Advertisement

Journal of Neural Transmission

, Volume 125, Issue 3, pp 385–400 | Cite as

α-Synuclein nonhuman primate models of Parkinson’s disease

  • David J. Marmion
  • Jeffrey H. KordowerEmail author
Neurology and Preclinical Neurological Studies - Review Article

Abstract

Proper understanding of the mechanism(s) by which α-synuclein misfolds and propagates may hold the key to unraveling the complex pathophysiology of Parkinson’s disease. A more complete understanding of the disease itself, as well as establishing animal models that fully recapitulate pathological and functional disease progression, are needed to develop treatments that will delay, halt or reverse the disease course. Traditional neurotoxin-based animal models fail to mimic crucial aspects of Parkinson’s and thus are not relevant for the study of neuroprotection and disease-modifying therapies. Therefore, a new era of animal models centered on α-synuclein has emerged with the utility of nonhuman primates in these studies beginning to become important. Indeed, disease modeling in nonhuman primates offers a more similar anatomical and genetic background to humans, and the ability to assess complex behavioral impairments that are difficult to test in rodents. Furthermore, results obtained from monkey studies translate better to applications in humans. In this review, we highlight the importance of α-synuclein in Parkinson’s disease and discuss the development of α-synuclein based nonhuman primate models.

Keywords

Parkinson's disease Alpha-synuclein Nonhuman primate Animal models 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Appel-Cresswell S, Vilarino-Guell C, Encarnacion M, Sherman H, Yu I, Shah B, Weir D, Thompson C, Szu-Tu C, Trinh J, Aasly JO, Rajput A, Rajput AH, Jon Stoessl A, Farrer MJ (2013) Alpha-synuclein p. H50Q, a novel pathogenic mutation for Parkinson’s disease. Mov Disord 28:811–813PubMedCrossRefGoogle Scholar
  2. Bartels T, Choi JG, Selkoe DJ (2011) alpha-Synuclein occurs physiologically as a helically folded tetramer that resists aggregation. Nature 477:107–110PubMedPubMedCentralCrossRefGoogle Scholar
  3. Beach TG, Adler CH, Sue LI, Vedders L, Lue L, White Iii CL, Akiyama H, Caviness JN, Shill HA, Sabbagh MN, Walker DG.; Arizona Parkinson’s Disease Consortium (2010) Multi-organ distribution of phosphorylated alpha-synuclein histopathology in subjects with Lewy body disorders. Acta Neuropathol 119(6):689–702CrossRefGoogle Scholar
  4. Bennett DA, Beckett LA, Murray AM, Shannon KM, Goetz CG, Pilgrim DM, Evans DA (1996) Prevalence of parkinsonian signs and associated mortality in a community population of older people. N Engl J Med 334:71–76PubMedCrossRefGoogle Scholar
  5. Bourdenx M, Dovero S, Engeln M, Bido S, Bastide MF, Dutheil N, Vollenweider I, Baud L, Piron C, Grouthier V, Boraud T, Porras G, Li Q, Baekelandt V, Scheller D, Michel A, Fernagut PO, Georges F, Courtine G, Bezard E, Dehay B (2015) Lack of additive role of ageing in nigrostriatal neurodegeneration triggered by alpha-synuclein overexpression. Acta Neuropathol Commun 3:46PubMedPubMedCentralCrossRefGoogle Scholar
  6. Braak H, Del Tredici K, Rüb U, de Vos RA, Jansen Steur EN, Braak E (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24(2):197–211PubMedCrossRefGoogle Scholar
  7. Braak H, de Vos RA, Bohl J, Del Tredici K (2006) Gastric alpha-synuclein immunoreactive inclusions in Meissner’s and Auerbach’s plexuses in cases staged for Parkinson’s disease-related brain pathology. Neurosci Lett 396:67–72PubMedCrossRefGoogle Scholar
