoogle Scholar
  75. Lévesque SA, Paré A, Mailhot B, Bellver-Landete V, Kébir H, Lécuyer M-A, Alvarez JI, Prat A, Vaccari JPdR, Keane RW, Lacroix S (2016) Myeloid cell transmigration across the CNS vasculature triggers IL-1β-driven neuroinflammation during autoimmune encephalomyelitis in mice. J Exp Med 213(6):929–949. doi: 10.1084/jem.20151437 PubMedPubMedCentralCrossRefGoogle Scholar
  76. Liu Y, Biarnés Costa M, Gerhardinger C (2012) IL-1β is upregulated in the diabetic retina and retinal vessels: cell-specific effect of high glucose and IL-1β autostimulation. PLoS One 7(5):e36949. doi: 10.1371/journal.pone.0036949 PubMedPubMedCentralCrossRefGoogle Scholar
  77. Loukovaara S, Piippo N, Kinnunen K, Hytti M, Kaarniranta K, Kauppinen A (2017) NLRP3 inflammasome activation is associated with proliferative diabetic retinopathy. Acta Ophthalmol (Copenh). doi: 10.1111/aos.13427 CrossRefGoogle Scholar
  78. Lu P, Li L, Liu G, Zhang X, Mukaida N (2009) Enhanced experimental corneal neovascularization along with aberrant angiogenic factor expression in the absence of IL-1 receptor antagonist. Invest Ophthalmol Vis Sci 50(10):4761–4768. doi: 10.1167/iovs.08-2732 PubMedCrossRefGoogle Scholar
  79. Macrez R, Stys PK, Vivien D, Lipton SA, Docagne F (2016) Mechanisms of glutamate toxicity in multiple sclerosis: biomarker and therapeutic opportunities. Lancet Neurol 15(10):1089–1102. doi: 10.1016/S1474-4422(16)30165-X PubMedCrossRefGoogle Scholar
  80. Maedler K, Sergeev P, Ris F, Oberholzer J, Joller-Jemelka HI, Spinas GA, Kaiser N, Halban PA, Donath MY (2002) Glucose-induced beta cell production of IL-1beta contributes to glucotoxicity in human pancreatic islets. J Clin Invest 110(6):851–860. doi: 10.1172/jci15318 PubMedPubMedCentralCrossRefGoogle Scholar
  81. Mandolesi G, Musella A, Gentile A, Grasselli G, Haji N, Sepman H, Fresegna D, Bullitta S, De Vito F, Musumeci G, Di Sanza C, Strata P, Centonze D (2013) Interleukin-1β alters glutamate transmission at purkinje cell synapses in a mouse model of multiple sclerosis. J Neurosci 33(29):12105. doi: 10.1523/JNEUROSCI.5369-12.2013 PubMedCrossRefGoogle Scholar
  82. Mao Z, Liu C, Ji S, Yang Q, Ye H, Han H, Xue Z (2017) The NLRP3 inflammasome is involved in the pathogenesis of Parkinson’s disease in rats. Neurochem Res 42(4):1104–1115. doi: 10.1007/s11064-017-2185-0 PubMedCrossRefGoogle Scholar
  83. Mariathasan S, Monack DM (2007) Inflammasome adaptors and sensors: intracellular regulators of infection and inflammation. Nat Rev Immunol 7(1):31–40PubMedCrossRefGoogle Scholar
  84. Martin D, Near SL (1995) Protective effect of the interleukin-1 receptor antagonist (IL-1ra) on experimental allergic encephalomyelitis in rats. J Neuroimmunol 61(2):241–245. doi: 10.1016/0165-5728(95)00108-E PubMedCrossRefGoogle Scholar
