Skip to main content

Advertisement

Log in

The use of nonhuman primate models to understand processes in Parkinson’s disease

  • Translational Neurosciences - Review Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Research with animal models has led to critical health advances that have saved or improved the lives of millions of human beings. Specifically, nonhuman primate’s genetic and anatomo-physiological similarities to humans are especially important for understanding processes like Parkinson’s disease, which only occur in humans. Unambiguously, the unique contribution made by nonhuman primate research to our understanding of Parkinson’s disease is widely recognized. For example, monkeys with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) parkinsonisms are responsive to dopamine replacement therapies, mimicking what is seen in PD patients. Moreover, groundbreaking neuroanatomical and electrophysiological studies using this monkey model in the 1980s and 1990s enabled researchers to identify the neuronal circuits responsible for the cardinal motor features of PD. This led to the development of subthalamic surgical ablation and deep brain stimulation, the current therapeutic gold standard for neurosurgical treatment. More recently, the mechanisms of α-synuclein spreading testing the prion hypothesis for PD have yielded exciting results. In this review, we discuss and highlight how the findings from nonhuman primate research contribute to our understanding of idiopathic Parkinson’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aarsland D, Kramberger MG (2015) Neuropsychiatric symptoms in Parkinson’s disease. J Parkinsons Dis 5:659–667. doi:10.3233/JPD-150604

    Article  PubMed  Google Scholar 

  • Adachi K, Kobayashi M, Kawasaki T et al (2012) Disruption of programmed masticatory movements in unilateral MPTP-treated monkeys as a model of jaw movement abnormality in Parkinson’s disease. J Neural Transm 119:933–941. doi:10.1007/s00702-012-0768-0

    Article  CAS  PubMed  Google Scholar 

  • Ai Y, Markesbery W, Zhang Z et al (2003) Intraputamenal infusion of GDNF in aged rhesus monkeys: distribution and dopaminergic effects. J Comp Neurol 461:250–261. doi:10.1002/cne.10689

    Article  CAS  PubMed  Google Scholar 

  • Akai T, Ozawa M, Yamaguchi M et al (1995) Behavioral involvement of central dopamine D1 and D2 receptors in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned parkinsonian cynomolgus monkeys. Jpn J Pharmacol 67:117–124

    Article  CAS  PubMed  Google Scholar 

  • Albin RL, Young AB, Penney JB (1989) The functional anatomy of basal ganglia disorders. Trends Neurosci 12:366–375

    Article  CAS  PubMed  Google Scholar 

  • Almirall H, Pigarev I, de la Calzada MD et al (1999) Nocturnal sleep structure and temperature slope in MPTP treated monkeys. J Neural Transm 106:1125–1134. doi:10.1007/s007020050228

    Article  CAS  PubMed  Google Scholar 

  • Aziz TZ, Peggs D, Sambrook MA, Crossman AR (1991) Lesion of the subthalamic nucleus for the alleviation of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced parkinsonism in the primate. Mov Disord 6:288–292

    Article  CAS  PubMed  Google Scholar 

  • Balestrino R, Martinez-Martin P (2017) Neuropsychiatric symptoms, behavioural disorders, and quality of life in Parkinson’s disease. J Neurol Sci 373:173–178. doi:10.1016/j.jns.2016.12.060

    Article  PubMed  Google Scholar 

  • Ballanger B, Beaudoin-Gobert M, Neumane S et al (2016) Imaging dopamine and serotonin systems on MPTP monkeys: a longitudinal PET investigation of compensatory mechanisms. J Neurosci 36:1577–1589. doi:10.1523/JNEUROSCI.2010-15.2016

    Article  CAS  PubMed  Google Scholar 

  • Ballard PA, Tetrud JW, Langston JW (1985) Permanent human parkinsonism due to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP): seven cases. Neurology 35:949–956

    Article  CAS  PubMed  Google Scholar 

  • Bankiewicz KS, Eberling JL, Kohutnicka M et al (2000) Convection-enhanced delivery of AAV vector in parkinsonian monkeys; in vivo detection of gene expression and restoration of dopaminergic function using pro-drug approach. Exp Neurol 164:2–14. doi:10.1006/exnr.2000.7408

    Article  CAS  PubMed  Google Scholar 

  • Bankiewicz KS, Forsayeth J, Eberling JL et al (2006) Long-term clinical improvement in MPTP-lesioned primates after gene therapy with AAV-hAADC. Mol Ther 14:564–570. doi:10.1016/j.ymthe.2006.05.005

    Article  CAS  PubMed  Google Scholar 

  • Bannon D, Landau AM, Doudet DJ (2015) How relevant are imaging findings in animal models of movement disorders to human disease? Curr Neurol Neurosci Rep 15:53. doi:10.1007/s11910-015-0571-z

    Article  PubMed  CAS  Google Scholar 

  • Barraud Q, Lambrecq V, Forni C et al (2009) Sleep disorders in Parkinson’s disease: the contribution of the MPTP non-human primate model. Exp Neurol 219:574–582. doi:10.1016/j.expneurol.2009.07.019

    Article  CAS  PubMed  Google Scholar 

  • Belaid H, Adrien J, Laffrat E et al (2014) Sleep disorders in Parkinsonian macaques: effects of l-Dopa treatment and pedunculopontine nucleus lesion. J Neurosci 34:9124–9133. doi:10.1523/JNEUROSCI.0181-14.2014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Benazzouz A, Gross C, Féger J et al (1993) Reversal of rigidity and improvement in motor performance by subthalamic high-frequency stimulation in MPTP-treated monkeys. Eur J Neurosci 5:382–389

    Article  CAS  PubMed  Google Scholar 

  • Berger B, Gaspar P, Verney C (1991) Dopaminergic innervation of the cerebral cortex: unexpected differences between rodents and primates. Trends Neurosci 14:21–27

    Article  CAS  PubMed  Google Scholar 

  • Bergman H, Wichmann T, DeLong MR (1990) Reversal of experimental parkinsonism by lesions of the subthalamic nucleus. Science (80) 249:1436–1438

  • Bergman H, Wichmann T, Karmon B, DeLong MR (1994) The primate subthalamic nucleus. II. Neuronal activity in the MPTP model of parkinsonism. J Neurophysiol 72:507–520