  8. Burré J, Sharma M, Tsetsenis T, Buchman V, Etherton MR, Südhof TC (2010) α-synuclein promotes SNARE-complex assembly in vivo and in vitro. Science 329:1663–1667PubMedPubMedCentralCrossRefGoogle Scholar
  9. Canron MH, Perret M, Vital A, Bézard E, Dehay B (2012) Age-dependent α-synuclein aggregation in the Microcebus murinus lemur primate. Sci Rep 2:910. doi: 10.1038/srep00910 PubMedPubMedCentralCrossRefGoogle Scholar
  10. Capitanio JP, Emborg ME (2008) Contributions of non-human primates to neuroscience research. Lancet 371(9618):1126–1135PubMedCrossRefGoogle Scholar
  11. Chartier-Harlin MC, Kachergus J, Roumier C, Mouroux V, Douay X, Lincoln S, Levecque C, Larvor L, Andrieux J, Hulihan M, Waucquier N, Defebvre L, Amouyel P, Farrer M, Destée A (2004) Alpha-synuclein locus duplication as a cause of familial Parkinson’s disease. Lancet 364(9440):1167–1169PubMedCrossRefGoogle Scholar
  12. Chu Y, Kordower JH (2007) Age-associated increases of α-synuclein in monkeys and humans are associated with nigrostriatal dopamine depletion: is this the target for Parkinson’s disease? Neurobiol Dis 25:134–149PubMedCrossRefGoogle Scholar
  13. Collier TJ, Redmond DE Jr, Steece-Collier K, Lipton JW, Manfredsson FP (2016) Is alpha-synuclein loss-of-function a contributor to parkinsonian pathology? Evidence from non-human primates. Front Neurosci 10:12PubMedPubMedCentralCrossRefGoogle Scholar
  14. Conway KA, Harper JD, Lansbury PT (1998) Accelerated in vitro fibril formation by a mutant alpha-synuclein linked to early-onset Parkinson disease. Nat Med 4(11):1318–1320PubMedCrossRefGoogle Scholar
  15. Cookson MR (2006) Hero versus antihero: the multiple roles of alpha-synuclein in neurodegeneration. Exp Neurol 199:238–242PubMedCrossRefGoogle Scholar
  16. Cookson MR, Xiromerisiou G, Singleton A (2005) How genetics research in Parkinson’s disease is enhancing understanding of the common idiopathic forms of the disease. Curr Opin Neurol 18:706–711PubMedCrossRefGoogle Scholar
  17. Davis GC, Williams AC, Markey SP, Ebert MH, Caine ED, Reichert CM, Kopin IJ (1979) Chronic Parkinsonism secondary to intravenous injection of meperidine analogues. Psychiatry Res 1:249–254PubMedCrossRefGoogle Scholar
  18. Decressac M, Ulusoy A, Mattsson B, Georgievska B, Romero-RamosM Kirik D, Bjorklund A (2011) GDNF fails to exert neuroprotection in a rat alpha-synuclein model of Parkinson’s disease. Brain 134:2302–2311PubMedCrossRefGoogle Scholar
  19. Duffy PE, Tennyson VM (1965) Phase and electron microscopic observations of Lewy bodies and melanin granules in the substantia nigra and locus coeruleus in Parkinson’s disease. J Neuropathol Exp Neurol 24:398–414CrossRefGoogle Scholar
  20. El-Agnaf OM, Jakes R, Curran MD, Wallace A (1998) Effects of the mutations Ala30 to Pro and Ala53 to Thr on the physical and morphological properties of α-synuclein protein implicated in Parkinson’s disease. FEBS Lett 440:67–70PubMedCrossRefGoogle Scholar
  21. Eliezer D, Kutluay E, Bussell R Jr, Browne G (2001) Conformational properties of α-synuclein in its free and lipid-associated states. J Mol Biol 307:1061–1073PubMedCrossRefGoogle Scholar
  22. Eriksen JL, Dawson TM, Dickson DW, Petrucelli L (2003) Caught in the act: Alpha-synuclein is the culprit in Parkinson’s disease. Neuron 40:453–456PubMedCrossRefGoogle Scholar
  23. Eslamboli A, Romero-Ramos M, Burger C, Bjorklund T, Muzyczka N, Mandel RJ, Baker H, Ridley RM, Kirik D (2007) Long-term consequences of human alpha-synuclein overexpression in the primate ventral midbrain. Brain 130:799–815PubMedCrossRefGoogle Scholar
