Journal of Neural Transmission

, Volume 125, Issue 3, pp 501–513 | Cite as

Roles of centromedian parafascicular nuclei of thalamus and cholinergic interneurons in the dorsal striatum in associative learning of environmental events

  • Ko Yamanaka
  • Yukiko Hori
  • Takafumi Minamimoto
  • Hiroshi Yamada
  • Naoyuki Matsumoto
  • Kazuki Enomoto
  • Toshihiko Aosaki
  • Ann M. Graybiel
  • Minoru Kimura
Translational Neurosciences - Review Article


The thalamus provides a massive input to the striatum, but despite accumulating evidence, the functions of this system remain unclear. It is known, however, that the centromedian (CM) and parafascicular (Pf) nuclei of the thalamus can strongly influence particular striatal neuron subtypes, notably including the cholinergic interneurons of the striatum (CINs), key regulators of striatal function. Here, we highlight the thalamostriatal system through the CM–Pf to striatal CINs. We consider how, by virtue of the direct synaptic connections of the CM and PF, their neural activity contributes to the activity of CINs and striatal projection neurons (SPNs). CM–Pf neurons are strongly activated at sudden changes in behavioral context, such as switches in action–outcome contingency or sequence of behavioral requirements, suggesting that their activity may represent change of context operationalized as associability. Striatal CINs, on the other hand, acquire and loose responses to external events associated with particular contexts. In light of this physiological evidence, we propose a hypothesis of the CM–Pf–CINs system, suggesting that it augments associative learning by generating an associability signal and promotes reinforcement learning guided by reward prediction error signals from dopamine-containing neurons. We discuss neuronal circuit and synaptic organizations based on in vivo/in vitro studies that we suppose to underlie our hypothesis. Possible implications of CM–Pf–CINs dysfunction (or degeneration) in brain diseases are also discussed by focusing on Parkinson’s disease.


Thalamostriatal projection CM–Pf Dorsal striatum Cholinergic interneurons Surprise Non-human primates 



We thank M. Haruno and Y. Sakai, Y. Kubota for critical reading and advice on the manuscript, R. Sakane, M. Funami and I. Kawashima for technical assistance. This study was supported by Grant-in-Aid for Scientific Research 23120010, 26290009, and 15K14320 to M.K., and for Young Scientists (B) 20700293 to Y.H., 24700425 to K.Y., by the Development of Biomarker Candidates for Social Behavior carried out under the Strategic Research Program for Brain Sciences from the Ministry of Education, Culture, Sports, Science and Technology of Japan (M.K.), and by National Institutes for Health grant R01 NS025529 to A.M.G.


  1. Akins PT, Surmeier DJ, Kitai ST (1990) M1 muscarinic acetylcholine receptor in cultured rat neostriatum regulates phosphoinositide hydrolysis. J Neurochem 54:266–273PubMedCrossRefGoogle Scholar
  2. Albin RL, Young AB, Penney JB (1989) The functional anatomy of basal ganglia disorders. Trends Neurosci 12:366–375PubMedCrossRefGoogle Scholar
  3. Alexander GE, Crutcher MD, DeLong MR (1990) Basal ganglia-thalamocortical circuits: parallel substrates for motor, oculomotor, “prefrontal” and “limbic” functions. Prog Brain Res 85:119–146PubMedCrossRefGoogle Scholar
  4. Aoki S, Liu AW, Zucca A, Zucca S, Wickens JR (2015) Role of striatal cholinergic interneurons in set-shifting in the rat. J Neurosci 35:9424–9431PubMedCrossRefGoogle Scholar
  5. Aosaki T, Tsubokawa H, Ishida A, Watanabe K, Graybiel AM, Kimura M (1994) Responses of tonically active neurons in the primate’s striatum undergo systematic changes during behavioral sensorimotor conditioning. J Neurosci 14:3969–3984PubMedGoogle Scholar