    Article  CAS  PubMed  Google Scholar 

  • Bezard E, Tronci E, Pioli EY et al (2013) Study of the antidyskinetic effect of eltoprazine in animal models of levodopa-induced dyskinesia. Mov Disord 28:1088–1096. doi:10.1002/mds.25366

    Article  CAS  PubMed  Google Scholar 

  • Bezard E, Pioli EY, Li Q et al (2014) The mGluR5 negative allosteric modulator dipraglurant reduces dyskinesia in the MPTP macaque model. Mov Disord 29:1074–1079. doi:10.1002/mds.25920

    Article  CAS  PubMed  Google Scholar 

  • Blanchet PJ, Konitsiotis S, Chase TN (1998) Amantadine reduces levodopa-induced dyskinesias in parkinsonian monkeys. Mov Disord 13:798–802. doi:10.1002/mds.870130507

    Article  CAS  PubMed  Google Scholar 

  • Blesa J, Przedborski S (2014) Parkinson’s disease: animal models and dopaminergic cell vulnerability. Front Neuroanat 8:155. doi:10.3389/fnana.2014.00155

    Article  PubMed  PubMed Central  Google Scholar 

  • Blesa J, Juri C, Collantes M et al (2010) Progression of dopaminergic depletion in a model of MPTP-induced Parkinsonism in non-human primates. An (18)F-DOPA and (11)C-DTBZ PET study. Neurobiol Dis 38:456–463. doi:10.1016/j.nbd.2010.03.006

    Article  CAS  PubMed  Google Scholar 

  • Blesa J, Pifl C, Sánchez-González MA et al (2012) The nigrostriatal system in the presymptomatic and symptomatic stages in the MPTP monkey model: a PET, histological and biochemical study. Neurobiol Dis 48:79–91. doi:10.1016/j.nbd.2012.05.018

    Article  CAS  PubMed  Google Scholar 

  • Boyce S, Rupniak NM, Steventon MJ, Iversen SD (1990) Nigrostriatal damage is required for induction of dyskinesias by l-DOPA in squirrel monkeys. Clin Neuropharmacol 13:448–458

    Article  CAS  PubMed  Google Scholar 

  • Braak H, Del Tredici K, Rüb U et al (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24:197–211

    Article  PubMed  Google Scholar 

  • Brichta L, Greengard P, Flajolet M (2013) Advances in the pharmacological treatment of Parkinson’s disease: targeting neurotransmitter systems. Trends Neurosci 36:543–554. doi:10.1016/j.tins.2013.06.003

    Article  CAS  PubMed  Google Scholar 

  • Brooks WJ, Jarvis MF, Wagner GC (1989) Astrocytes as a primary locus for the conversion MPTP into MPP+. J Neural Transm 76:1–12. doi:10.1007/BF01244987

    Article  CAS  PubMed  Google Scholar 

  • Burns RS, Chiueh CC, Markey SP et al (1983) A primate model of parkinsonism: selective destruction of dopaminergic neurons in the pars compacta of the substantia nigra by N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Proc Natl Acad Sci USA 80:4546–4550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Canron M-H, Perret M, Vital A et al (2012) Age-dependent α-synuclein aggregation in the Microcebus murinus lemur primate. Sci Rep 2:910. doi:10.1038/srep00910

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Carpenter MB, Whittier JR, Mettler FA (1950) Analysis of choreoid hyperkinesia in the Rhesus monkey; surgical and pharmacological analysis of hyperkinesia resulting from lesions in the subthalamic nucleus of Luys. J Comp Neurol 92:293–331

    Article  CAS  PubMed  Google Scholar 

  • Chaumette T, Lebouvier T, Aubert P et al (2009) Neurochemical plasticity in the enteric nervous system of a primate animal model of experimental Parkinsonism. Neurogastroenterol Motil 21:215–222

    Article  CAS  PubMed  Google Scholar 

  • Chen JJ (2010) Parkinson’s disease: health-related quality of life, economic cost, and implications of early treatment. Am J Manag Care 16:S87–S93

  • Chen M, Liu J, Lu Y et al (2016) Age-dependent alpha-synuclein accumulation is correlated with elevation of mitochondrial TRPC3 in the brains of monkeys and mice. J Neural Transm. doi:10.1007/s00702-016-1654-y

    Google Scholar 

  • Chu Y, Kordower JH (2007) Age-associated increases of α-synuclein in monkeys and humans are associated with nigrostriatal dopamine depletion: is this the target for Parkinson’s disease? Neurobiol Dis 25:134–149. doi:10.1016/j.nbd.2006.08.021

    Article  CAS  PubMed  Google Scholar 

  • Collier TJ, Lipton J, Daley BF et al (2007) Aging-related changes in the nigrostriatal dopamine system and the response to MPTP in nonhuman primates: diminished compensatory mechanisms as a prelude to parkinsonism. Neurobiol Dis 26:56–65. doi:10.1016/j.nbd.2006.11.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coune PG, Schneider BL, Aebischer P (2012) Parkinson’s disease: gene therapies. Cold Spring Harb Perspect Med 2:a009431–a009432. doi:10.1101/cshperspect.a009431

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Crossman AR, Mitchell IJ, Sambrook MA (1985) Regional brain uptake of 2-deoxyglucose in N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced parkinsonism in the macaque monkey. Neuropharmacology 24:587–591

    Article  CAS  PubMed  Google Scholar 

  • de Celis Alonso B, Hidalgo-Tobón SS, Menéndez-González M et al (2015) Magnetic resonance techniques applied to the diagnosis and treatment of Parkinson’s disease. Front Neurol 6:146. doi:10.3389/fneur.2015.00146

    Google Scholar 

  • DeLong MR (1990) Primate models of movement disorders of basal ganglia origin. Trends Neurosci 13:281–285

    Article  CAS  PubMed  Google Scholar 

  • DeLong MR, Crutcher MD, Georgopoulos AP (1985) Primate globus pallidus and subthalamic nucleus: functional organization. J Neurophysiol 53:530–543

    Article  CAS  PubMed  Google Scholar 

  • Deuschl G, Schade-Brittinger C, Krack P et al (2006) A randomized trial of deep-brain stimulation for Parkinson’s disease. N Engl J Med 355:896–908. doi:10.1056/NEJMoa060281

    Article  CAS  PubMed  Google Scholar 

  • Di Paolo T, Grégoire L, Feuerbach D et al (2014) AQW051, a novel and selective nicotinic acetylcholine receptor α7 partial agonist, reduces l-Dopa-induced dyskinesias and extends the duration of l-Dopa effects in parkinsonian monkeys. Parkinsonism Relat Disord 20:1119–1123. doi:10.1016/j.parkreldis.2014.05.007

    Article  PubMed  Google Scholar 

  • Didier ES, MacLean AG, Mohan M et al (2016) Contributions of nonhuman primates to research on aging. Vet Pathol 53:277–290. doi:10.1177/0300985815622974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Downs ME, Buch A, Karakatsani ME et al (2015) Blood–brain barrier opening in behaving non-human primates via focused ultrasound with systemically administered microbubbles. Sci Rep 5:15076. doi:10.1038/srep15076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du G, Lewis MM, Styner M et al (2011) Combined R2* and diffusion tensor imaging changes in the substantia nigra in Parkinson’s disease. Mov Disord 26:1627–1632. doi:10.1002/mds.23643

    Article  PubMed  PubMed Central  Google Scholar 

  • Everett GM, Blockus LE, Shepperd IM (1956) Tremor induced by tremorine and its antagonism by anti-Parkinson drugs. Science 124:79

    Article  CAS  PubMed  Google Scholar 

  • Falkenburger BH, Saridaki T, Dinter E (2016) Cellular models for Parkinson’s disease. J Neurochem 139:121–130. doi:10.1111/jnc.13618

    Article  CAS  PubMed  Google Scholar 

  • Feigin A, Kaplitt MG, Tang C et al (2007) Modulation of metabolic brain networks after subthalamic gene therapy for Parkinson’s disease. Proc Natl Acad Sci 104:19559–19564. doi:10.1073/pnas.0706006104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fox SH, Brotchie JM (2010) The MPTP-lesioned non-human primate models of Parkinson’s disease. Past, present, and future. Prog Brain Res 184:133–157. doi:10.1016/S0079-6123(10)84007-5

    Article  CAS  PubMed  Google Scholar 

  • Fox SH, Visanji NP, Johnston TH et al (2006) Dopamine receptor agonists and levodopa and inducing psychosis-like behavior in the MPTP primate model of Parkinson disease. Arch Neurol 63:1343–1344. doi:10.1001/archneur.63.9.1343

    Article  PubMed  Google Scholar 

  • Fox SH, Visanji N, Reyes G et al (2010) Neuropsychiatric behaviors in the MPTP marmoset model of Parkinson’s disease. Can J Neurol Sci 37:86–95

    Article  PubMed  Google Scholar 

  • George S, Brundin P (2017) Solving the conundrum of insoluble protein aggregates. Lancet Neurol 16(4):258–259. doi:10.1016/S1474-4422(17)30045-5

  • Gill SS, Patel NK, Hotton GR et al (2003) Direct brain infusion of glial cell line-derived neurotrophic factor in Parkinson disease. Nat Med 9:589–595. doi:10.1038/nm850

    Article  CAS  PubMed  Google Scholar 

  • Goedert M, Masuda-Suzukake M, Falcon B (2016) Like prions: the propagation of aggregated tau and α-synuclein in neurodegeneration. Brain. doi:10.1093/brain/aww230

    PubMed  Google Scholar 

  • Grégoire L, Morin N, Ouattara B et al (2011) The acute antiparkinsonian and antidyskinetic effect of AFQ056, a novel metabotropic glutamate receptor type 5 antagonist, in l-Dopa-treated parkinsonian monkeys. Parkinsonism Relat Disord 17:270–276. doi:10.1016/j.parkreldis.2011.01.008

    Article  PubMed  Google Scholar 

  • Grondin R, Zhang Z, Yi A et al (2002) Chronic, controlled GDNF infusion promotes structural and functional recovery in advanced parkinsonian monkeys. Brain 125:2191–2201

    Article  PubMed  Google Scholar 

  • Grondin R, Cass WA, Zhang Z et al (2003) Glial cell line-derived neurotrophic factor increases stimulus-evoked dopamine release and motor speed in aged rhesus monkeys. J Neurosci 23:1974–1980

    CAS  PubMed  Google Scholar 

  • Gubellini P, Kachidian P (2015) Animal models of Parkinson’s disease: an updated overview. Rev Neurol (Paris) 171:750–761. doi:10.1016/j.neurol.2015.07.011

    Article  CAS  Google Scholar 

  • Guridi J, Rodriguez-Oroz MC, Lozano AM, Moro E, Albanese A, Nuttin B, Gybels J, Ramos E, Obeso JA (2000) Targeting the basal ganglia for deep brain stimulation in Parkinson's disease. Neurology 55(6):S21–S28

  • Guridi J, Marigil M, Becerra V, Parras O (2016) Neuroprotective subthalamotomy in Parkinson’s disease. The role of magnetic resonance-guided focused ultrasound in early surgery. Neurocirugia (Astur) 27:285–290. doi:10.1016/j.neucir.2016.02.006

    Article  Google Scholar 

  • Hacia JG, Makalowski W, Edgemon K et al (1998) Evolutionary sequence comparisons using high-density oligonucleotide arrays. Nat Genet 18:155–158. doi:10.1038/ng0298-155

    Article  CAS  PubMed  Google Scholar 

  • Hikishima K, Ando K, Komaki Y et al (2015a) Voxel-based morphometry of the marmoset brain: in vivo detection of volume loss in the substantia nigra of the MPTP-treated Parkinson’s disease model. Neuroscience 300:585–592. doi:10.1016/j.neuroscience.2015.05.041

    Article  CAS  PubMed  Google Scholar 

  • Hikishima K, Ando K, Yano R et al (2015b) Parkinson disease: diffusion MR imaging to detect nigrostriatal pathway loss in a marmoset model treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Radiology 275:430–437. doi:10.1148/radiol.14140601

    Article  PubMed  Google Scholar 

  • Hill MP, Ravenscroft P, Bezard E et al (2004) Levetiracetam potentiates the antidyskinetic action of amantadine in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned primate model of Parkinson’s disease. J Pharmacol Exp Ther 310:386–394. doi:10.1124/jpet.104.066191