  85. Martin BN, Wang C, C-j Zhang, Kang Z, Gulen MF, Zepp JA, Zhao J, Bian G, J-s Do, Min B, Pavicic PG Jr, El-Sanadi C, Fox PL, Akitsu A, Iwakura Y, Sarkar A, Wewers MD, Kaiser WJ, Mocarski ES, Rothenberg ME, Hise AG, Dubyak GR, Ransohoff RM, Li X (2016) T cell-intrinsic ASC critically promotes TH17-mediated experimental autoimmune encephalomyelitis. Nat Immunol 17(5):583–592. doi: 10.1038/ni.3389 PubMedPubMedCentralCrossRefGoogle Scholar
  86. Martin E, Boucher C, Fontaine B, Delarasse C (2017) Distinct inflammatory phenotypes of microglia and monocyte-derived macrophages in Alzheimer’s disease models: effects of aging and amyloid pathology. Aging Cell 16(1):27–38. doi: 10.1111/acel.12522 PubMedCrossRefGoogle Scholar
  87. Mason JL, Suzuki K, Chaplin DD, Matsushima GK (2001) Interleukin-1β promotes repair of the CNS. J Neurosci 21(18):7046–7052PubMedCrossRefGoogle Scholar
  88. Matousek SB, Ghosh S, Shaftel SS, Kyrkanides S, Olschowka JA, O’Banion MK (2012) Chronic IL-1β-mediated neuroinflammation mitigates amyloid pathology in a mouse model of Alzheimer’s disease without inducing overt neurodegeneration. J Neuroimmune Pharmacol 7(1):156–164PubMedCrossRefGoogle Scholar
  89. Mellergård J, Edström M, Vrethem M, Ernerudh J, Dahle C (2010) Natalizumab treatment in multiple sclerosis: marked decline of chemokines and cytokines in cerebrospinal fluid. Mult Scler 16(2):208–217. doi: 10.1177/1352458509355068 PubMedCrossRefGoogle Scholar
  90. Mendiola AS, Garza R, Cardona SM, Mythen SA, Lira SA, Akassoglou K, Cardona AE (2017) Fractalkine signaling attenuates perivascular clustering of microglia and fibrinogen leakage during systemic inflammation in mouse models of diabetic retinopathy. Front Cell Neurosci 10:303. doi: 10.3389/fncel.2016.00303 PubMedPubMedCentralCrossRefGoogle Scholar
  91. Mohr S, Xi X, Tang J, Kern TS (2002) Caspase activation in retinas of diabetic and galactosemic mice and diabetic patients. Diabetes 51(4):1172–1179. doi: 10.2337/diabetes.51.4.1172 PubMedCrossRefGoogle Scholar
  92. Mufazalov IA, Schelmbauer C, Regen T, Kuschmann J, Wanke F, Gabriel LA, Hauptmann J, Muller W, Pinteaux E, Kurschus FC, Waisman A (2016) IL-1 signaling is critical for expansion but not generation of autoreactive GM-CSF+ Th17 cells. EMBO J. doi: 10.15252/embj.201694615 PubMedPubMedCentralCrossRefGoogle Scholar
  93. Netea MG, van de Veerdonk FL, van der Meer JWM, Dinarello CA, Joosten LAB (2015) Inflammasome-independent regulation of IL-1-family cytokines. Annu Rev Immunol 33(1):49–77. doi: 10.1146/annurev-immunol-032414-112306 PubMedCrossRefGoogle Scholar
  94. Neumann H, Kotter MR, Franklin RJM (2009) Debris clearance by microglia: an essential link between degeneration and regeneration. Brain 132(2):288–295. doi: 10.1093/brain/awn109 PubMedCrossRefGoogle Scholar
  95. Patel NS, Paris D, Mathura V, Quadros AN, Crawford FC, Mullan MJ (2005) Inflammatory cytokine levels correlate with amyloid load in transgenic mouse models of Alzheimer’s disease. J Neuroinflammation 2(1):1CrossRefGoogle Scholar