  6. Aosaki T, Kimura M, Graybiel AM (1995) Temporal and spatial characteristics of tonically active neurons of the primate’s striatum. J Neurophysiol 73:1234–1252PubMedCrossRefGoogle Scholar
  7. Apicella P (2007) Leading tonically active neurons of the striatum from reward detection to context recognition. Trends Neurosci 30:299–306PubMedCrossRefGoogle Scholar
  8. Apicella P, Scarnati E, Schultz W (1991) Tonically discharging neurons of monkey striatum respond to preparatory and rewarding stimuli. Exp Brain Res 84:672–675PubMedCrossRefGoogle Scholar
  9. Apicella P, Ravel S, Deffains M, Legallet E (2011) The role of striatal tonically active neurons in reward prediction error signaling during instrumental task performance. J Neurosci 31:1507–1515PubMedCrossRefGoogle Scholar
  10. Atallah HE, McCool AD, Howe MW, Graybiel AM (2014) Neurons in the ventral striatum exhibit cell-type-specific representations of outcome during learning. Neuron 82:1145–1156PubMedPubMedCentralCrossRefGoogle Scholar
  11. Bayer HM, Glimcher PW (2005) Midbrain dopamine neurons encode a quantitative reward prediction error signal. Neuron 47:129–141PubMedPubMedCentralCrossRefGoogle Scholar
  12. Bennett BD, Wilson CJ (1999) Spontaneous activity of neostriatal cholinergic interneurons in vitro. J Neurosci 19:5586–5596PubMedGoogle Scholar
  13. Bernard V, Normand E, Bloch B (1992) Phenotypical characterization of the rat striatal neurons expressing muscarinic receptor genes. J Neurosci 12:3591–3600PubMedGoogle Scholar
  14. Blazquez PM, Fujii N, Kojima J, Graybiel AM (2002) A network representation of response probability in the striatum. Neuron 33:973–982PubMedCrossRefGoogle Scholar
  15. Bolam JP, Wainer BH, Smith AD (1984) Characterization of cholinergic neurons in the rat neostriatum. A combination of choline acetyltransferase immunocytochemistry, Golgi-impregnation and electron microscopy. Neuroscience 12:711–718PubMedCrossRefGoogle Scholar
  16. Bradfield LA, Bertran-Gonzalez J, Chieng B, Balleine BW (2013) The thalamostriatal pathway and cholinergic control of goal-directed action: interlacing new with existing learning in the striatum. Neuron 79:153–166PubMedCrossRefGoogle Scholar
  17. Brown HD, Baker PM, Ragozzino ME (2010) The parafascicular thalamic nucleus concomitantly influences behavioral flexibility and dorsomedial striatal acetylcholine output in rats. J Neurosci 30:14390–14398PubMedPubMedCentralCrossRefGoogle Scholar
  18. Buelow MT, Amick MM, Queller S, Stout JC, Friedman JH, Grace J (2015) Feasibility of use of probabilistic reversal learning and serial reaction time tasks in clinical trials of Parkinson’s disease. Parkinsonism Relat Disord 21:894–898PubMedCrossRefGoogle Scholar
  19. Butts DA (2003) How much information is associated with a particular stimulus? Netw Comput Neural Syst 14:177–187CrossRefGoogle Scholar
  20. Calabresi P, Centonze D, Pisani A, Sancesario G, North RA, Bernardi G (1998) Muscarinic IPSPs in rat striatal cholinergic interneurones. J Physiol 510(Pt 2):421–427PubMedPubMedCentralCrossRefGoogle Scholar
  21. Calabresi P, Picconi B, Tozzi A, Di Filippo M (2007) Dopamine-mediated regulation of corticostriatal synaptic plasticity. Trends Neurosci 30:211PubMedCrossRefGoogle Scholar
  22. Crittenden JR, Graybiel AM (2011) Basal Ganglia disorders associated with imbalances in the striatal striosome and matrix compartments. Front Neuroanat 5:59PubMedPubMedCentralCrossRefGoogle Scholar