    Article  CAS  PubMed  Google Scholar 

  • Huot P, Johnston TH, Fox SH et al (2015) The highly-selective 5-HT1A agonist F15599 reduces l-DOPA-induced dyskinesia without compromising anti-parkinsonian benefits in the MPTP-lesioned macaque. Neuropharmacology 97:306–311. doi:10.1016/j.neuropharm.2015.05.033

    Article  CAS  PubMed  Google Scholar 

  • Hyacinthe C, Barraud Q, Tison F et al (2014) D1 receptor agonist improves sleep-wake parameters in experimental parkinsonism. Neurobiol Dis 63:20–24. doi:10.1016/j.nbd.2013.10.029

    Article  CAS  PubMed  Google Scholar 

  • Iranzo A (2016) Sleep in neurodegenerative diseases. Sleep Med Clin 11:1–18. doi:10.1016/j.jsmc.2015.10.011

    Article  PubMed  Google Scholar 

  • Jackson MJ, Swart T, Pearce RKB, Jenner P (2014) Cholinergic manipulation of motor disability and l-DOPA-induced dyskinesia in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated common marmosets. J Neural Transm 121:163–169. doi:10.1007/s00702-013-1082-1

    Article  CAS  PubMed  Google Scholar 

  • Jarraya B, Boulet S, Scott Ralph G et al (2009) Dopamine gene therapy for Parkinson’s disease in a nonhuman primate without associated dyskinesia. Sci Transl Med 1:2ra4–2ra4. doi:10.1126/scitranslmed.3000130

  • Javitch JA, D’Amato RJ, Strittmatter SM, Snyder SH (1985) Parkinsonism-inducing neurotoxin, N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine: uptake of the metabolite N-methyl-4-phenylpyridine by dopamine neurons explains selective toxicity. Proc Natl Acad Sci USA 82:2173–2177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jellinger KA (2015) Neuropathobiology of non-motor symptoms in Parkinson disease. J Neural Transm 122:1429–1440. doi:10.1007/s00702-015-1405-5

    Article  CAS  PubMed  Google Scholar 

  • Jenner P, Rupniak NM, Rose S et al (1984) 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonism in the common marmoset. Neurosci Lett 50:85–90

    Article  CAS  PubMed  Google Scholar 

  • Joel D, Weiner I (2000) The connections of the dopaminergic system with the striatum in rats and primates: an analysis with respect to the functional and compartmental organization of the striatum. Neuroscience 96:451–474

    Article  CAS  PubMed  Google Scholar 

  • Johnston TM, Fox SH (2014) Symptomatic models of Parkinson’s disease and l-DOPA-induced dyskinesia in non-human primates. In: Current topics in behavioral neurosciences, pp 221–235

  • Johnston LC, Eberling J, Pivirotto P et al (2009) Clinically relevant effects of convection-enhanced delivery of AAV2-GDNF on the dopaminergic nigrostriatal pathway in aged rhesus monkeys. Hum Gene Ther 20:497–510. doi:10.1089/hum.2008.137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnston TH, Huot P, Fox SH et al (2013) TC-8831, a nicotinic acetylcholine receptor agonist, reduces l-DOPA-induced dyskinesia in the MPTP macaque. Neuropharmacology 73:337–347. doi:10.1016/j.neuropharm.2013.06.005

    Article  CAS  PubMed  Google Scholar 

  • Kalia LV, Lang AE (2015) Parkinson’s disease. Lancet 386:896–912. doi:10.1016/S0140-6736(14)61393-3

    Article  CAS  PubMed  Google Scholar 

  • Kaplitt MG, Feigin A, Tang C et al (2007) Safety and tolerability of gene therapy with an adeno-associated virus (AAV) borne GAD gene for Parkinson’s disease: an open label, phase I trial. Lancet 369:2097–2105. doi:10.1016/S0140-6736(07)60982-9

    Article  CAS  PubMed  Google Scholar 

  • Karachi C, Francois C (2017) Role of the pedunculopontine nucleus in controlling gait and sleep in normal and parkinsonian monkeys. J Neural Transm. doi:10.1007/s00702-017-1678-y

    PubMed  Google Scholar 

  • Kimura K, Inoue K, Kuroiwa Y et al (2016) Propagated but topologically distributed forebrain neurons expressing alpha-synuclein in aged macaques. PLoS One 11:e0166861. doi:10.1371/journal.pone.0166861

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kirik D, Annett LE, Burger C et al (2003) Nigrostriatal alpha-synucleinopathy induced by viral vector-mediated overexpression of human alpha-synuclein: a new primate model of Parkinson’s disease. Proc Natl Acad Sci USA 100:2884–2889. doi:10.1073/pnas.0536383100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ko WKD, Pioli E, Li Q et al (2014) Combined fenobam and amantadine treatment promotes robust antidyskinetic effects in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned primate model of Parkinson’s disease. Mov Disord 29:772–779. doi:10.1002/mds.25859

    Article  CAS  PubMed  Google Scholar 

  • Kobylecki C, Hill MP, Crossman AR, Ravenscroft P (2011) Synergistic antidyskinetic effects of topiramate and amantadine in animal models of Parkinson’s disease. Mov Disord 26:2354–2363. doi:10.1002/mds.23867

    Article  PubMed  Google Scholar 

  • Koprich JB, Fox SH, Johnston TH et al (2011) The selective mu-opioid receptor antagonist ADL5510 reduces levodopa-induced dyskinesia without affecting antiparkinsonian action in MPTP-lesioned macaque model of Parkinson’s disease. Mov Disord 26:1225–1233. doi:10.1002/mds.23631

    Article  PubMed  Google Scholar 

  • Koprich JB, Johnston TH, Reyes G et al (2016) Towards a non-human primate model of alpha-synucleinopathy for development of therapeutics for Parkinson’s disease: optimization of AAV1/2 delivery parameters to drive sustained expression of alpha synuclein and dopaminergic degeneration in macaque. PLoS One 11:e0167235. doi:10.1371/journal.pone.0167235

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kordower JH, Palfi S, Chen EY et al (1999) Clinicopathological findings following intraventricular glial-derived neurotrophic factor treatment in a patient with Parkinson’s disease. Ann Neurol 46:419–424

    Article  CAS  PubMed  Google Scholar 

  • Kordower JH, Emborg ME, Bloch J et al (2000) Neurodegeneration prevented by lentiviral vector delivery of GDNF in primate models of Parkinson’s disease. Science 290:767–773

    Article  CAS  PubMed  Google Scholar 

  • Kordower JH, Herzog CD, Dass B et al (2006) Delivery of neurturin by AAV2 (CERE-120)-mediated gene transfer provides structural and functional neuroprotection and neurorestoration in MPTP-treated monkeys. Ann Neurol 60:706–715. doi:10.1002/ana.21032

    Article  CAS  PubMed  Google Scholar 

  • Krack P, Martinez-Fernandez R, del Alamo M, Obeso JA (2017) Current applications and limitations of surgical treatments for movement disorders. Mov Disord 32:36–52. doi:10.1002/mds.26890

    Article  PubMed  Google Scholar 

  • Kupsch A, Sautter J, Götz ME et al (2001) Monoamine oxidase-inhibition and MPTP-induced neurotoxicity in the non-human primate: comparison of rasagiline (TVP 1012) with selegiline. J Neural Transm 108:985–1009. doi:10.1007/s007020170018

    Article  CAS  PubMed  Google Scholar 

  • Laitinen LV, Bergenheim AT, Hariz MI (1992) Ventroposterolateral pallidotomy can abolish all parkinsonian symptoms. Stereotact Funct Neurosurg 58:14–21

    Article  CAS  PubMed  Google Scholar 

  • Langston JW, Forno LS, Rebert CS, Irwin I (1984) Selective nigral toxicity after systemic administration of 1-methyl-4-phenyl-1,2,5,6-tetrahydropyrine (MPTP) in the squirrel monkey. Brain Res 292:390–394

    Article  CAS  PubMed  Google Scholar 

  • Lee JM, Derkinderen P, Kordower JH et al (2017) The search for a peripheral biopsy indicator of α-synuclein pathology for Parkinson disease. J Neuropathol Exp Neurol nlw103. doi:10.1093/jnen/nlw103

  • Lees AJ, Hardy J, Revesz T (2009) Parkinson’s disease. Lancet 373:2055–2066. doi:10.1016/S0140-6736(09)60492-X

    Article  CAS  PubMed  Google Scholar 

  • Leinenga G, Gotz J (2015) Scanning ultrasound removes amyloid- and restores memory in an Alzheimer’s disease mouse model. Sci Transl Med 7:278ra33–278ra33. doi:10.1126/scitranslmed.aaa2512

  • Leinenga G, Langton C, Nisbet R, Götz J (2016) Ultrasound treatment of neurological diseases—current and emerging applications. Nat Rev Neurol 12:161–174. doi:10.1038/nrneurol.2016.13

    Article  PubMed  Google Scholar 

  • Lenka A, Hegde S, Arumugham SS, Pal PK (2016a) Pattern of cognitive impairment in patients with Parkinson’s disease and psychosis: a critical review. Parkinsonism Relat Disord. doi:10.1016/j.parkreldis.2016.12.025

    Google Scholar 

  • Lenka A, Hegde S, Jhunjhunwala KR, Pal PK (2016b) Interactions of visual hallucinations, rapid eye movement sleep behavior disorder and cognitive impairment in Parkinson’s disease: a review. Parkinsonism Relat Disord 22:1–8. doi:10.1016/j.parkreldis.2015.11.018

    Article  PubMed  Google Scholar 

  • LeWitt PA, Fahn S (2016) Levodopa therapy for Parkinson disease: table. Neurology 86:S3–S12. doi:10.1212/WNL.0000000000002509

    Article  CAS  PubMed  Google Scholar 

  • LeWitt PA, Rezai AR, Leehey MA et al (2011) AAV2-GAD gene therapy for advanced Parkinson’s disease: a double-blind, sham-surgery controlled, randomised trial. Lancet Neurol 10:309–319. doi:10.1016/S1474-4422(11)70039-4

    Article  CAS  PubMed  Google Scholar 

  • Limousin P, Pollak P, Benazzouz A et al (1995) Effect of parkinsonian signs and symptoms of bilateral subthalamic nucleus stimulation. Lancet (London, England) 345:91–95

  • Limousin P, Pollak P, Benazzouz A et al (1995b) Bilateral subthalamic nucleus stimulation for severe Parkinson’s disease. Mov Disord 10:672–674. doi:10.1002/mds.870100523

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Peng S, Spetsieris PG et al (2012) Abnormal metabolic brain networks in a nonhuman primate model of parkinsonism. J Cereb Blood Flow Metab 32:633–642. doi:10.1038/jcbfm.2011.166

    Article  CAS  PubMed  Google Scholar 

  • Marks WJ Jr, Ostrem JL, Verhagen L et al (2008) Safety and tolerability of intraputaminal delivery of CERE-120 (adeno-associated virus serotype 2-neurturin) to patients with idiopathic Parkinson’s disease: an open-label, phase I trial. Lancet Neurol 7:400–408

    Article  PubMed  Google Scholar 

  • Marks WJ, Bartus RT, Siffert J et al (2010) Gene delivery of AAV2-neurturin for Parkinson’s disease: a double-blind, randomised, controlled trial. Lancet Neurol 9:1164–1172. doi:10.1016/S1474-4422(10)70254-4

    Article  CAS  PubMed  Google Scholar 

  • Martin JP (1927) Hemichorea resulting from a local lesion of the brain (the syndrome of the body of luys). Brain 50:637–649. doi:10.1093/brain/50.3-4.637

    Article  Google Scholar 

  • Martínez-Fernández R, Schmitt E, Martinez-Martin P, Krack P (2016) The hidden sister of motor fluctuations in Parkinson’s disease: a review on nonmotor fluctuations. Mov Disord 31:1080–1094. doi:10.1002/mds.26731

    Article  PubMed  CAS  Google Scholar 

  • McDannold N, Arvanitis CD, Vykhodtseva N, Livingstone MS (2012) Temporary disruption of the blood-brain barrier by use of ultrasound and microbubbles: safety and efficacy evaluation in rhesus macaques. Cancer Res 72:3652–3663. doi:10.1158/0008-5472.CAN-12-0128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller WC, De Long MR (1987) Altered tonic activity of neurons in the globus pallidus and subthalamic nucleus in the primate MPTP model of parkinsonism. In: Carpenter MB, Jayaraman A (eds) The basal ganglia II. Plenum Press, New York, pp 415–427