  96. Patel JI, Saleh GM, Hykin PG, Gregor ZJ, Cree IA (2006) Concentration of haemodynamic and inflammatory related cytokines in diabetic retinopathy. Eye 22(2):223–228. doi: 10.1038/sj.eye.6702584 PubMedCrossRefGoogle Scholar
  97. Paul J, Strickland S, Melchor JP (2007) Fibrin deposition accelerates neurovascular damage and neuroinflammation in mouse models of Alzheimer’s disease. J Exp Med 204(8):1999. doi: 10.1084/jem.20070304 PubMedPubMedCentralCrossRefGoogle Scholar
  98. Peelen E, Damoiseaux J, Muris AH, Knippenberg S, Smolders J, Hupperts R, Thewissen M (2015) Increased inflammasome related gene expression profile in PBMC may facilitate T helper 17 cell induction in multiple sclerosis. Mol Immunol 63(2):521–529. doi: 10.1016/j.molimm.2014.10.008 PubMedCrossRefGoogle Scholar
  99. Prinz M, Priller J, Sisodia SS, Ransohoff RM (2011) Heterogeneity of CNS myeloid cells and their roles in neurodegeneration. Nat Neurosci 14(10):1227–1235. doi: 10.1038/nn.2923 PubMedCrossRefGoogle Scholar
  100. Prokop S, Miller KR, Heppner FL (2013) Microglia actions in Alzheimer’s disease. Acta Neuropathol 126(4):461–477. doi: 10.1007/s00401-013-1182-x PubMedCrossRefGoogle Scholar
  101. Rangachari M, Kuchroo VK (2013) Using EAE to better understand principles of immune function and autoimmune pathology. J Autoimmun 45:31–39. doi: 10.1016/j.jaut.2013.06.008 PubMedPubMedCentralCrossRefGoogle Scholar
  102. Raphael I, Nalawade S, Eagar TN, Forsthuber TG (2015) T cell subsets and their signature cytokines in autoimmune and inflammatory diseases. Cytokine 74(1):5–17. doi: 10.1016/j.cyto.2014.09.011 PubMedCrossRefGoogle Scholar
  103. Rivera JC, Sitaras N, Noueihed B, Hamel D, Madaan A, Zhou T, Honoré J-C, Quiniou C, Joyal J-S, Hardy P, Sennlaub F, Lubell W, Chemtob S (2013) Microglia and interleukin-1beta in ischemic retinopathy elicit microvascular degeneration through neuronal semaphorin-3A. Arterioscler Thromb Vasc Biol 33(8):1881–1891. doi: 10.1161/atvbaha.113.301331 PubMedCrossRefGoogle Scholar
  104. Rossi S, Motta C, Studer V, Macchiarulo G, Volpe E, Barbieri F, Ruocco G, Buttari F, Finardi A, Mancino R, Weiss S, Battistini L, Martino G, Furlan R, Drulovic J, Centonze D (2014) Interleukin-1beta causes excitotoxic neurodegeneration and multiple sclerosis disease progression by activating the apoptotic protein p53. Mol Neurodegener 9:56. doi: 10.1186/1750-1326-9-56 PubMedPubMedCentralCrossRefGoogle Scholar
  105. Ryu JK, McLarnon JG (2009) A leaky blood–brain barrier, fibrinogen infiltration and microglial reactivity in inflamed Alzheimer’s disease brain. J Cell Mol Med 13(9a):2911–2925. doi: 10.1111/j.1582-4934.2008.00434.x PubMedCrossRefGoogle Scholar
  106. Samad TA, Moore KA, Sapirstein A, Billet S, Allchorne A, Poole S, Bonventre JV, Woolf CJ (2001) Interleukin-1[beta]-mediated induction of Cox-2 in the CNS contributes to inflammatory pain hypersensitivity. Nature 410(6827):471–475. doi: 10.1038/35068566 PubMedCrossRefGoogle Scholar