  23. Crittenden JR, Graybiel AM (2016) Disease-associated changes in the striosome and matrix compartments of the dorsal striatum. In: Steiner H, Tseng KY (eds) Handbook of basal ganglia structure and function. Elsevier, Amsterdam, pp 801–821Google Scholar
  24. Crittenden JR, Lacey CJ, Feng-Ju Weng E, Garrison CA, Lin Y, Graybiel AM (2017) Striatal cholinergic interneurons modulate spike-timing in striosomes and matrix by an amphetamine-sensitive mechanism Frontiers in Neuroanatomy (in press)Google Scholar
  25. Ding J, Guzman JN, Tkatch T, Chen S, Goldberg JA, Ebert PJ, Levitt P, Wilson CJ, Hamm HE, Surmeier DJ (2006) RGS4-dependent attenuation of M4 autoreceptor function in striatal cholinergic interneurons following dopamine depletion. Nat Neurosci 9:832–842PubMedCrossRefGoogle Scholar
  26. Ding JB, Guzman JN, Peterson JD, Goldberg JA, Surmeier DJ (2010) Thalamic gating of corticostriatal signaling by cholinergic interneurons. Neuron 67:294–307PubMedPubMedCentralCrossRefGoogle Scholar
  27. Doig NM, Moss J, Bolam JP (2010) Cortical and thalamic innervation of direct and indirect pathway medium-sized spiny neurons in mouse striatum. J Neurosci 30:14610–14618PubMedCrossRefGoogle Scholar
  28. Doig NM, Magill PJ, Apicella P, Bolam JP, Sharott A (2014) Cortical and thalamic excitation mediate the multiphasic responses of striatal cholinergic interneurons to motivationally salient stimuli. J Neurosci 34:3101–3117PubMedPubMedCentralCrossRefGoogle Scholar
  29. Doya K (2000) Reinforcement learning in continuous time and space. Neural Comput 12:219–245PubMedCrossRefGoogle Scholar
  30. Ellender TJ, Harwood J, Kosillo P, Capogna M, Bolam JP (2013) Heterogeneous properties of central lateral and parafascicular thalamic synapses in the striatum. J Physiol 591:257–272PubMedCrossRefGoogle Scholar
  31. Enomoto K, Matsumoto N, Nakai S, Satoh T, Sato TK, Ueda Y, Inokawa H, Haruno M, Kimura M (2011) Dopamine neurons learn to encode the long-term value of multiple future rewards. Proc Natl Acad Sci USA 108:15462–15467PubMedPubMedCentralCrossRefGoogle Scholar
  32. Faust TW, Assous M, Shah F, Tepper JM, Koos T (2015) Novel fast adapting interneurons mediate cholinergic-induced fast GABAA inhibitory postsynaptic currents in striatal spiny neurons. Eur J Neurosci 42:1764–1774PubMedPubMedCentralCrossRefGoogle Scholar
  33. Faust TW, Assous M, Tepper JM, Koos T (2016) Neostriatal GABAergic interneurons mediate cholinergic inhibition of spiny projection neurons. J Neurosci 36:9505–9511PubMedPubMedCentralCrossRefGoogle Scholar
  34. Friedman A, Homma D, Gibb LG, Amemori K, Rubin SJ, Hood AS, Riad MH, Graybiel AM (2015) A corticostriatal path targeting striosomes controls decision-making under conflict. Cell 161:1320–1333PubMedPubMedCentralCrossRefGoogle Scholar
  35. Fujiyama F, Unzai T, Nakamura K, Nomura S, Kaneko T (2006) Difference in organization of corticostriatal and thalamostriatal synapses between patch and matrix compartments of rat neostriatum. Eur J Neurosci 24:2813–2824PubMedCrossRefGoogle Scholar
  36. Galarraga E, Hernandez-Lopez S, Reyes A, Miranda I, Bermudez-Rattoni F, Vilchis C, Bargas J (1999) Cholinergic modulation of neostriatal output: a functional antagonism between different types of muscarinic receptors. J Neurosci 19:3629–3638PubMedGoogle Scholar
  37. Galvan A, Smith Y (2011) The primate thalamostriatal systems: anatomical organization, functional roles and possible involvement in Parkinson’s disease. Basal Ganglia 1:179–189PubMedPubMedCentralCrossRefGoogle Scholar
  38. Gerdeman GL, Ronesi J, Lovinger DM (2002) Postsynaptic endocannabinoid release is critical to long-term depression in the striatum. Nat Neurosci 5:446–451PubMedCrossRefGoogle Scholar
