Advertisement

Journal of Neural Transmission

, Volume 124, Issue 6, pp 695–708 | Cite as

Rat brain glucose transporter-2, insulin receptor and glial expression are acute targets of intracerebroventricular streptozotocin: risk factors for sporadic Alzheimer’s disease?

  • A. Knezovic
  • A. Loncar
  • J. Homolak
  • U. Smailovic
  • J. Osmanovic Barilar
  • L. Ganoci
  • N. Bozina
  • P. Riederer
  • Melita Salkovic-Petrisic
Translational Neurosciences - Original Article

Abstract

Accumulated evidence suggests that the insulin-resistant brain state and cerebral glucose hypometabolism might be the cause, rather than the consequence, of the neurodegeneration found in a sporadic Alzheimer’s disease (sAD). We have explored whether the insulin receptor (IR) and the glucose transporter-2 (GLUT2), used here as their markers, are the early targets of intracerebroventricularly (icv) administered streptozotocin (STZ) in an STZ-icv rat model of sAD, and whether their changes are associated with the STZ-induced neuroinflammation. The expression of IR, GLUT2 and glial fibrillary acidic protein (GFAP) was measured by immunofluorescence and western blot analysis in the parietal (PC) and the temporal (TC) cortex, in the hippocampus (HPC) and the hypothalamus. One hour after the STZ-icv administration (1.5 mg/kg), the GFAP immunoreactivity was significantly increased in all four regions, thus indicating the wide spread neuroinflammation, pronounced in the PC and the HPC. Changes in the GLUT2 (increment) and the IR (decrement) expression were mild in the areas close to the site of the STZ injection/release but pronounced in the ependymal lining cells of the third ventricle, thus indicating the possible metabolic implications. These results, together with the finding of the GLUT2-IR co-expression, and also the neuronal IR expression in PC, TC and HPC, indicate that the cerebral GLUT2 and IR should be further explored as the possible sAD etiopathogenic factors. It should be further clarified whether their alterations are the effect of a direct STZ-icv toxicity or they are triggered in a response to STZ-icv induced neuroinflammation.

Keywords

Streptozotocin Alzheimer’s disease Glucose transporter 2 Insulin receptor 

Notes

Acknowledgements

Supported by University of Zagreb (funds awarded to M. Salkovic-Petrisic, 2015–2016), AMAC-UK (funds awarded to U. Smailovic, 2013) and the Edda Neele Stiftung (funds awarded to M. Salkovic-Petrisic). Z. Mikloska, Ph.D. is thanked for English editing.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Supplementary material

702_2017_1727_MOESM1_ESM.pdf (3.7 mb)
Supplementary material 1 (PDF 3766 kb)
702_2017_1727_MOESM2_ESM.pdf (230 kb)
Supplementary material 2 (PDF 231 kb)
702_2017_1727_MOESM3_ESM.pdf (3.5 mb)
Supplementary material 3 (PDF 3546 kb)