  107. Saresella M, La Rosa F, Piancone F, Zoppis M, Marventano I, Calabrese E, Rainone V, Nemni R, Mancuso R, Clerici M (2016) The NLRP3 and NLRP1 inflammasomes are activated in Alzheimer’s disease. Mol Neurodegener 11:23. doi: 10.1186/s13024-016-0088-1 PubMedPubMedCentralCrossRefGoogle Scholar
  108. Schiffenbauer J, Streit WJ, Butfiloski E, LaBow M, Edwards C, Moldawer LL (2000) The induction of EAE is only partially dependent on TNF receptor signaling but requires the IL-1 type I receptor. Clin Immunol 95(2):117–123. doi: 10.10006/clim.2000.4851 PubMedCrossRefGoogle Scholar
  109. Scuderi S, D’amico AG, Federico C, Saccone S, Magro G, Bucolo C, Drago F, D’Agata V (2015) Different retinal expression patterns of IL-1α, IL-1β, and their receptors in a rat model of type 1 STZ-induced diabetes. J Mol Neurosci 56(2):431–439. doi: 10.1007/s12031-015-0505-x PubMedCrossRefGoogle Scholar
  110. Seppi D, Puthenparampil M, Federle L, Ruggero S, Toffanin E, Rinaldi F, Perini P, Gallo P (2014) Cerebrospinal fluid IL-1β correlates with cortical pathology load in multiple sclerosis at clinical onset. J Neuroimmunol 270(1–2):56–60. doi: 10.1016/j.jneuroim.2014.02.014 PubMedCrossRefGoogle Scholar
  111. Shaftel SS, Carlson TJ, Olschowka JA, Kyrkanides S, Matousek SB, O’Banion MK (2007a) Chronic interleukin-1β expression in mouse brain leads to leukocyte infiltration and neutrophil-independent blood–brain barrier permeability without overt neurodegeneration. J Neurosci 27(35):9301–9309. doi: 10.1523/jneurosci.1418-07.2007 PubMedCrossRefGoogle Scholar
  112. Shaftel SS, Kyrkanides S, Olschowka JA, Jen-nie HM, Johnson RE, O’Banion MK (2007b) Sustained hippocampal IL-1β overexpression mediates chronic neuroinflammation and ameliorates Alzheimer plaque pathology. J Clin Invest 117(6):1595–1604PubMedPubMedCentralCrossRefGoogle Scholar
  113. Shaftel SS, Griffin WST, O’Banion MK (2008) The role of interleukin-1 in neuroinflammation and Alzheimer disease: an evolving perspective. J Neuroinflammation 5(1):1CrossRefGoogle Scholar
  114. Sheng JG, Mrak RE, Griffin WST (1997) Neuritic plaque evolution in Alzheimer’s disease is accompanied by transition of activated microglia from primed to enlarged to phagocytic forms. Acta Neuropathol 94(1):1–5PubMedCrossRefGoogle Scholar
  115. Simard AR, Soulet D, Gowing G, Julien J-P, Rivest S (2006) Bone marrow-derived microglia play a critical role in restricting senile plaque formation in Alzheimer’s disease. Neuron 49(4):489–502PubMedCrossRefGoogle Scholar
  116. Sivakumar V, Foulds WS, Luu CD, Ling E-A, Kaur C (2011) Retinal ganglion cell death is induced by microglia derived pro-inflammatory cytokines in the hypoxic neonatal retina. J Pathol 224(2):245–260. doi: 10.1002/path.2858 PubMedCrossRefGoogle Scholar
  117. Sohn EH, van Dijk HW, Jiao C, Kok PHB, Jeong W, Demirkaya N, Garmager A, Wit F, Kucukevcilioglu M, van Velthoven MEJ, DeVries JH, Mullins RF, Kuehn MH, Schlingemann RO, Sonka M, Verbraak FD, Abràmoff MD (2016) Retinal neurodegeneration may precede microvascular changes characteristic of diabetic retinopathy in diabetes mellitus. Proc Natl Acad Sci USA 113(19):E2655–E2664. doi: 10.1073/pnas.1522014113 PubMedPubMedCentralCrossRefGoogle Scholar