  39. Gerfen CR (1984) The neostriatal mosaic: compartmentalization of corticostriatal input and striatonigral output systems. Nature 311:461–464PubMedCrossRefGoogle Scholar
  40. Girasole AE, Nelson AB (2015) Bridging the gap: muscarinic M4 receptors promote striatal plasticity in health and disease. Neuron 88:621–623PubMedCrossRefGoogle Scholar
  41. Glascher J, Daw N, Dayan P, O’Doherty JP (2010) States versus rewards: dissociable neural prediction error signals underlying model-based and model-free reinforcement learning. Neuron 66:585–595PubMedPubMedCentralCrossRefGoogle Scholar
  42. Glimcher PW, Lau B (2005) Rethinking the thalamus. Nat Neurosci 8:983–984PubMedCrossRefGoogle Scholar
  43. Goldberg JA, Reynolds JN (2011) Spontaneous firing and evoked pauses in the tonically active cholinergic interneurons of the striatum. Neuroscience 198:27–43PubMedCrossRefGoogle Scholar
  44. Goldberg JA, Ding JB, Surmeier DJ (2012) Muscarinic modulation of striatal function and circuitry. Handb Exp Pharmacol 208:223–241CrossRefGoogle Scholar
  45. Gonzales KK, Pare JF, Wichmann T, Smith Y (2013) GABAergic inputs from direct and indirect striatal projection neurons onto cholinergic interneurons in the primate putamen. J Comp Neurol 521:2502–2522PubMedPubMedCentralCrossRefGoogle Scholar
  46. Graybiel AM (2008) Habits, rituals, and the evaluative brain. Annu Rev Neurosci 31:359–387PubMedCrossRefGoogle Scholar
  47. Graybiel AM, Ragsdale CW Jr (1978) Histochemically distinct compartments in the striatum of human, monkeys, and cat demonstrated by acetylthiocholinesterase staining. Proc Natl Acad Sci USA 75:5723–5726PubMedPubMedCentralCrossRefGoogle Scholar
  48. Graybiel AM, Baughman RW, Eckenstein F (1986) Cholinergic neuropil of the striatum observes striosomal boundaries. Nature 323:625–627PubMedCrossRefGoogle Scholar
  49. Graybiel AM, Aosaki T, Flaherty AW, Kimura M (1994) The basal ganglia and adaptive motor control. Science 265:1826–1831PubMedCrossRefGoogle Scholar
  50. Groenewegen HJ, Berendse HW (1994) The specificity of the ‘nonspecific’ midline and intralaminar thalamic nuclei. Trends Neurosci 17:52–57PubMedCrossRefGoogle Scholar
  51. Haber S, McFarland NR (2001) The place of the thalamus in frontal cortical-basal ganglia circuits. Neurosci Rev J Bringing Neurobiol Neurol Psychiatry 7:315–324Google Scholar
  52. Halliday G, Lees A, Stern M (2011) Milestones in Parkinson’s disease–clinical and pathologic features. Mov Disord Off J Mov Disord Soc 26:1015–1021CrossRefGoogle Scholar
  53. Henderson JM, Carpenter K, Cartwright H, Halliday GM (2000) Loss of thalamic intralaminar nuclei in progressive supranuclear palsy and Parkinson’s disease: clinical and therapeutic implications. Brain 123(Pt 7):1410–1421PubMedCrossRefGoogle Scholar
  54. Henderson JM, Schleimer SB, Allbutt H, Dabholkar V, Abela D, Jovic J, Quinlivan M (2005) Behavioural effects of parafascicular thalamic lesions in an animal model of parkinsonism. Behav Brain Res 162:222–232PubMedCrossRefGoogle Scholar
  55. Hori Y, Minamimoto T, Kimura M (2009) Neuronal encoding of reward value and direction of actions in the primate putamen. J Neurophysiol 102:3530–3543PubMedCrossRefGoogle Scholar
  56. Houk JC, Adams JL, Barto AG (1995) A model of how the basal ganglia generate and use neural signals that predict reinforcement. In: Houk JC et al (eds) Models of information processing in the Basal Ganglia. The MIT Press, Cambridge, pp 249–270Google Scholar
  57. Huerta-Ocampo I, Mena-Segovia J, Bolam JP (2014) Convergence of cortical and thalamic input to direct and indirect pathway medium spiny neurons in the striatum. Brain Struct Funct 219:1787–1800PubMedCrossRefGoogle Scholar