    Chapter  Google Scholar 

  • Miller GM, Yatin SM, De La Garza R et al (2001) Cloning of dopamine, norepinephrine and serotonin transporters from monkey brain: relevance to cocaine sensitivity. Brain Res Mol Brain Res 87:124–143

    Article  CAS  PubMed  Google Scholar 

  • Mitchell IJ, Clarke CE, Boyce S et al (1989) Neural mechanisms underlying parkinsonian symptoms based upon regional uptake of 2-deoxyglucose in monkeys exposed to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Neuroscience 32:213–226

    Article  CAS  PubMed  Google Scholar 

  • Moehle MS, Webber PJ, Tse T et al (2012) LRRK2 inhibition attenuates microglial inflammatory responses. J Neurosci 32:1602–1611. doi:10.1523/JNEUROSCI.5601-11.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morin N, Morissette M, Grégoire L et al (2015a) Contribution of brain serotonin subtype 1B receptors in levodopa-induced motor complications. Neuropharmacology 99:356–368. doi:10.1016/j.neuropharm.2015.08.002

    Article  CAS  PubMed  Google Scholar 

  • Morin N, Morissette M, Grégoire L, Di Paolo T (2015b) Effect of a chronic treatment with an mGlu5 receptor antagonist on brain serotonin markers in parkinsonian monkeys. Prog Neuro-Psychopharmacol Biol Psychiatry 56:27–38. doi:10.1016/j.pnpbp.2014.07.006

    Article  CAS  Google Scholar 

  • Morin N, Morissette M, Grégoire L, Di Paolo T (2016) mGlu5, dopamine D2 and adenosine A2A receptors in l-DOPA-induced dyskinesias. Curr Neuropharmacol 14:481–493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morissette M, Morin N, Grégoire L et al (2016) Brain α7 nicotinic acetylcholine receptors in MPTP-lesioned monkeys and parkinsonian patients. Biochem Pharmacol 109:62–69. doi:10.1016/j.bcp.2016.03.023

    Article  CAS  PubMed  Google Scholar 

  • Muramatsu S-I, Fujimoto K-I, Ikeguchi K et al (2002) Behavioral recovery in a primate model of Parkinson’s disease by triple transduction of striatal cells with adeno-associated viral vectors expressing dopamine-synthesizing enzymes. Hum Gene Ther 13:345–354. doi:10.1089/10430340252792486

    Article  CAS  PubMed  Google Scholar 

  • Nader MA, Czoty PW (2008) Brain imaging in nonhuman primates: insights into drug addiction. ILAR J 49:89–102

    Article  CAS  PubMed  Google Scholar 

  • Nutt JG, Burchiel KJ, Comella CL et al (2003) Randomized, double-blind trial of glial cell line-derived neurotrophic factor (GDNF) in PD. Neurology 60:69–73

    Article  CAS  PubMed  Google Scholar 

  • Obeso JA, Rodriguez MC, Guridi J et al (2001) Lesion of the basal ganglia and surgery for Parkinson disease. Arch Neurol 58:1165–1166

    Article  CAS  PubMed  Google Scholar 

  • Obeso JA, Rodriguez-Oroz MC, Stamelou M et al (2014) The expanding universe of disorders of the basal ganglia. Lancet 384:523–531. doi:10.1016/S0140-6736(13)62418-6

    Article  PubMed  Google Scholar 

  • Oertel W, Schulz JB (2016) Current and experimental treatments of Parkinson disease: a guide for neuroscientists. J Neurochem. doi:10.1111/jnc.13750

    Google Scholar 

  • Olanow CW (2009) Can we achieve neuroprotection with currently available anti-parkinsonian interventions? Neurology 72:S59–S64. doi:10.1212/WNL.0b013e318199068b

    Article  CAS  PubMed  Google Scholar 

  • Palfi S, Leventhal L, Chu Y et al (2002) Lentivirally delivered glial cell line-derived neurotrophic factor increases the number of striatal dopaminergic neurons in primate models of nigrostriatal degeneration. J Neurosci 22:4942–4954

    CAS  PubMed  Google Scholar 

  • Pan J, Cai H (2017) Opioid system in l-DOPA-induced dyskinesia. Transl Neurodegener 6:1. doi:10.1186/s40035-017-0071-y

    Article  PubMed  PubMed Central  Google Scholar 

  • Parkinson J (1817) An essay on the shaking palsy. J Neuropsychiatry Clin Neurosci 14:223–236

    Article  Google Scholar 

  • Pearce RK, Jackson M, Smith L et al (1995) Chronic l-DOPA administration induces dyskinesias in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated common marmoset (Callithrix jacchus). Mov Disord 10:731–740. doi:10.1002/mds.870100606

    Article  CAS  PubMed  Google Scholar 

  • Péchadre JC, Larochelle L, Poirier LJ (1976) Parkinsonian akinesia, rigidity and tremor in the monkey. Histopathological and neuropharmacological study. J Neurol Sci 28:147–157

    Article  PubMed  Google Scholar 

  • Pessiglione M, Guehl D, Hirsch EC et al (2004) Disruption of self-organized actions in monkeys with progressive MPTP-induced parkinsonism. I. Effects of task complexity. Eur J Neurosci 19:426–436

    Article  PubMed  Google Scholar 

  • Phillips KA, Ross CN, Spross J et al (2017) Behavioral phenotypes associated with MPTP induction of partial lesions in common marmosets (Callithrix jacchus). Behav Brain Res. doi:10.1016/j.bbr.2017.02.010

    Google Scholar 

  • Pignataro D, Sucunza D, Rico AJ et al (2017) Gene therapy approaches in the non-human primate model of Parkinson’s disease. J Neural Transm. doi:10.1007/s00702-017-1681-3

    PubMed  Google Scholar 

  • Pinna A, Ko WKD, Costa G et al (2016) Antidyskinetic effect of A2A and 5HT1A/1B receptor ligands in two animal models of Parkinson’s disease. Mov Disord 31:501–511. doi:10.1002/mds.26475

    Article  CAS  PubMed  Google Scholar 

  • Poirier LJ (1960) Experimental and histological study of midbrain dyskinesias. J Neurophysiol 23:534–551