  118. Stahel M, Becker M, Graf N, Michels S (2016) SYSTEMIC INTERLEUKIN 1β INHIBITION IN PROLIFERATIVE DIABETIC RETINOPATHY: a prospective open-label study using canakinumab. Retina 36(2):385–391. doi: 10.1097/IAE.0000000000000701 PubMedPubMedCentralCrossRefGoogle Scholar
  119. Sutton C, Brereton C, Keogh B, Mills KHG, Lavelle EC (2006) A crucial role for interleukin (IL)-1 in the induction of IL-17–producing T cells that mediate autoimmune encephalomyelitis. J Exp Med 203(7):1685–1691. doi: 10.1084/jem.20060285 PubMedPubMedCentralCrossRefGoogle Scholar
  120. Takahashi JL, Giuliani F, Power C, Imai Y, Yong VW (2003) Interleukin-1β promotes oligodendrocyte death through glutamate excitotoxicity. Ann Neurol 53(5):588–595. doi: 10.1002/ana.10519 PubMedCrossRefGoogle Scholar
  121. Tang J, Kern TS (2011) Inflammation in diabetic retinopathy. Prog Retin Eye Res 30(5):343–358. doi: 10.1016/j.preteyeres.2011.05.002 PubMedPubMedCentralCrossRefGoogle Scholar
  122. Tonade D, Liu H, Kern TS (2016) Photoreceptor cells produce inflammatory mediators that contribute to endothelial cell death in diabetes-induced inflammation in photoreceptors. Invest Ophthalmol Vis Sci 57(10):4264–4271. doi: 10.1167/iovs.16-19859 PubMedPubMedCentralCrossRefGoogle Scholar
  123. Trapp BD, Nave K-A (2008) Multiple sclerosis: an immune or neurodegenerative disorder? Annu Rev Neurosci 31(1):247–269. doi: 10.1146/annurev.neuro.30.051606.094313 PubMedCrossRefGoogle Scholar
  124. Vallejo S, Palacios E, Romacho T, Villalobos L, Peiró C, Sánchez-Ferrer CF (2014) The interleukin-1 receptor antagonist anakinra improves endothelial dysfunction in streptozotocin-induced diabetic rats. Cardiovasc Diabetol 13(1):1. doi: 10.1186/s12933-014-0158-z CrossRefGoogle Scholar
  125. Vandanmagsar B, Youm Y-H, Ravussin A, Galgani JE, Stadler K, Mynatt RL, Ravussin E, Stephens JM, Dixit VD (2011) The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nat Med 17(2):179–188. doi: 10.1038/nm.2279 PubMedPubMedCentralCrossRefGoogle Scholar
  126. Vela JM, Molina-Holgado E, Arévalo-Martín Á, Almazán G, Guaza C (2002) Interleukin-1 regulates proliferation and differentiation of oligodendrocyte progenitor cells. Mol Cell Neurosci 20(3):489–502. doi: 10.1006/mcne.2002.1127 PubMedCrossRefGoogle Scholar
  127. Vincent JA, Mohr S (2007) Inhibition of caspase-1/interleukin-1β signaling prevents degeneration of retinal capillaries in diabetes and galactosemia. Diabetes 56(1):224–230. doi: 10.2337/db06-0427 PubMedCrossRefGoogle Scholar
  128. Vogel DY, Vereyken EJ, Glim JE, Heijnen PD, Moeton M, van der Valk P, Amor S, Teunissen CE, van Horssen J, Dijkstra CD (2013) Macrophages in inflammatory multiple sclerosis lesions have an intermediate activation status. J Neuroinflammation 10:35. doi: 10.1186/1742-2094-10-35 PubMedPubMedCentralCrossRefGoogle Scholar