  58. Inokawa H, Yamada H, Matsumoto N, Muranishi M, Kimura M (2010) Juxtacellular labeling of tonically active neurons and phasically active neurons in the rat striatum. Neuroscience 168:395–404PubMedCrossRefGoogle Scholar
  59. Kato S, Kuramochi M, Kobayashi K, Fukabori R, Okada K, Uchigashima M, Watanabe M, Tsutsui Y (2011) Selective neural pathway targeting reveals key roles of thalamostriatal projection in the control of visual discrimination. J Neurosci 31:17169–17179PubMedCrossRefGoogle Scholar
  60. Kimura M, Rajkowski J, Evarts E (1984) Tonically discharging putamen neurons exhibit set-dependent responses. Proc Natl Acad Sci USA 81:4998–5001PubMedPubMedCentralCrossRefGoogle Scholar
  61. Kobayashi K, Morita S, Sawada H, Mizuguchi T, Yamada K, Nagatsu I, Fujita K, Kreitman RJ, Pastan I, Nagatsu T (1995) Immunotoxin-mediated conditional disruption of specific neurons in transgenic mice. Proc Natl Acad Sci USA 92:1132–1136PubMedPubMedCentralCrossRefGoogle Scholar
  62. Kreitzer AC, Malenka RC (2007) Endocannabinoid-mediated rescue of striatal LTD and motor deficits in Parkinson’s disease models. Nature 445:643–647PubMedCrossRefGoogle Scholar
  63. Kreitzer AC, Malenka RC (2008) Striatal plasticity and basal ganglia circuit function. Neuron 60:543–554PubMedPubMedCentralCrossRefGoogle Scholar
  64. Lacey CJ, Bolam JP, Magill PJ (2007) Novel and distinct operational principles of intralaminar thalamic neurons and their striatal projections. J Neurosci 27:4374–4384PubMedCrossRefGoogle Scholar
  65. Lapper SR, Smith Y, Sadikot AF, Parent A, Bolam JP (1992) Cortical input to parvalbumin-immunoreactive neurones in the putamen of the squirrel monkey. Brain Res 580:215–224PubMedCrossRefGoogle Scholar
  66. Lau B, Glimcher PW (2008) Value representations in the primate caudate nucleus during matching behavior. Neuron 58:451–463PubMedPubMedCentralCrossRefGoogle Scholar
  67. Leong YC, Radulescu A, Daniel R, DeWoskin V, Niv Y (2017) Dynamic interaction between reinforcement learning and attention in multidimensional environments. Neuron 93:451–463PubMedPubMedCentralCrossRefGoogle Scholar
  68. Macchi G, Bentivoglio M, Molinari M, Minciacchi D (1984) The thalamo-caudate versus thalamo-cortical projections as studied in the cat with fluorescent retrograde double labeling. Exp Brain Res 54:225–239PubMedCrossRefGoogle Scholar
  69. Mackintosh NJ (1975) A theory of attention: variations in the associability of stimuli with reinforcement. Psychol Rev 82:276–298CrossRefGoogle Scholar
  70. Mamaligas AA, Ford CP (2016) Spontaneous synaptic activation of muscarinic receptors by striatal cholinergic neuron firing. Neuron 91:574–586PubMedPubMedCentralCrossRefGoogle Scholar
  71. Matamales M, Skrbis Z, Hatch RJ, Balleine BW, Gotz J, Bertran-Gonzalez J (2016) Aging-related dysfunction of striatal cholinergic interneurons produces conflict in action selection. Neuron 90:362–373PubMedCrossRefGoogle Scholar
  72. Matsumoto N, Minamimoto T, Graybiel AM, Kimura M (2001) Neurons in the thalamic CM-Pf complex supply striatal neurons with information about behaviorally significant sensory events. J Neurophysiol 85:960–976PubMedCrossRefGoogle Scholar
  73. Maurice N, Mercer J, Chan CS, Hernandez-Lopez S, Held J, Tkatch T, Surmeier DJ (2004) D2 dopamine receptor-mediated modulation of voltage-dependent Na+ channels reduces autonomous activity in striatal cholinergic interneurons. J Neurosci 24:10289–10301PubMedCrossRefGoogle Scholar
  74. McGuire JT, Nassar MR, Gold JI, Kable JW (2014) Functionally dissociable influences on learning rate in a dynamic environment. Neuron 84:870–881PubMedPubMedCentralCrossRefGoogle Scholar