References

  1. Agostinho P, Cunha RA, Oliveira C (2010) Neuroinflammation, oxidative stress and the pathogenesis of Alzheimer’s disease. Curr Pharm Des 16:2766–2778CrossRefPubMedGoogle Scholar
  2. Agrawal R, Tyagi E, Shukla R, Nath C (2009) A study of brain insulin receptors, AChE activity and oxidative stress in rat model of ICV STZ induced dementia. Neuropharmacology 56:779–787CrossRefPubMedGoogle Scholar
  3. Agrawal R, Tyagi E, Shukla R, Nath C (2011) Insulin receptor signaling in rat hippocampus: a study in STZ (ICV) induced memory deficit model. Eur Neuropsychopharmacol 21:261–273. doi: 10.1016/j.euroneuro.2010.11.009 CrossRefPubMedGoogle Scholar
  4. Amiri S, Haj-Mirzaiain A, Momeny M et al (2016) Streptozotocin induced oxidative stress, innate immune system responses and behavioral abnormalities in male mice. Neuroscience. doi: 10.1016/j.neuroscience.2016.11.003 Google Scholar
  5. Arluison M, Quignon M, Nguyen P et al (2004a) Distribution and anatomical localization of the glucose transporter 2 (GLUT2) in the adult rat brain–an immunohistochemical study. J Chem Neuroanat 28:117–136. doi: 10.1016/j.jchemneu.2004.05.009 CrossRefPubMedGoogle Scholar
  6. Arluison M, Quignon M, Thorens B et al (2004b) Immunocytochemical localization of the glucose transporter 2 (GLUT2) in the adult rat brain. II. Electron microscopic study. J Chem Neuroanat 28:137–146. doi: 10.1016/j.jchemneu.2004.06.002 CrossRefPubMedGoogle Scholar
  7. Austin SA, Santhanam AVR, d’Uscio LV, Katusic ZS (2015) Regional heterogeneity of cerebral microvessels and brain susceptibility to oxidative stress. PLoS One 10:e0144062. doi: 10.1371/journal.pone.0144062 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Barilar JO, Knezovic A, Grünblatt E et al (2015) Nine-month follow-up of the insulin receptor signalling cascade in the brain of streptozotocin rat model of sporadic Alzheimer’s disease. J Neural Transm 122:565–576. doi: 10.1007/s00702-014-1323-y CrossRefPubMedGoogle Scholar
  9. Biasibetti R, Almeida Dos Santos JP, Rodrigues L et al (2017) Hippocampal changes in STZ-model of Alzheimer’s disease are dependent on sex. Behav Brain Res 316:205–214. doi: 10.1016/j.bbr.2016.08.057 CrossRefPubMedGoogle Scholar
  10. Blázquez E, Velázquez E, Hurtado-Carneiro V, Ruiz-Albusac JM (2014) Insulin in the brain: its pathophysiological implications for States related with central insulin resistance, type 2 diabetes and Alzheimer’s disease. Front Endocrinol (Lausanne) 5:161. doi: 10.3389/fendo.2014.00161 Google Scholar
  11. Blokland A, Jolles J (1993) Spatial learning deficit and reduced hippocampal ChAT activity in rats after an ICV injection of streptozotocin. Pharmacol Biochem Behav 44:491–494CrossRefPubMedGoogle Scholar
  12. Blondel O, Portha B (1989) Early appearance of in vivo insulin resistance in adult streptozotocin-injected rats. Diabète Métab 15:382–387PubMedGoogle Scholar
  13. Blum-Degen D, Müller T, Kuhn W et al (1995) Interleukin-1 beta and interleukin-6 are elevated in the cerebrospinal fluid of Alzheimer’s and de novo Parkinson’s disease patients. Neurosci Lett 202:17–20CrossRefPubMedGoogle Scholar
  14. Brant AM, Jess TJ, Milligan G et al (1993) Immunological analysis of glucose transporters expressed in different regions of the rat brain and central nervous system. Biochem Biophys Res Commun 192:1297–1302. doi: 10.1006/bbrc.1993.1557 CrossRefPubMedGoogle Scholar