  129. Vom Berg J, Prokop S, Miller KR, Obst J, Kälin RE, Lopategui-Cabezas I, Wegner A, Mair F, Schipke CG, Peters O (2012) Inhibition of IL-12/IL-23 signaling reduces Alzheimer’s disease-like pathology and cognitive decline. Nat Med 18(12):1812–1819PubMedCrossRefGoogle Scholar
  130. Wang Y, Ulland TK, Ulrich JD, Song W, Tzaferis JA, Hole JT, Yuan P, Mahan TE, Shi Y, Gilfillan S, Cella M, Grutzendler J, DeMattos RB, Cirrito JR, Holtzman DM, Colonna M (2016) TREM2-mediated early microglial response limits diffusion and toxicity of amyloid plaques. J Exp Med 213(5):667–675. doi: 10.1084/jem.20151948 PubMedPubMedCentralCrossRefGoogle Scholar
  131. Wen H, Gris D, Lei Y, Jha S, Zhang L, Huang MT-H, Brickey WJ, Ting JPY (2011) Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling. Nat Immunol 12(5):408–415. doi: 10.1038/ni.2022 PubMedPubMedCentralCrossRefGoogle Scholar
  132. Yan Y, Jiang W, Liu L, Wang X, Ding C, Tian Z, Zhou R (2015) Dopamine controls systemic inflammation through inhibition of NLRP3 inflammasome. Cell 160(1–2):62–73. doi: 10.1016/j.cell.2014.11.047 PubMedCrossRefGoogle Scholar
  133. Yang F, Wang Z, Wei X, Han H, Meng X, Zhang Y, Shi W, Li F, Xin T, Pang Q, Yi F (2014) NLRP3 deficiency ameliorates neurovascular damage in experimental ischemic stroke. J Cereb Blood Flow Metab 34(4):660–667. doi: 10.1038/jcbfm.2013.242 PubMedPubMedCentralCrossRefGoogle Scholar
  134. Ye L, Huang Y, Zhao L, Li Y, Sun L, Zhou Y, Qian G, Zheng JC (2013) IL-1β and TNF-α induce neurotoxicity through glutamate production: a potential role for neuronal glutaminase. J Neurochem 125(6):897–908. doi: 10.1111/jnc.12263 PubMedPubMedCentralCrossRefGoogle Scholar
  135. Yin J, Zhao F, Chojnacki JE, Fulp J, Klein WL, Zhang S, Zhu X (2017) NLRP3 inflammasome inhibitor ameliorates amyloid pathology in a mouse model of Alzheimer’s disease. Mol Neurobiol. doi: 10.1007/s12035-017-0467-9 PubMedCentralCrossRefPubMedGoogle Scholar
  136. Zhang B, Gaiteri C, Bodea L-G, Wang Z, McElwee J, Podtelezhnikov AA, Zhang C, Xie T, Tran L, Dobrin R, Fluder E, Clurman B, Melquist S, Narayanan M, Suver C, Shah H, Mahajan M, Gillis T, Mysore J, MacDonald ME, Lamb JR, Bennett DA, Molony C, Stone DJ, Gudnason V, Myers AJ, Schadt EE, Neumann H, Zhu J, Emilsson V (2013) Integrated systems approach identifies genetic nodes and networks in late-onset Alzheimer’s disease. Cell 153(3):707–720. doi: 10.1016/j.cell.2013.03.030 PubMedPubMedCentralCrossRefGoogle Scholar
  137. Zhao L, Zabel MK, Wang X, Ma W, Shah P, Fariss RN, Qian H, Parkhurst CN, Gan WB, Wong WT (2015) Microglial phagocytosis of living photoreceptors contributes to inherited retinal degeneration. EMBO Mol Med 7(9):1179–1197. doi: 10.15252/emmm.201505298 PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2017

Authors and Affiliations

  1. 1.Department of BiologyUniversity of Texas at San AntonioSan AntonioUSA

Personalised recommendations