  75. M Mennemeier, B Crosson, D.J Williamson, S.E Nadeau, E Fennell, E Valenstein, K.M Heilman (1997) Tapping, talking and the thalamus: possible influence of the intralaminar nuclei on basal ganglia function. Neuropsychologia 35(2):183–193PubMedCrossRefGoogle Scholar
  76. Minamimoto T, Kimura M (2002) Participation of the thalamic CM-Pf complex in attentional orienting. J Neurophysiol 87:3090–3101PubMedCrossRefGoogle Scholar
  77. Minamimoto T, Hori Y, Kimura M (2005) Complementary process to response bias in the centromedian nucleus of the thalamus. Science 308:1798–1801PubMedCrossRefGoogle Scholar
  78. Minamimoto T, Hori Y, Kimura M (2009) Roles of the thalamic CM-PF complex-Basal ganglia circuit in externally driven rebias of action. Brain Res Bull 78:75–79PubMedCrossRefGoogle Scholar
  79. Minamimoto T, Hori Y, Yamanaka K, Kimura M (2014) Neural signal for counteracting pre-action bias in the centromedian thalamic nucleus. Front Syst Neurosci 8:3PubMedPubMedCentralCrossRefGoogle Scholar
  80. Montague PR, Dayan P, Sejnowski TJ (1996) A framework for mesencephalic dopamine systems based on predictive Hebbian learning. J Neurosci 16:1936–1947PubMedGoogle Scholar
  81. Morris G, Arkadir D, Nevet A, Vaadia E, Bergman H (2004) Coincident but distinct messages of midbrain dopamine and striatal tonically active neurons. Neuron 43:133–143PubMedCrossRefGoogle Scholar
  82. Nakahara H, Itoh H, Kawagoe R, Takikawa Y, Hikosaka O (2004) Dopamine neurons can represent context-dependent prediction error. Neuron 41:269–280PubMedCrossRefGoogle Scholar
  83. Okada K, Nishizawa K, Fukabori R, Kai N, Shiota A, Ueda M, Tsutsui Y, Sakata S, Matsushita N, Kobayashi K (2014) Enhanced flexibility of place discrimination learning by targeting striatal cholinergic interneurons. Nat Commun 5:3778PubMedCrossRefGoogle Scholar
  84. Parker PR, Lalive AL, Kreitzer AC (2016) Pathway-specific remodeling of thalamostriatal synapses in Parkinsonian mice. Neuron 89:734–740PubMedPubMedCentralCrossRefGoogle Scholar
  85. Pashler H (1998) The psychology of attention. The MIT Press, Cambridge, p 494Google Scholar
  86. Pearce JM, Hall G (1980) A model for Pavlovian learning: variations in the effectiveness of conditioned but not of unconditioned stimuli. Psychol Rev 87:532–552PubMedCrossRefGoogle Scholar
  87. Perez-Rosello T, Figueroa A, Salgado H, Vilchis C, Tecuapetla F, Guzman JN, Galarraga E, Bargas J (2005) Cholinergic control of firing pattern and neurotransmission in rat neostriatal projection neurons: role of CaV2.1 and CaV2.2 Ca2+ channels. J Neurophysiol 93:2507–2519PubMedCrossRefGoogle Scholar
  88. Peterson DA, Elliott C, Song DD, Makeig S, Sejnowski TJ, Poizner H (2009) Probabilistic reversal learning is impaired in Parkinson’s disease. Neuroscience 163:1092–1101PubMedPubMedCentralCrossRefGoogle Scholar
  89. Ragsdale CW Jr, Graybiel AM (1991) Compartmental organization of the thalamostriatal connection in the cat. J Comp Neurol 311:134–167PubMedCrossRefGoogle Scholar
  90. Raz A, Feingold A, Zelanskaya V, Vaadia E, Bergman H (1996) Neuronal synchronization of tonically active neurons in the striatum of normal and parkinsonian primates. J Neurophysiol 76:2083–2088PubMedCrossRefGoogle Scholar
  91. Rescorla RA, Wagner AR (1972) Current research and theory. In: Black AH, Prokasy WF (eds) Classical conditioning II. Appleton Century Crofts, New York, pp 64–99Google Scholar
  92. Reynolds JN, Hyland BI, Wickens JR (2001) A cellular mechanism of reward-related learning. Nature 413:67–70PubMedCrossRefGoogle Scholar
  93. Rice ME, Patel JC, Cragg SJ (2011) Dopamine release in the basal ganglia. Neuroscience 198:112–137PubMedPubMedCentralCrossRefGoogle Scholar