    Article  CAS  PubMed  Google Scholar 

  • Poirier LJ, Lafleur J, de Lean J et al (1974) Physiopathology of the cerebellum in the monkey. 2. Motor disturbances associated with partial and complete destruction of cerebellar structures. J Neurol Sci 22:491–509

    Article  CAS  PubMed  Google Scholar 

  • Pollak P, Benabid AL, Gross C et al (1993) Effects of the stimulation of the subthalamic nucleus in Parkinson disease. Rev Neurol (Paris) 149:175–176

    CAS  Google Scholar 

  • Pont-Sunyer C, Iranzo A, Gaig C et al (2015) Sleep disorders in parkinsonian and nonparkinsonian LRRK2 mutation carriers. PLoS One 10:e0132368. doi:10.1371/journal.pone.0132368

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Postuma RB, Gagnon J-F, Vendette M, Montplaisir JY (2009) Idiopathic REM sleep behavior disorder in the transition to degenerative disease. Mov Disord 24:2225–2232. doi:10.1002/mds.22757

    Article  PubMed  Google Scholar 

  • Potts LF, Park ES, Woo J-M et al (2015) Dual κ-agonist/μ-antagonist opioid receptor modulation reduces levodopa-induced dyskinesia and corrects dysregulated striatal changes in the nonhuman primate model of Parkinson disease. Ann Neurol 77:930–941. doi:10.1002/ana.24375

    Article  CAS  PubMed  Google Scholar 

  • Prescott MJ (2010) Ethics of primate use. Adv Sci Res 5:11–22. doi:10.5194/asr-5-11-2010

    Article  Google Scholar 

  • Quik M, Perez XA, Bordia T (2012) Nicotine as a potential neuroprotective agent for Parkinson’s disease. Mov Disord 27:947–957. doi:10.1002/mds.25028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Recasens A, Dehay B, Bové J et al (2014a) Lewy body extracts from Parkinson disease brains trigger α-synuclein pathology and neurodegeneration in mice and monkeys. Ann Neurol 75:351–362. doi:10.1002/ana.24066

    Article  CAS  PubMed  Google Scholar 

  • Recasens A, Dehay B, Carballo-Carbajal I et al (2014) Lewy body extracts from Parkinson’s disease brain trigger alfa-synuclein pathology and neurodegeneration in mice and monkeys. Ann Neurol 351–362

  • Riahi G, Morissette M, Parent M, Di Paolo T (2011) Brain 5-HT2A receptors in MPTP monkeys and levodopa-induced dyskinesias. Eur J Neurosci 33:1823–1831. doi:10.1111/j.1460-9568.2011.07675.x

    Article  PubMed  Google Scholar 

  • Rodríguez-Nogales C, Garbayo E, Carmona-Abellán MM et al (2016) Brain aging and Parkinson’s disease: new therapeutic approaches using drug delivery systems. Maturitas 84:25–31. doi:10.1016/j.maturitas.2015.11.009

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Oroz MC, Jahanshahi M, Krack P et al (2009) Initial clinical manifestations of Parkinson’s disease: features and pathophysiological mechanisms. Lancet Neurol 8:1128–1139. doi:10.1016/S1474-4422(09)70293-5

    Article  CAS  PubMed  Google Scholar 

  • Roy M, Cardoso C, Dorieux O et al (2015) Age-associated evolution of plasmatic amyloid in mouse lemur primates: relationship with intracellular amyloid deposition. Neurobiol Aging 36:149–156. doi:10.1016/j.neurobiolaging.2014.07.017

    Article  CAS  PubMed  Google Scholar 

  • Rylander D, Iderberg H, Li Q et al (2010) A mGluR5 antagonist under clinical development improves l-DOPA-induced dyskinesia in parkinsonian rats and monkeys. Neurobiol Dis 39:352–361. doi:10.1016/j.nbd.2010.05.001

    Article  CAS  PubMed  Google Scholar 

  • Schneider JS (1990) Chronic exposure to low doses of MPTP. II. Neurochemical and pathological consequences in cognitively-impaired, motor asymptomatic monkeys. Brain Res 534:25–36

    Article  CAS  PubMed  Google Scholar 

  • Schneider JS, Kovelowski CJ 2nd (1990) Chronic exposure to low doses of MPTP. I. Cognitive deficits in motor asymptomatic monkeys. Brain Res 519:122–128

    Article  CAS  PubMed  Google Scholar 

  • Shimozawa A, Ono M, Takahara D et al (2017) Propagation of pathological α-synuclein in marmoset brain. Acta Neuropathol Commun 5:12. doi:10.1186/s40478-017-0413-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Spillantini MG, Schmidt ML, Lee VM et al (1997) Alpha-synuclein in Lewy bodies. Nature 388:839–840

    Article  CAS  PubMed  Google Scholar 

  • Stoessl AJ, Lehericy S, Strafella AP (2014) Imaging insights into basal ganglia function, Parkinson’s disease, and dystonia. Lancet 384:532–544. doi:10.1016/S0140-6736(14)60041-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strafella AP, Bohnen NI, Perlmutter JS et al (2017) Molecular imaging to track Parkinson’s disease and atypical parkinsonisms: new imaging frontiers. Mov Disord 32:181–192. doi:10.1002/mds.26907

    Article  PubMed  Google Scholar 

  • Surmeier DJ, Obeso JA, Halliday GM (2017) Selective neuronal vulnerability in Parkinson disease. Nat Rev Neurosci 18:101–113. doi:10.1038/nrn.2016.178

  • Tabbal SD, Mink JW, Antenor JAV et al (2006) 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced acute transient dystonia in monkeys associated with low striatal dopamine. Neuroscience 141:1281–1287. doi:10.1016/j.neuroscience.2006.04.072

    Article  CAS  PubMed  Google Scholar 

  • Taylor JR, Elsworth JD, Roth RH et al (1990) Cognitive and motor deficits in the acquisition of an object retrieval/detour task in MPTP-treated monkeys. Brain 617–37

  • Taylor JR, Roth RH, Sladek JR, Redmond DE (1990b) Cognitive and motor deficits in the performance of an object retrieval task with a barrier-detour in monkeys (Cercopithecus aethiops sabaeus) treated with MPTP: long-term performance and effect of transparency of the barrier. Behav Neurosci 104:564–576