  24. Farrer M, Kachergus J, Forno L, Lincoln S, Wang DS, Hulihan M, Maraganore D, Gwinn-Hardy K, Wszolek Z, Dickson D, Langston JW (2004) Comparison of kindreds with parkinsonism and alpha-synuclein genomic multiplications. Ann Neurol 55(2):174–179PubMedCrossRefGoogle Scholar
  25. Fauvet B, Mbefo MK, Fares MB, Desobry C, Michael S, Ardah MT, Tsika E, Coune P, Prudent M, Lion N, Eliezer D, Moore DJ, Schneider B, Aebischer P, El-Agnaf OM, Masliah E, Lashuel HA (2012) α-synuclein in the central nervous system and from erythrocytes, mammalian cells and E. coli exists predominantly as a disordered monomer. J Biol Chem 287:15345–15364PubMedPubMedCentralCrossRefGoogle Scholar
  26. Fearnley JM, Lees AJ (1991) Ageing and Parkinson’s disease: substantia nigra regional selectivity. Brain 114:2283–2301PubMedCrossRefGoogle Scholar
  27. Forno LS (1996) Neuropathology of Parkinson’s disease. J Neuropathol Exp Neurol 55:259–272PubMedCrossRefGoogle Scholar
  28. Giasson BI, Murray IV, Trojanowski JQ, Lee VM (2001) A hydrophobic stretch of 12 amino acid residues in the middle of α-synuclein is essential for filament assembly. J Biol Chem 276:2380–2386PubMedCrossRefGoogle Scholar
  29. Giasson BI, Duda JE, Quinn SM, Zhang B, Trojanowski JQ, Lee VM (2002) Neuronal alpha-synucleinopathy with severe movement disorder in mice expressing A53T human alpha-synuclein. Neuron 34:521–533PubMedCrossRefGoogle Scholar
  30. Gibb WR, Lees AJ (1991) Anatomy, pigmentation, ventral and dorsal subpopulations of the substantia nigra, and differential cell death in Parkinson’s disease. J Neurol Neurosurg Psychiatr 54:388–396CrossRefGoogle Scholar
  31. Gorbatyuk OS, Li S, Nash K, Gorbatyuk M, Lewin AS, Sullivan LF, Mandel RJ, Chen W, Meyers C, Manfredsson FP, Muzyczka N (2010) In vivo RNAi-mediated alpha-synuclein silencing induces nigrostriatal degeneration. Mol Ther 18:1450–1457PubMedPubMedCentralCrossRefGoogle Scholar
  32. Halliday G, Herrero MT, Murphy K, McCann H, Ros-Bernal F, Barcia C, Mori H, Blesa FJ, Obeso JA (2009) No Lewy pathology in monkeys with over 10 years of severe MPTP Parkinsonism. Mov Disord 24:1519–1523PubMedCrossRefGoogle Scholar
  33. Hamilton BA (2004) alpha-Synuclein A53T substitution associated with Parkinson disease also marks the divergence of Old World and New World primates. Genomics 83(4):739–742PubMedCrossRefGoogle Scholar
  34. Hayasaka K, Gojobori T, Horai S (1998) Molecular phylogeny and evolution of primate mitochondrial DNA. Mol Biol Evol 5(6):626–644Google Scholar
  35. Herzog CD, Dass B, Holden JE, Stansell J 3rd, Gasmi M, Tuszynski MH, Bartus RT, Kordower JH (2007) Striatal delivery of CERE-120, an AAV2 vector encoding human neurturin, enhances activity of the dopaminergic nigrostriatal system in aged monkeys. Mov Disord 22(8):1124–1132PubMedCrossRefGoogle Scholar
  36. Holmqvist S, Chutna O, Bousset L, Aldrin-Kirk P, Li W, Björklund T, Wang ZY, Roybon L, Melki R, Li JY (2014) Direct evidence of Parkinson pathology spread from the gastrointestinal tract to the brain in rats. Acta Neuropathol 128(6):805–820PubMedCrossRefGoogle Scholar
  37. Hornykiewicz O (1989) Ageing and neurotoxins as causative factors in idiopathic Parkinson’s disease: a critical analysis of the neurochemical evidence. Prog Neuropsychopharmacol Biol Psychiatry 13:319–328PubMedCrossRefGoogle Scholar
  38. Hughes AJ, Daniel SE, Ben-Shlomo Y, Lees AJ (2002) The accuracy of diagnosis of parkinsonian syndromes in a specialist movement disorder service. Brain 125:861–870PubMedCrossRefGoogle Scholar
  39. Iwai A, Masliah E, Yoshimoto M, Ge N, Flanagan L, de Silva HA, Kittel A, Saitoh T (1995) The precursor protein of non-Aβ component of Alzheimer’s disease amyloid is a presynaptic protein of the central nervous system. Neuron 14:467–475PubMedCrossRefGoogle Scholar
  40. Jakes R, Spillantini MG, Goedert M (1994) Identification of two distinct synucleins from human brain. FEBS Lett 345:27–32PubMedCrossRefGoogle Scholar
  41. Jensen PH, Nielsen MS, Jakes R, Dotti CG, Goedert M (1998) Binding of alpha-synuclein to brain vesicles is abolished by familial Parkinson’s disease mutation. J Biol Chem 273(41):26292–26294PubMedCrossRefGoogle Scholar
  42. Kahle PJ, Neumann M, Ozmen L, Muller V, Jacobsen H, Schindzielorz A, Okochi M, Leimer U, van Der Putten H, Probst A, Kremmer E, Kretzschmar HA, Haass C (2000) Subcellular localization of wild-type and Parkinson’s disease-associated mutant alpha-synuclein in human and transgenic mouse brain. J Neurosci 20:6365–6373PubMedGoogle Scholar
  43. Kanaan NM, Manfredsson FP (2012) Loss of functional alpha-synuclein: a toxic event in Parkinson’s disease? J Parkinsons Dis 2:249–267PubMedPubMedCentralGoogle Scholar
  44. Kanaan NM, Kordower JH, Collier TJ (2007) Age-related accumulation of Marinesco bodies and lipofuscin in rhesus monkey midbrain dopamine neurons: relevance to selective neuronal vulnerability. J Comp Neurol 502:683–700PubMedCrossRefGoogle Scholar
  45. Kanaan NM, Kordower JH, Collier TJ (2008a) Age-related changes in dopamine transporters and accumulation of 3-nitrotyrosine in rhesus monkey midbrain dopamine neurons: relevance in selective neuronal vulnerability to degeneration. Eur J Neurosci 27:3205–3215PubMedPubMedCentralCrossRefGoogle Scholar
  46. Kanaan NM, Kordower JH, Collier TJ (2008b) Age-related changes in glial cells of dopamine midbrain subregions in rhesus monkeys. Neurobiol Aging 31:937–952PubMedPubMedCentralCrossRefGoogle Scholar
  47. Kanaan NM, Kordower JH, Collier TJ (2008c) Age and region-specific responses of microglia, but not astrocytes, suggest a role in selective vulnerability of dopamine neurons after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine exposure in monkeys. Glia 56:1199–1214PubMedPubMedCentralCrossRefGoogle Scholar
  48. Kirik D, Rosenblad C, Burger C, Lundberg C, Johansen TE, Muzyczka N, Mandel RJ, Björklund A (2002) Parkinson-like neurodegeneration induced by targeted overexpression of alpha-synuclein in the nigrostriatal system. J Neurosci 22(7):2780–2791PubMedGoogle Scholar
  49. Kirik D, Annett LE, Burger C, Muzyczka N, Mandel RJ, Björklund A (2003) Nigrostriatal alpha-synucleinopathy induced by viral vector-mediated overexpression of human alpha-synuclein: a new primate model of Parkinson’s disease. Proc Natl Acad Sci USA 100(5):2884–2889PubMedPubMedCentralCrossRefGoogle Scholar
  50. Koprich JB, Johnston TH, Reyes MG, Sun X, Brotchie JM (2010) Expression of human A53T alpha-synuclein in the rat substantia nigra using a novel AAV1/2 vector produces a rapidly evolving pathology with protein aggregation, dystrophic neurite architecture and nigrostriatal degeneration with potential to model the pathology of Parkinson’s disease. Mol Neurodegener 5(1):43PubMedPubMedCentralCrossRefGoogle Scholar
  51. Koprich JB, Johnston TH, Huot P, Reyes MG, Espinosa M, Brotchie JM (2011) Progressive neurodegeneration or endogenous compensation in an animal model of Parkinson’s disease produced by decreasing doses of alpha-synuclein. PLoS One 6(3):e17698PubMedPubMedCentralCrossRefGoogle Scholar
  52. Koprich JB, Johnston TH, Reyes G, Omana V, Brotchie JM (2016) Towards a non-human primate model of Alpha-synucleinopathy for development of therapeutics for Parkinson’s disease: optimization of AAV1/2 delivery parameters to drive sustained expression of alpha synuclein and dopaminergic degeneration in macaque. PLoS One 11(11):e0167235PubMedPubMedCentralCrossRefGoogle Scholar