  15. Carter SF, Schöll M, Almkvist O, Wall A, Engler H, Långström B et al (2012) Evidence for astrocytosis in prodromal Alzheimer disease provided by 11C-deuterium-l-deprenyl: a multitracer PET paradigm combining 11C-Pittsburgh compound Band 18F-FDG. J Nucl Med 53:37–46CrossRefPubMedGoogle Scholar
  16. Chen Z, Zhong C (2013) Decoding Alzheimer’s disease from perturbed cerebral glucose metabolism: implications for diagnostic and therapeutic strategies. Prog Neurobiol 108:21–43. doi: 10.1016/j.pneurobio.2013.06.004 CrossRefPubMedGoogle Scholar
  17. Chen Y, Liang Z, Blanchard J et al (2013) A non-transgenic mouse model (icv-STZ mouse) of Alzheimer’s disease: similarities to and differences from the transgenic model (3xTg-AD mouse). Mol Neurobiol 47:711–725. doi: 10.1007/s12035-012-8375-5 CrossRefPubMedGoogle Scholar
  18. Chen Y, Deng Y, Zhang B, Gong C-X (2014a) Deregulation of brain insulin signaling in Alzheimer’s disease. Neurosci Bull 30:282–294. doi: 10.1007/s12264-013-1408-x CrossRefPubMedGoogle Scholar
  19. Chen Y, Liang Z, Tian Z et al (2014b) Intracerebroventricular streptozotocin exacerbates Alzheimer-like changes of 3xTg-AD mice. Mol Neurobiol 49:547–562. doi: 10.1007/s12035-013-8539-y CrossRefPubMedGoogle Scholar
  20. Correia SC, Santos RX, Santos MS et al (2013) Mitochondrial abnormalities in a streptozotocin-induced rat model of sporadic Alzheimer’s disease. Curr Alzheimer Res 10:406–419CrossRefPubMedGoogle Scholar
  21. Counts SE, He B, Che S et al (2009) Galanin fiber hyperinnervation preserves neuroprotective gene expression in cholinergic basal forebrain neurons in Alzheimer’s disease. J Alzheimers Dis 18:885–896. doi: 10.3233/JAD-2009-1196 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Cunnane S, Nugent S, Roy M et al (2011) Brain fuel metabolism, aging, and Alzheimer’s disease. Nutrition 27:3–20. doi: 10.1016/j.nut.2010.07.021 CrossRefPubMedGoogle Scholar
  23. De Felice FG, Lourenco MV, Ferreira ST (2014) How does brain insulin resistance develop in Alzheimer’s disease? Alzheimers Dement 10:S26–S32. doi: 10.1016/j.jalz.2013.12.004 CrossRefPubMedGoogle Scholar
  24. de la Monte SM, Tong M (2014) Brain metabolic dysfunction at the core of Alzheimer’s disease. Biochem Pharmacol 88:548–559. doi: 10.1016/j.bcp.2013.12.012 CrossRefPubMedGoogle Scholar
  25. Deng Y, Li B, Liu Y et al (2009) Dysregulation of insulin signaling, glucose transporters, O-GlcNAcylation, and phosphorylation of tau and neurofilaments in the brain: implication for Alzheimer’s disease. Am J Pathol 175:2089–2098. doi: 10.2353/ajpath.2009.090157 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Dias C, Barbosa RM, Laranjinha J, Ledo A (2014) Evaluation of mitochondrial function in the CNS of rodent models of Alzheimer’s disease—high resolution respirometry applied to acute hippocampal slices. Free Radic Biol Med 75(Suppl 1):S37. doi: 10.1016/j.freeradbiomed.2014.10.780 CrossRefPubMedGoogle Scholar
  27. Duelli R, Schröck H, Kuschinsky W, Hoyer S (1994) Intracerebroventricular injection of streptozotocin induces discrete local changes in cerebral glucose utilization in rats. Int J Dev Neurosci 12:737–743CrossRefPubMedGoogle Scholar
  28. Frölich L, Blum-Degen D, Bernstein HG et al (1998) Brain insulin and insulin receptors in aging and sporadic Alzheimer’s disease. J Neural Transm 105:423–438. doi: 10.1007/s007020050068 CrossRefPubMedGoogle Scholar
  29. Gai W, Schott-Ohly P, Schulte im Walde S, Gleichmann H (2004) Differential target molecules for toxicity induced by streptozotocin and alloxan in pancreatic islets of mice in vitro. Exp Clin Endocrinol Diabetes 112:29–37. doi: 10.1055/s-2004-815724 CrossRefPubMedGoogle Scholar
  30. García M de los A, Millán C, Balmaceda-Aguilera C et al (2003) Hypothalamic ependymal-glial cells express the glucose transporter GLUT2, a protein involved in glucose sensing. J Neurochem 86:709–724. doi: 10.1046/j.1471-4159.2003.01892.x CrossRefPubMedGoogle Scholar
  31. Garwood CJ, Ratcliffe LE, Simpson JE, Heath PR, Ince PG, Wharton SB (2016) Review: astrocytes in Alzheimer’s disease and other age-associated dementias; a supporting player with a central role. Neuropathol Appl Neurobiol. doi: 10.1111/nan.12338 PubMedGoogle Scholar
  32. Giorgino F, Chen JH, Smith RJ (1992) Changes in tyrosine phosphorylation of insulin receptors and a 170,000 molecular weight nonreceptor protein in vivo in skeletal muscle of streptozotocin-induced diabetic rats: effects of insulin and glucose. Endocrinology 130:1433–1444. doi: 10.1210/endo.130.3.1531627 PubMedGoogle Scholar
  33. Goud BJ, Dwarakanath V, Swamy BKC (2015) Streptozotocin—a diabetogenic agent in animal models. Int J Pharm Pharm Res 3:253–269Google Scholar
  34. Grieb P (2016) Intracerebroventricular streptozotocin injections as a model of Alzheimer’s disease: in search of a relevant mechanism. Mol Neurobiol 53:1741–1752. doi: 10.1007/s12035-015-9132-3 CrossRefPubMedGoogle Scholar
  35. Grünblatt E, Salkovic-Petrisic M, Osmanovic J et al (2007) Brain insulin system dysfunction in streptozotocin intracerebroventricularly treated rats generates hyperphosphorylated tau protein. J Neurochem 101:757–770. doi: 10.1111/j.1471-4159.2006.04368.x CrossRefPubMedGoogle Scholar
  36. Gsell W, Strein I, Riederer P (1996) The neurochemistry of Alzheimer type, vascular type and mixed type dementias compared. J Neural Transm Suppl 47:73–101CrossRefPubMedGoogle Scholar
  37. Heppner R, Ransohoff R, Becher B (2015) Immune attack: the role of inflammation in Alzheimer disease. Nat Rev Neurosci 16:358–372CrossRefPubMedGoogle Scholar
  38. Hoyer S (1998) Is sporadic Alzheimer disease the brain type of non-insulin dependent diabetes mellitus? A challenging hypothesis. J Neural Transm 105:415–422. doi: 10.1007/s007020050067 CrossRefPubMedGoogle Scholar
  39. Hoyer S, Lannert H (2007) Long-term abnormalities in brain glucose/energy metabolism after inhibition of the neuronal insulin receptor: implication of tau-protein. J Neural Transm Suppl 72:195–202CrossRefGoogle Scholar
  40. Hoyer S, Müller D, Plaschke K (1994) Desensitization of brain insulin receptor. Effect on glucose/energy and related metabolism. J Neural Transm Suppl 44:259–268PubMedGoogle Scholar
  41. Jensen EM, LaPolla RJ, Kirby PE, Haworth SR (1977) In vitro studies of chemical mutagens and carcinogens. I. Stability studies in cell culture medium. J Natl Cancer Inst 59:941–944CrossRefPubMedGoogle Scholar