    Article  CAS  PubMed  Google Scholar 

  • Tian L, Xia Y, Flores HP et al (2015) Neuroimaging analysis of the dopamine basis for apathetic behaviors in an MPTP-lesioned primate model. PLoS One 10:e0132064. doi:10.1371/journal.pone.0132064

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tysnes O-B, Storstein A (2017) Epidemiology of Parkinson’s disease. J Neural Transm. doi:10.1007/s00702-017-1686-y

    PubMed  Google Scholar 

  • Uchida S, Soshiroda K, Okita E et al (2015) The adenosine A2A receptor antagonist, istradefylline enhances anti-parkinsonian activity induced by combined treatment with low doses of l-DOPA and dopamine agonists in MPTP-treated common marmosets. Eur J Pharmacol 766:25–30. doi:10.1016/j.ejphar.2015.09.028

    Article  CAS  PubMed  Google Scholar 

  • Valdés P, Schneider BL (2016) Gene therapy: a promising approach for neuroprotection in Parkinson’s disease? Front Neuroanat 10:123. doi:10.3389/fnana.2016.00123

    Article  PubMed  PubMed Central  Google Scholar 

  • Vanhauwaert R, Verstreken P (2015) Flies with Parkinson’s disease. Exp Neurol 274:42–51. doi:10.1016/j.expneurol.2015.02.020

    Article  CAS  PubMed  Google Scholar 

  • Verdier J-M, Acquatella I, Lautier C et al (2015) Lessons from the analysis of nonhuman primates for understanding human aging and neurodegenerative diseases. Front Neurosci 9:64. doi:10.3389/fnins.2015.00064

    Article  PubMed  PubMed Central  Google Scholar 

  • Verhave PS, Jongsma MJ, Van den Berg RM et al (2011) REM sleep behavior disorder in the marmoset MPTP model of early Parkinson disease. Sleep 34:1119–1125. doi:10.5665/SLEEP.1174

    Article  PubMed  PubMed Central  Google Scholar 

  • Vezoli J, Fifel K, Leviel V et al (2011) Early presymptomatic and long-term changes of rest activity cycles and cognitive behavior in a MPTP-monkey model of Parkinson’s disease. PLoS One 6:e23952. doi:10.1371/journal.pone.0023952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Visanji NP, Gomez-Ramirez J, Johnston TH et al (2006) Pharmacological characterization of psychosis-like behavior in the MPTP-lesioned nonhuman primate model of Parkinson’s disease. Mov Disord 21:1879–1891. doi:10.1002/mds.21073

    Article  PubMed  Google Scholar 

  • Visanji NP, Brotchie JM, Kalia LV et al (2016) α-Synuclein-based animal models of Parkinson’s disease: challenges and opportunities in a new era. Trends Neurosci 39:750–762. doi:10.1016/j.tins.2016.09.003

    Article  CAS  PubMed  Google Scholar 

  • Vitale A, Manciocco A, Alleva E (2009) The 3R principle and the use of non-human primates in the study of neurodegenerative diseases: the case of Parkinson’s disease. Neurosci Biobehav Rev 33:33–47. doi:10.1016/j.neubiorev.2008.08.006

    Article  PubMed  Google Scholar 

  • Weaver FM, Follett K, Stern M et al (2009) Bilateral deep brain stimulation vs best medical therapy for patients with advanced Parkinson disease: a randomized controlled trial. JAMA 301:63–73. doi:10.1001/jama.2008.929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weed MR, Woolverton WL, Paul IA (1998) Dopamine D1 and D2 receptor selectivities of phenyl-benzazepines in rhesus monkey striata. Eur J Pharmacol 361:129–142

    Article  CAS  PubMed  Google Scholar 

  • Weerts EM, Fantegrossi WE, Goodwin AK (2007) The value of nonhuman primates in drug abuse research. Exp Clin Psychopharmacol 15:309–327. doi:10.1037/1064-1297.15.4.309

    Article  CAS  PubMed  Google Scholar 

  • Weintraub D, Simuni T, Caspell-Garcia C et al (2015) Cognitive performance and neuropsychiatric symptoms in early, untreated Parkinson’s disease. Mov Disord 30:919–927. doi:10.1002/mds.26170

    Article  PubMed  PubMed Central  Google Scholar 

  • Whittier JR (1948) Rhesus hyperkinesia by subthalamic lesion. Fed Proc 7:133

    CAS  PubMed  Google Scholar 

  • Whittier JR, Mettler FA (1947) Subthalamic lesion in the primate. Fed Proc 6:226

    CAS  PubMed  Google Scholar 

  • Wichmann T, Bergman H, DeLong MR (1994) The primate subthalamic nucleus. III. Changes in motor behavior and neuronal activity in the internal pallidum induced by subthalamic inactivation in the MPTP model of parkinsonism. J Neurophysiol 72(2):521–530

  • Yang W, Wang G, Wang C-E et al (2015) Mutant alpha-synuclein causes age-dependent neuropathology in monkey brain. J Neurosci 35:8345–8358. doi:10.1523/JNEUROSCI.0772-15.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhan W, Kang GA, Glass GA et al (2012) Regional alterations of brain microstructure in Parkinson’s disease using diffusion tensor imaging. Mov Disord 27:90–97. doi:10.1002/mds.23917

    Article  PubMed  Google Scholar 

  • Zhang D, Bordia T, McGregor M et al (2014a) ABT-089 and ABT-894 reduce levodopa-induced dyskinesias in a monkey model of Parkinson’s disease. Mov Disord 29:508–517. doi:10.1002/mds.25817

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang D, McGregor M, Decker MW, Quik M (2014b) The 7 nicotinic receptor agonist ABT-107 decreases l-Dopa-induced dyskinesias in parkinsonian monkeys. J Pharmacol Exp Ther 351:25–32. doi:10.1124/jpet.114.216283

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang D, McGregor M, Bordia T et al (2015) α7 nicotinic receptor agonists reduce levodopa-induced dyskinesias with severe nigrostriatal damage. Mov Disord 30:1901–1911. doi:10.1002/mds.26453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José A. Obeso.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blesa, J., Trigo-Damas, I., del Rey, N.LG. et al. The use of nonhuman primate models to understand processes in Parkinson’s disease. J Neural Transm 125, 325–335 (2018). https://doi.org/10.1007/s00702-017-1715-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-017-1715-x

Keywords

Navigation