  53. Kordower JH, Bjorklund A (2013) Trophic factor gene therapy for Parkinson’s disease. Mov Disord 28(1):96–109PubMedCrossRefGoogle Scholar
  54. Kordower JH, Chu Y, Hauser RA, Freeman TB, Olanow CW (2008) Lewy body-like pathology in long-term embryonic nigral transplants in Parkinson’s disease. Nat Med 14(5):504–506PubMedCrossRefGoogle Scholar
  55. Kordower JH, Olanow CW, Dodiya HB, Chu Y, Beach TG, Adler CH, Halliday GM, Bartus RT (2013) Disease duration and the integrity of the nigrostriatal system in Parkinson’s disease. Brain 136:2419–2431PubMedPubMedCentralCrossRefGoogle Scholar
  56. Kordower JH, Goetz CG, Chu Y, Halliday GM, Nicholson DA, Musial TF, Marmion DJ, Stoessl AJ, Sossi V, Freeman TB, Olanow CW (2017) Robust graft survival and normalized dopaminergic innervation do not obligate recovery in a Parkinson disease patient. Ann Neurol 81(1):46–57PubMedCrossRefGoogle Scholar
  57. Kowall NW, Hantraye P, Brouillet E, Beal MF, McKee AC, Ferrante RJ (2000) MPTP induces alpha-synuclein aggregation in the substantia nigra of baboons. NeuroReport 11(1):211–213PubMedCrossRefGoogle Scholar
  58. Krüger R, Kuhn W, Müller T, Woitalla D, Graeber M, Kösel S, Przuntek H, Epplen JT, Schöls L, Riess O (1998) Ala30Pro mutation in the gene encoding α-synuclein in Parkinson’s disease. Nature Genet 18:106–108PubMedCrossRefGoogle Scholar
  59. Langston JW (2006) The Parkinson’s complex: parkinsonism is just the tip of the iceberg. Ann Neurol 59(4):591–596PubMedCrossRefGoogle Scholar
  60. Langston JW, Ballard P, Tetrud J, Irwin I (1983) Chronic parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219:979–980PubMedCrossRefGoogle Scholar
  61. Langston JW, Forno LS, Rebert CS, Irwin I (1984) Selective nigral toxicity after systemic administration of 1-methyl-4-phenyl-1,2,5,6-tetrahydropyrine (MPTP) in the squirrel monkey. Brain Res 292:390–394PubMedCrossRefGoogle Scholar
  62. Larsen K, Hedegaard C, Bertelsen MF, Bendixen C (2009) Threonine 53 in alpha-synuclein is conserved in long-living non-primate animals. Biochem Biophys Res Commun 387(3):602–605PubMedCrossRefGoogle Scholar
  63. Lee MK, Stirling W, Xu Y, Xu X, Qui D, Mandir AS, Dawson TM, Copeland NG, Jenkins NA, Price DL (2002) Human α-synuclein-harboring familial Parkinson’s disease-linked Ala-53 → Thr mutation causes neurodegenerative disease with α-synuclein aggregation in transgenic mice. Proc Natl Acad Sci USA 99:8968–8973PubMedPubMedCentralCrossRefGoogle Scholar
  64. Lee SJ, Jeon H, Kandror KV (2008) α-synuclein is localized in a subpopulation of rat brain synaptic vesicles. Acta Neurobiol Exp 68:509–515Google Scholar
  65. Lesage S, Anheim M, Letournel F, Bousset L, Honoré A, Rozas N, Pieri L, Madiona K, Dürr A, Melki R, Verny C, Brice A, and for the French Parkinson’s Disease Genetics Study Group (2013) G51D α-synuclein mutation causes a novel Parkinsonian–pyramidal syndrome. Ann Neurol 73:459–471. doi: 10.1002/ana.23894 CrossRefGoogle Scholar
  66. Lewy FH (1912) Paralysis agitans. I. Pathologische Anatomie. Lewandowsky’s Handbuch der Neurologie, 3 Band: Spez Neurologie II. Springer, Berlin, pp 920–933Google Scholar
  67. Li JY, Englund E, Holton JL, Soulet D, Hagell P, Lees AJ, Lashley T, Quinn NP, Rehncrona S, Björklund A, Widner H, Revesz T, Lindvall O, Brundin P (2008) Lewy bodies in grafted neurons in subjects with Parkinson’s disease suggest host-to-graft disease propagation. Nat Med 14(5):501–503PubMedCrossRefGoogle Scholar
  68. Li W, Englund E, Widner H, Mattsson B, van Westen D, Lätt J, Rehncrona S, Brundin P, Björklund A, Lindvall O, Li JY (2016) Extensive graft-derived dopaminergic innervation is maintained 24 years after transplantation in the degenerating parkinsonian brain. Proc Natl Acad Sci USA 113(23):6544–6549PubMedPubMedCentralCrossRefGoogle Scholar
  69. Lo Bianco C, Ridet JL, Schneider BL, Deglon N, Aebischer P (2002) Lentiviral vector delivery of parkin prevents dopaminergic degeneration in an α-synuclein rat model of Parkinson’s disease. Proc Natl Acad Sci USA 99:10813–10818PubMedPubMedCentralCrossRefGoogle Scholar
  70. Lo Bianco C, Déglon N, Pralong W, Aebischer P (2004) Lentiviral nigral delivery of GDNF does not prevent neurodegeneration in a genetic rat model of Parkinson’s disease. Neurobiol Dis 17:283–289PubMedCrossRefGoogle Scholar
  71. Luk KC, Song C, O’Brien P, Stieber A, Branch JR, Brunden KR, Trojanowski JQ, Lee VM (2009) Exogenous alpha-synuclein fibrils seed the formation of Lewy body-like intracellular inclusions in cultured cells. Proc Natl Acad Sci USA 106(47):20051–20056PubMedPubMedCentralCrossRefGoogle Scholar
  72. Luk KC, Kehm VM, Zhang B, O’Brien P, Trojanowski JQ, Lee VM (2012a) Intracerebral inoculation of pathological α-synuclein initiates a rapidly progressive neurodegenerative α-synucleinopathy in mice. J Exp Med 209(5):975–986PubMedPubMedCentralCrossRefGoogle Scholar
  73. Luk KC, Kehm V, Carroll J, Zhang B, O’Brien P, Trojanowski JQ, Lee VM (2012b) Pathological α-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Science 338(6109):949–953PubMedPubMedCentralCrossRefGoogle Scholar
  74. Marks WJ Jr, Bartus RT, Siffert J, Davis CS, Lozano A, Boulis N, Vitek J, Stacy M, Turner D, Verhagen L, Bakay R, Watts R, Guthrie B, Jankovic J, Simpson R, Tagliati M, Alterman R, Stern M, Baltuch G, Starr PA, Larson PS, Ostrem JL, Nutt J, Kieburtz K, Kordower JH, Olanow CW (2010) Gene delivery of AAV2-neurturin for Parkinson’s disease: a double-blind, randomised, controlled trial. Lancet Neurol. 9(12):1164–1172. doi: 10.1016/S1474-4422(10)70254-4 PubMedCrossRefGoogle Scholar
  75. Maroteaux L, Campanelli JT, Scheller RH (1988) Synuclein: a neuron-specific protein localized to the nucleus and presynaptic nerve terminal. J Neurosci 8(8):2804–2815PubMedGoogle Scholar
  76. Masliah E, Iwai A, Mallory M, Ueda K, Saitoh T (1996) Altered presynaptic protein NACP is associated with plaque formation and neurodegeneration in Alzheimer’s disease. Am J Pathol 148:201–210PubMedPubMedCentralGoogle Scholar
  77. Masliah E, Rockenstein E, Veinbergs I, Mallory M, Hashimoto M, Takeda A, Sagara Y, Sisk A, Mucke L (2000) Dopaminergic loss and inclusion body formation in alpha-synuclein mice: implications for neurodegenerative disorders. Science 287:1265–1269PubMedCrossRefGoogle Scholar
  78. Matsuoka Y, Vila M, Lincoln S, McCormack A, Picciano M, LaFrancois J, Yu X, Dickson D, Langston WJ, McGowan E, Farrer M, Hardy J, Duff K, Przedborski S, Di Monte DA (2001) Lack of nigral pathology in transgenic mice expressing human alpha-synuclein driven by the tyrosine hydroxylase promoter. Neurobiol Dis 8:535–539PubMedCrossRefGoogle Scholar
  79. Nemani VM, Lu W, Berge V, Nakamura K, Onoa B, Lee MK, Chaudhry FA, Nicoll RA, Edwards RH (2010) Increased expression of α-synuclein reduces neurotransmitter release by inhibiting synaptic vesicle reclustering after endocytosis. Neuron 65:66–79PubMedPubMedCentralCrossRefGoogle Scholar
  80. Nishioka K, Hayashi S, Farrer MJ, Singleton AB, Yoshino H, Imai H, Kitami T, Sato K, Kuroda R, Tomiyama H, Mizoguchi K, Murata M, Toda T, Imoto I, Inazawa J, Mizuno Y, Hattori N (2006) Clinical heterogeneity of alpha-synuclein gene duplication in Parkinson’s disease. Ann Neurol 59(2):298–309PubMedCrossRefGoogle Scholar
  81. Niu Y, Guo X, Chen Y, Wang CE, Gao J, Yang W, Kang Y, Si W, Wang H, Yang SH, Li S, Ji W, Li XJ (2015) Early Parkinson’s disease symptoms in α-synuclein transgenic monkeys. Hum Mol Genet 24(8):2308–2317PubMedCrossRefGoogle Scholar
  82. Nutt JG, Burchiel KJ, Comella CL, Jankovic J, Lang AE, Laws ER Jr, Lozano AM, Penn RD, Simpson RK Jr, Stacy M, Wooten GF; ICV GDNF Study Group. Implanted intracerebroventricular. Glial cell line-derived neurotrophic factor (2003) Randomized, double-blind trial of glial cell line-derived neurotrophic factor (GDNF) in PD. Neurology 60:69–73CrossRefGoogle Scholar
  83. Olanow CW, Bartus RT, Volpicelli-Daley LA, Kordower JH (2015) Trophic factors for Parkinson’s disease: to live or let die. Mov Disord 30:1715–1724PubMedCrossRefGoogle Scholar
  84. Parent A (1986) Comparative neurobiology of the basal ganglia. Wiley, New YorkGoogle Scholar
  85. Peelaerts W, Bousset L, Van der Perren A, Moskalyuk A, Pulizzi R, Giugliano M, Van den Haute C, Melki R, Baekelandt V (2015) α-Synuclein strains cause distinct synucleinopathies after local and systemic administration. Nature 522(7556):340–344PubMedCrossRefGoogle Scholar
  86. Perez RG, Hastings TG (2004) Could a loss of alpha-synuclein function put dopaminergic neurons at risk? J Neurochem 89:1318–1324PubMedCrossRefGoogle Scholar
  87. Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, Pike B, Root H, Rubenstein J, Boyer R, Stenroos ES, Chandrasekharappa S, Athanassiadou A, Papapetropoulos T, Johnson WG, Lazzarini AM, Duvoisin RC, Di Iorio G, Golbe LI, Nussbaum RL (1997) Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 276(5321):2045–2047PubMedCrossRefGoogle Scholar
  88. Purisai MG, McCormack AL, Langston WJ, Johnston LC, Di Monte DA (2005) Alpha-synuclein expression in the substantia nigra of MPTP-lesioned non-human primates. Neurobiol Dis 20(3):898–906PubMedCrossRefGoogle Scholar
  89. Rathke-Hartlieb S, Kahle PJ, Neumann M, Ozmen L, Haid S, Okochi M, Haass C, Schulz JB (2001) Sensitivity to MPTP is not increased in Parkinson’s disease-associated mutant alpha-synuclein transgenic mice. J Neurochem 77:1181–1184PubMedCrossRefGoogle Scholar
  90. Recasens A, Dehay B, Bové J, Carballo-Carbajal I, Dovero S, Pérez-Villalba A, Fernagut PO, Blesa J, Parent A, Perier C, Fariñas I, Obeso JA, Bezard E, Vila M (2014) Lewy body extracts from Parkinson disease brains trigger α-synuclein pathology and neurodegeneration in mice and monkeys. Ann Neurol 75(3):351–362PubMedCrossRefGoogle Scholar
  91. Rey NL, Steiner JA, Maroof N, Luk KC, Madaj Z, Trojanowski JQ, Lee VM, Brundin P (2016) Widespread transneuronal propagation of α-synucleinopathy triggered in olfactory bulb mimics prodromal Parkinson’s disease. J Exp Med 213(9):1759–1778PubMedPubMedCentralCrossRefGoogle Scholar
  92. Ross OA, Braithwaite AT, Skipper LM, Kachergus J, Hulihan MM, Middleton FA, Nishioka K, Fuchs J, Gasser T, Maraganore DM, Adler CH, Larvor L, Chartier-Harlin MC, Nilsson C, Langston JW, Gwinn K, Hattori N, Farrer MJ (2008) Genomic investigation of alpha-synuclein multiplication and parkinsonism. Ann Neurol 63(6):743–750PubMedCrossRefGoogle Scholar
  93. Sacino AN, Brooks M, Thomas MA, McKinney AB, Lee S, Regenhardt RW, McGarvey NH, Ayers JI, Notterpek L, Borchelt DR, Golde TE, Giasson BI (2014) Intramuscular injection of α-synuclein induces CNS α-synuclein pathology and a rapid-onset motor phenotype in transgenic mice. Proc Natl Acad Sci USA 111(29):10732–10737PubMedPubMedCentralCrossRefGoogle Scholar