  42. Kadowaki T, Kasuga M, Akanuma Y et al (1984) Decreased autophosphorylation of the insulin receptor-kinase in streptozotocin-diabetic rats. J Biol Chem 259:14208–14216PubMedGoogle Scholar
  43. Kalsbeek MJT, Mulder L, Yi C-X (2016) Microglia energy metabolism in metabolic disorder. Mol Cell Endocrinol. doi: 10.1016/j.mce.2016.09.028 Google Scholar
  44. Knezovic A, Osmanovic-Barilar J, Curlin M et al (2015) Staging of cognitive deficits and neuropathological and ultrastructural changes in streptozotocin-induced rat model of Alzheimer’s disease. J Neural Transm 122:577–592. doi: 10.1007/s00702-015-1394-4 CrossRefPubMedGoogle Scholar
  45. Konrad RJ, Mikolaenko I, Tolar JF et al (2001) The potential mechanism of the diabetogenic action of streptozotocin: inhibition of pancreatic beta-cell O-GlcNAc-selective N-acetyl-beta-d-glucosaminidase. Biochem J 356:31–41CrossRefPubMedPubMedCentralGoogle Scholar
  46. Kraska A, Santin MD, Dorieux O et al (2012) In vivo cross-sectional characterization of cerebral alterations induced by intracerebroventricular administration of streptozotocin. PLoS One 7:e46196. doi: 10.1371/journal.pone.0046196 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Kröncke KD, Fehsel K, Sommer A et al (1995) Nitric oxide generation during cellular metabolization of the diabetogenic N-methyl-N-nitroso-urea streptozotozin contributes to islet cell DNA damage. Biol Chem Hoppe Seyler 376:179–185CrossRefPubMedGoogle Scholar
  48. Lacković Z, Salković M (1990) Streptozotocin and alloxan produce alterations in rat brain monoamines independently of pancreatic beta cells destruction. Life Sci 46:49–54CrossRefPubMedGoogle Scholar
  49. Lannert H, Hoyer S (1998) Intracerebroventricular administration of streptozotocin causes long-term diminutions in learning and memory abilities and in cerebral energy metabolism in adult rats. Behav Neurosci 112:1199–1208CrossRefPubMedGoogle Scholar
  50. Lee JY, Kim MJ, Moon CK, Chung JH (1993) Degradation products of streptozotocin do not induce hyperglycemia in rats. Biochem Pharmacol 46:2111–2113CrossRefPubMedGoogle Scholar
  51. Leloup C, Allard C, Carneiro L et al (2016) Glucose and hypothalamic astrocytes: more than a fueling role? Neuroscience 323:110–120. doi: 10.1016/j.neuroscience.2015.06.007 CrossRefPubMedGoogle Scholar
  52. Lent R, Azevedo FA, Andrade-Moraes CH, Pinto AV (2012) How many neurons do you have? Some dogmas of quantitative neuroscience under revision. Eur J Neurosci 35:1–9CrossRefPubMedGoogle Scholar
  53. Lester-Coll N, Rivera EJ, Soscia SJ et al (2006) Intracerebral streptozotocin model of type 3 diabetes: relevance to sporadic Alzheimer’s disease. J Alzheimers Dis 9:13–33CrossRefPubMedGoogle Scholar
  54. Li D, Huang Y, Cheng B et al (2016) Streptozotocin induces mild cognitive impairment at appropriate doses in mice as determined by long-term potentiation and the morris water maze. J Alzheimer’s Dis 54:89–98. doi: 10.3233/JAD-150979 CrossRefGoogle Scholar
  55. Liu Y, Liu F, Iqbal K et al (2008) Decreased glucose transporters correlate to abnormal hyperphosphorylation of tau in Alzheimer disease. FEBS Lett 582:359–364. doi: 10.1016/j.febslet.2007.12.035 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Liu P, Zou L, Jiao Q et al (2013) Xanthoceraside attenuates learning and memory deficits via improving insulin signaling in STZ-induced AD rats. Neurosci Lett 543:115–120. doi: 10.1016/j.neulet.2013.02.065 CrossRefPubMedGoogle Scholar
  57. Maekawa F, Toyoda Y, Torii N et al (2000) Localization of glucokinase-like immunoreactivity in the rat lower brain stem: for possible location of brain glucose-sensing mechanisms. Endocrinology 141:375–384. doi: 10.1210/endo.141.1.7234 CrossRefPubMedGoogle Scholar
  58. Mayer G, Nitsch R, Hoyer S (1990) Effects of changes in peripheral and cerebral glucose metabolism on locomotor activity, learning and memory in adult male rats. Brain Res 532:95–100CrossRefPubMedGoogle Scholar
  59. Monson NL, Ireland SJ, Ligocki AJ et al (2014) Elevated CNS inflammation in patients with preclinical Alzheimer’s disease. J Cereb Blood Flow Metab 34:30–33. doi: 10.1038/jcbfm.2013.183 CrossRefPubMedGoogle Scholar
  60. Mosconi L (2005) Brain glucose metabolism in the early and specific diagnosis of Alzheimer’s disease. FDG-PET studies in MCI and AD. Eur J Nucl Med Mol Imaging 32:486–510. doi: 10.1007/s00259-005-1762-7 CrossRefPubMedGoogle Scholar
  61. Mosconi L, Mistur R, Switalski R et al (2009) Declining brain glucose metabolism in normal individuals with a maternal history of Alzheimer disease. Neurology 72:513–520. doi: 10.1212/01.wnl.0000333247.51383.43 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Noble EP, Wurtman RJ, Axelrod J (1967) A simple and rapid method for injecting H3-norepinephrine into the lateral ventricle of the rat brain. Life Sci 6:281–291. doi: 10.1016/0024-3205(67)90157-9 CrossRefPubMedGoogle Scholar
  63. Paxinos G, Watson C (2005) The rat brain in stereotaxic coordinates, 5th edn. Elsevier Academic Press, AmsterdamGoogle Scholar
  64. Plaschke K, Hoyer S (1993) Action of the diabetogenic drug streptozotocin on glycolytic and glycogenolytic metabolism in adult rat brain cortex and hippocampus. Int J Dev Neurosci 11:477–483CrossRefPubMedGoogle Scholar
  65. Plaschke K, Kopitz J, Siegelin M et al (2010) Insulin-resistant brain state after intracerebroventricular streptozotocin injection exacerbates Alzheimer-like changes in Tg2576 AbetaPP-overexpressing mice. J Alzheimers Dis 19:691–704. doi: 10.3233/JAD-2010-1270 CrossRefPubMedGoogle Scholar
  66. Prakash A, Kalra JK, Kumar A (2015) Neuroprotective effect of N-acetyl cysteine against streptozotocin-induced memory dysfunction and oxidative damage in rats. J Basic Clin Physiol Pharmacol 26:13–23. doi: 10.1515/jbcpp-2013-0150 CrossRefPubMedGoogle Scholar
  67. Prickaerts J, Fahrig T, Blokland A (1999) Cognitive performance and biochemical markers in septum, hippocampus and striatum of rats after an i.c.v. injection of streptozotocin: a correlation analysis. Behav Brain Res 102:73–88. doi: 10.1016/S0166-4328(98)00158-2 CrossRefPubMedGoogle Scholar
  68. Rajasekar N, Dwivedi S, Nath C et al (2014) Protection of streptozotocin induced insulin receptor dysfunction, neuroinflammation and amyloidogenesis in astrocytes by insulin. Neuropharmacology 86:337–352. doi: 10.1016/j.neuropharm.2014.08.013 CrossRefPubMedGoogle Scholar
  69. Ransohoff RM (2016) How neuroinflammation contributes to neurodegeneration. Science 353:777–783CrossRefPubMedGoogle Scholar
  70. Rathinam A, Pari L (2016) Myrtenal ameliorates hyperglycemia by enhancing GLUT2 through Akt in the skeletal muscle and liver of diabetic rats. Chem Biol Interact 256:161–166. doi: 10.1016/j.cbi.2016.07.009 CrossRefPubMedGoogle Scholar
  71. Reiman EM, Caselli RJ, Yun LS et al (1996) Preclinical evidence of Alzheimer’s disease in persons homozygous for the epsilon 4 allele for apolipoprotein E. N Engl J Med 334:752–758. doi: 10.1056/NEJM199603213341202 CrossRefPubMedGoogle Scholar
  72. Salkovic-Petrisic M, Hoyer S (2007) Central insulin resistance as a trigger for sporadic Alzheimer-like pathology: an experimental approach. J Neural Transm Suppl 72:217–233CrossRefGoogle Scholar
  73. Salkovic-Petrisic M, Tribl F, Schmidt M et al (2006) Alzheimer-like changes in protein kinase B and glycogen synthase kinase-3 in rat frontal cortex and hippocampus after damage to the insulin signalling pathway. J Neurochem 96:1005–1015. doi: 10.1111/j.1471-4159.2005.03637.x CrossRefPubMedGoogle Scholar
  74. Salkovic-Petrisic M, Osmanovic-Barilar J, Brückner MK et al (2011) Cerebral amyloid angiopathy in streptozotocin rat model of sporadic Alzheimer’s disease: a long-term follow up study. J Neural Transm 118:765–772. doi: 10.1007/s00702-011-0651-4 CrossRefPubMedGoogle Scholar
  75. Salkovic-Petrisic M, Knezovic A, Hoyer S, Riederer P (2013) What have we learned from the streptozotocin-induced animal model of sporadic Alzheimer’s disease, about the therapeutic strategies in Alzheimer’s research. J Neural Transm 120:233–252. doi: 10.1007/s00702-012-0877-9 CrossRefPubMedGoogle Scholar
  76. Santos TO, Mazucanti CHY, Xavier GF, Torrão AS (2012) Early and late neurodegeneration and memory disruption after intracerebroventricular streptozotocin. Physiol Behav 107:401–413. doi: 10.1016/j.physbeh.2012.06.019 CrossRefPubMedGoogle Scholar
  77. Saxena G, Singh SP, Agrawal R, Nath C (2008) Effect of donepezil and tacrine on oxidative stress in intracerebral streptozotocin-induced model of dementia in mice. Eur J Pharmacol 581:283–289. doi: 10.1016/j.ejphar.2007.12.009 CrossRefPubMedGoogle Scholar
  78. Sharma M, Gupta YK (2001) Intracerebroventricular injection of streptozotocin in rats produces both oxidative stress in the brain and cognitive impairment. Life Sci 68:1021–1029CrossRefPubMedGoogle Scholar
  79. Shoham S, Bejar C, Kovalev E, Weinstock M (2003) Intracerebroventricular injection of streptozotocin causes neurotoxicity to myelin that contributes to spatial memory deficits in rats. Exp Neurol 184:1043–1052. doi: 10.1016/j.expneurol.2003.08.015 CrossRefPubMedGoogle Scholar
  80. Simpson JE, Ince PG, Lace G, Forster G, Shaw PJ, Matthews F, Savva G, Brayne C, Wharton SB (2010) Astrocyte phenotype in relation to Alzheimer-type pathology in the ageing brain. Neurobiol Aging 3:578–590CrossRefGoogle Scholar
  81. Stanley M, Macauley SL, Holtzman DM (2016) Changes in insulin and insulin signaling in Alzheimer’s disease: cause or consequence? J Exp Med 213:1375–1385. doi: 10.1084/jem.20160493 CrossRefPubMedPubMedCentralGoogle Scholar
  82. Steardo L Jr, Bronzuoli MR, Iacomino A, Esposito G, Steardo L, Scuderi C (2015) Does neuroinflammation turn on the flame in Alzheimer’s disease? Focus on astrocytes. Front Neurosci 9:259. doi: 10.3389/fnins.2015.00259.eCollection CrossRefPubMedPubMedCentralGoogle Scholar
  83. Steen E, Terry BM, Rivera EJ et al (2005) Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer’s disease–is this type 3 diabetes? J Alzheimers Dis 7:63–80CrossRefPubMedGoogle Scholar
  84. Szkudelski T (2001) The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiol Res 50:537–546PubMedGoogle Scholar
  85. Talbot K (2014) Brain insulin resistance in Alzheimer’s disease and its potential treatment with GLP-1 analogs. Neurodegener Dis Manag 4:31–40. doi: 10.2217/nmt.13.73 CrossRefPubMedPubMedCentralGoogle Scholar
  86. Talbot K, Wang H-Y, Kazi H et al (2012) Demonstrated brain insulin resistance in Alzheimer’s disease patients is associated with IGF-1 resistance, IRS-1 dysregulation, and cognitive decline. J Clin Invest 122:1316–1338. doi: 10.1172/JCI59903 CrossRefPubMedPubMedCentralGoogle Scholar
  87. Terwel D, Prickaerts J, Meng F, Jolles J (1995) Brain enzyme activities after intracerebroventricular injection of streptozotocin in rats receiving acetyl-l-carnitine. Eur J Pharmacol 287:65–71CrossRefPubMedGoogle Scholar
  88. Verkhratsky A, Olabarria M, Noristani HN, Yeh CY, Rodriguez JJ (2010) Astrocytes in Alzheimer’s disease. Neurotherapeutics 7:399–412. doi: 10.1016/j.nurt.2010.05.017 CrossRefPubMedPubMedCentralGoogle Scholar
  89. Wada R, Yagihashi S (2004) Nitric oxide generation and poly(ADP ribose) polymerase activation precede beta-cell death in rats with a single high-dose injection of streptozotocin. Virchows Arch 444:375–382. doi: 10.1007/s00428-003-0967-z CrossRefPubMedGoogle Scholar
  90. Wang Z, Gleichmann H (1995) Glucose transporter 2 expression: prevention of streptozotocin-induced reduction in beta-cells with 5-thio-d-glucose. Exp Clin Endocrinol Diabetes 103:83–97. doi: 10.1055/s-0029-1211400 CrossRefPubMedGoogle Scholar
  91. Wang Z, Gleichmann H (1998) GLUT2 in pancreatic islets: crucial target molecule in diabetes induced with multiple low doses of streptozotocin in mice. Diabetes 47:50–56CrossRefPubMedGoogle Scholar
  92. Yao Y, Chinnici C, Tang H et al (2004) Brain inflammation and oxidative stress in a transgenic mouse model of Alzheimer-like brain amyloidosis. J Neuroinflamm 1:21. doi: 10.1186/1742-2094-1-21 CrossRefGoogle Scholar
  93. Yarchoan M, Toledo JB, Lee EB et al (2014) Abnormal serine phosphorylation of insulin receptor substrate 1 is associated with tau pathology in Alzheimer’s disease and tauopathies. Acta Neuropathol 128:679–689. doi: 10.1007/s00401-014-1328-5 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Wien 2017

Authors and Affiliations

  • A. Knezovic
    • 1
  • A. Loncar
    • 1
    • 2
  • J. Homolak
    • 1
  • U. Smailovic
    • 1
    • 3
  • J. Osmanovic Barilar
    • 1
  • L. Ganoci
    • 4
  • N. Bozina
    • 1
    • 4
  • P. Riederer
    • 5
  • Melita Salkovic-Petrisic
    • 1
  1. 1.Department of Pharmacology and Croatian Institute for Brain ResearchUniversity of Zagreb School of MedicineZagrebCroatia
  2. 2.Department of NeurologyGeneral Hospital KarlovacKarlovacCroatia
  3. 3.Department of Neurobiology, Care Sciences and Society, Division of Clinical GeriatricsKarolinska InstituteStockholmSweden
  4. 4.Department of Laboratory DiagnosticsUniversity Hospital Centre ZagrebZagrebCroatia
  5. 5.Centre of Mental Health, Department of Psychiatry, Psychosomatics, and PsychotherapyUniversity Hospital of WürzburgWürzburgGermany

Personalised recommendations