  94. Roesch MR, Calu DJ, Esber GR, Schoenbaum G (2010) Neural correlates of variations in event processing during learning in basolateral amygdala. J Neurosci 30:2464–2471PubMedPubMedCentralCrossRefGoogle Scholar
  95. Roesch MR, Esber GR, Li J, Daw ND, Schoenbaum G (2012) Surprise! Neural correlates of Pearce-Hall and Rescorla-Wagner coexist within the brain. Eur J Neurosci 35:1190–1200PubMedPubMedCentralCrossRefGoogle Scholar
  96. Sadikot AF, Parent A, Francois C (1992) Efferent connections of the centromedian and parafascicular thalamic nuclei in the squirrel monkey: a PHA-L study of subcortical projections. J Comp Neurol 315:137–159PubMedCrossRefGoogle Scholar
  97. Samejima K, Ueda Y, Doya K, Kimura M (2005) Representation of action-specific reward values in the striatum. Science 310:1337–1340PubMedCrossRefGoogle Scholar
  98. Satoh T, Nakai S, Sato T, Kimura M (2003) Correlated coding of motivation and outcome of decision by dopamine neurons. J Neurosci 23:9913–9923PubMedGoogle Scholar
  99. Schultz W (1998a) The phasic reward signal of primate dopamine neurons. Adv Pharmacol 42:686–690PubMedCrossRefGoogle Scholar
  100. Schultz W (1998b) Predictive reward signal of dopamine neurons. J Neurophysiol 80:1–27PubMedCrossRefGoogle Scholar
  101. Schultz W, Dickinson A (2000) Neuronal coding of prediction errors. Annu Rev Neurosci 23:473–500PubMedCrossRefGoogle Scholar
  102. Shen W, Hamilton SE, Nathanson NM, Surmeier DJ (2005) Cholinergic suppression of KCNQ channel currents enhances excitability of striatal medium spiny neurons. J Neurosci 25:7449–7458PubMedCrossRefGoogle Scholar
  103. Shen W, Tian X, Day M, Ulrich S, Tkatch T, Nathanson NM, Surmeier DJ (2007) Cholinergic modulation of Kir2 channels selectively elevates dendritic excitability in striatopallidal neurons. Nat Neurosci 10:1458–1466PubMedCrossRefGoogle Scholar
  104. Shen W, Flajolet M, Greengard P, Surmeier DJ (2008) Dichotomous dopaminergic control of striatal synaptic plasticity. Science 321:848–851PubMedPubMedCentralCrossRefGoogle Scholar
  105. Shen W, Plotkin JL, Francardo V, Ko WK, Xie Z, Li Q, Fieblinger T, Wess J, Neubig RR, Lindsley CW, Conn PJ, Greengard P, Bezard E, Cenci MA, Surmeier DJ (2015) M4 muscarinic receptor signaling ameliorates striatal plasticity deficits in models of l-DOPA-induced dyskinesia. Neuron 88:762–773PubMedPubMedCentralCrossRefGoogle Scholar
  106. Shimo Y, Hikosaka O (2001) Role of tonically active neurons in primate caudate in reward-oriented saccadic eye movement. J Neurosci 21:7804–7814PubMedGoogle Scholar
  107. Sidibe M, Smith Y (1999) Thalamic inputs to striatal interneurons in monkeys: synaptic organization and co-localization of calcium binding proteins. Neuroscience 89:1189–1208PubMedCrossRefGoogle Scholar
  108. Smith Y, Raju DV, Pare JF, Sidibe M (2004) The thalamostriatal system: a highly specific network of the basal ganglia circuitry. Trends Neurosci 27:520–527PubMedCrossRefGoogle Scholar
  109. Smith Y, Galvan A, Ellender TJ, Doig N, Villalba RM, Huerta-Ocampo I, Wichmann T, Bolam JP (2014) The thalamostriatal system in normal and diseased states. Front Syst Neurosci 8:5PubMedPubMedCentralGoogle Scholar
  110. Steriade M (1997) Synchronized activities of coupled oscillators in the cerebral cortex and thalamus at different levels of vigilance. Cereb Cortex 7:583–604PubMedCrossRefGoogle Scholar
  111. Steriade M, Amzica F, Contreras D (1994) Cortical and thalamic cellular correlates of electroencephalographic burst-suppression. Electroencephalogr Clin Neurophysiol 90(1):1–16PubMedCrossRefGoogle Scholar
  112. Surmeier DJ, Plotkin J, Shen W (2009) Dopamine and synaptic plasticity in dorsal striatal circuits controlling action selection. Curr Opin Neurobiol 19:621–628PubMedPubMedCentralCrossRefGoogle Scholar