  94. Shannon KM, Keshavarzian A, Mutlu E, Dodiya HB, Daian D, Jaglin JA, Kordower JH (2012a) Alpha-synuclein in colonic submucosa in early untreated Parkinson’s disease. Mov Disord 27(6):709–715PubMedCrossRefGoogle Scholar
  95. Shannon KM, Keshavarzian A, Dodiya HB, Jakate S, Kordower JH (2012b) Is alpha-synuclein in the colon a biomarker for premotor Parkinson’s disease? Evidence from 3 cases. Mov Disord 27(6):716–719PubMedCrossRefGoogle Scholar
  96. Shimozawa A, Ono M, Takahara D, Tarutani A, Imura S, Masuda-Suzukake M, Higuchi M, Yanai K, Hisanaga SI, Hasegawa M (2017) Propagation of pathological α-synuclein in marmoset brain. Acta Neuropathol Commun. 5(1):12PubMedPubMedCentralCrossRefGoogle Scholar
  97. Singleton A, Gwinn-Hardy K (2004) Parkinson’s disease and dementia with Lewy bodies: a difference in dose? Lancet 364(9440):1105–1107PubMedCrossRefGoogle Scholar
  98. Singleton AB, Farrer M, Johnson J, Singleton A, Hague S, Kachergus J, Hulihan M, Peuralinna T, Dutra A, Nussbaum R, Lincoln S, Crawley A, Hanson M, Maraganore D, Adler C, Cookson MR, Muenter M, Baptista M, Miller D, Blancato J, Hardy J, Gwinn-Hardy K (2003) Alpha-Synuclein locus triplication causes Parkinson’s disease. Science 302(5646):841PubMedCrossRefGoogle Scholar
  99. Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M (1997) Alpha-synuclein in Lewy bodies. Nature 388(6645):839–840PubMedCrossRefGoogle Scholar
  100. Uéda K, Fukushima H, Masliah E, Xia Y, Iwai A, Yoshimoto M, Otero DA, Kondo J, Ihara Y, Saitoh T (1993) Molecular cloning of cDNA encoding an unrecognized component of amyloid in Alzheimer disease. Proc Natl Acad Sci USA 90:11282–11286PubMedPubMedCentralCrossRefGoogle Scholar
  101. Ulmer TS, Bax A, Cole NB, Nussbaum RL (2005) Structure and dynamics of micelle-bound human α-synuclein. J Biol Chem 280:9595–9603PubMedCrossRefGoogle Scholar
  102. van der Putten H, Wiederhold KH, Probst A, Barbieri S, Mistl C, Danner S, Kauffmann S, Hofele K, Spooren WP, Ruegg MA, Lin S, Caroni P, Sommer B, Tolnay M, Bilbe G (2000) Neuropathology in mice expressing human alpha-synuclein. J Neurosci 20:6021–6029PubMedGoogle Scholar
  103. Vermilyea SC, Emborg ME (2015) α-Synuclein and nonhuman primate models of Parkinson's disease. J Neurosci Methods 255:38–51PubMedPubMedCentralCrossRefGoogle Scholar
  104. Withers GS, George JM, Banker GA, Clayton DF (1997) Delayed localization of synelfin (synuclein, NACP) to presynaptic terminals in cultured rat hippocampal neurons. Brain Res Dev Brain Res 99:87–94PubMedCrossRefGoogle Scholar
  105. Yang W, Wang G, Wang CE, Guo X, Yin P, Gao J, Tu Z, Wang Z, Wu J, Hu X, Li S, Li XJ (2015) Mutant alpha-synuclein causes age-dependent neuropathology in monkey brain. J Neurosci 35(21):8345–8358. doi: 10.1523/JNEUROSCI.0772-15.2015 PubMedPubMedCentralCrossRefGoogle Scholar
  106. Zarranz JJ, Alegre J, Gómez-Esteban JC, Lezcano E, Ros R, Ampuero I, Vidal L, Hoenicka J, Rodriguez O, Atarés B, Llorens V, Gomez Tortosa E, del Ser T, Muñoz DG, de Yebenes JG (2004) The new mutation, E46 K, of α-synuclein causes Parkinson and Lewy body dementia. Ann Neurol 55:164–173PubMedCrossRefGoogle Scholar
  107. Zhang L, Zhang C, Zhu Y, Cai Q, Chan P, Uéda K, Yu S, Yang H (2008) Semi-quantitative analysis of α-synuclein in subcellular pools of rat brain neurons: an immunogold electron microscopic study using a C-terminal specific monoclonal antibody. Brain Res 1244:40–52PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2017

Authors and Affiliations

  1. 1.Department of Neurological SciencesRush University Medical CenterChicagoUSA
  2. 2.The Van Andel Research InstituteGrand RapidsUSA

Personalised recommendations