  113. Sutton RS (1988) Learning to predict by the method of temporal differences. Mach Learn 3:9–44Google Scholar
  114. Sutton RS, Barto AG (1998) Reinforcement Learning. The MIT press, CambridgeGoogle Scholar
  115. Threlfell S, Lalic T, Platt NJ, Jennings KA, Deisseroth K, Cragg SJ (2012) Striatal dopamine release is triggered by synchronized activity in cholinergic interneurons. Neuron 75:58–64PubMedCrossRefGoogle Scholar
  116. Vandermaelen CP, Kitai ST (1980) Intracellular analysis of synaptic potentials in rat neostriatum following stimulation of the cerebral cortex, thalamus, and substantia nigra. Brain Res Bull 5:725–733PubMedCrossRefGoogle Scholar
  117. Villalba RM, Wichmann T, Smith Y (2014) Neuronal loss in the caudal intralaminar thalamic nuclei in a primate model of Parkinson’s disease. Brain Struct Funct 219:381–394PubMedCrossRefGoogle Scholar
  118. Wilson CJ (2005) The mechanism of intrinsic amplification of hyperpolarizations and spontaneous bursting in striatal cholinergic interneurons. Neuron 45:575–585PubMedCrossRefGoogle Scholar
  119. Wilson CJ, Chang HT, Kitai ST (1990) Firing patterns and synaptic potentials of identified giant aspiny interneurons in the rat neostriatum. J Neurosci 10:508–519PubMedGoogle Scholar
  120. Yamada H, Matsumoto N, Kimura M (2004) Tonically active neurons in the primate caudate nucleus and putamen differentially encode instructed motivational outcomes of action. J Neurosci 24:3500–3510PubMedCrossRefGoogle Scholar
  121. Yamada H, Matsumoto N, Kimura M (2007) History- and current instruction-based coding of forthcoming behavioral outcomes in the striatum. J Neurophysiol 98:3557–3567PubMedCrossRefGoogle Scholar
  122. Yamanaka K, Hori Y, Ueda Y, Minamimoto T, Kimura M (2010) Signals of reward value and actions represented in the neuronal activity of CM thalamus. Neurosci Res 68:e293CrossRefGoogle Scholar
  123. Zhang K, Sejnowski TJ (1999) Neuronal tuning: to sharpen or to broaden? Neural Comput 11:75–84PubMedCrossRefGoogle Scholar
  124. Ztaou S, Maurice N, Camon J, Guiraudie-Capraz G, Kerkerian-Le Goff L, Beurrier C, Liberge M, Amalric M (2016) Involvement of striatal cholinergic interneurons and M1 and M4 muscarinic receptors in motor symptoms of Parkinson’s disease. J Neurosci 36:9161–9172PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2017

Authors and Affiliations

  • Ko Yamanaka
    • 1
    • 2
    • 3
  • Yukiko Hori
    • 2
    • 4
  • Takafumi Minamimoto
    • 2
    • 4
  • Hiroshi Yamada
    • 2
    • 5
  • Naoyuki Matsumoto
    • 2
    • 6
  • Kazuki Enomoto
    • 1
    • 2
  • Toshihiko Aosaki
    • 7
  • Ann M. Graybiel
    • 8
  • Minoru Kimura
    • 1
    • 2
  1. 1.Brain Science InstituteTamagawa UniversityTokyoJapan
  2. 2.Department of PhysiologyKyoto Prefectural University of MedicineKyotoJapan
  3. 3.Department of Physiology, Faculty of Health and Sports ScienceJuntendo UniversityChibaJapan
  4. 4.Department of Functional Brain ImagingNational Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and TechnologyChibaJapan
  5. 5.Division of Biomedical Science, Faculty of Medicine, Graduate School of Comprehensive Human SciencesUniversity of TsukubaTsukubaJapan
  6. 6.Department of Food and Health Sciences, Faculty of Environmental and Symbiotic SciencesPrefectural University of KumamotoKumamotoJapan
  7. 7.Neurophysiology Research GroupTokyo Metropolitan Institute of GerontologyTokyoJapan
  8. 8.McGovern Institute for Brain Research and Department of Brain and Cognitive SciencesMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations