Advertisement

Journal of Neural Transmission

, Volume 125, Issue 3, pp 279–290 | Cite as

The calretinin interneurons of the striatum: comparisons between rodents and primates under normal and pathological conditions

  • S. Petryszyn
  • A. Parent
  • Martin ParentEmail author
Neurology and Preclinical Neurological Studies - Review Article

Abstract

This paper reviews the major organizational features of calretinin interneurons in the dorsal striatum of rodents and primates, with some insights on the state of these neurons in Parkinson’s disease and Huntington’s chorea. The rat striatum harbors medium-sized calretinin-immunoreactive (CR+) interneurons, whereas the mouse striatum is pervaded by medium-sized CR+ interneurons together with numerous small and highly immunoreactive CR+ cells. The CR interneuronal network is even more elaborated in monkey and human striatum where, in addition to the small- and medium-sized CR+ interneurons, a set of large CR+ interneurons occurs. The majority of these giant CR+ interneurons, which are unique to the primate striatum, also display immunoreactivity for choline acetyltransferase (ChAT), a faithful marker of cholinergic neurons. The expression of CR and/or ChAT by the large striatal interneurons appears to be seriously compromised in Parkinson’s disease and Huntington’s chorea. The species differences noted above have to be considered to better understand the role of CR interneurons in striatal organization in both normal and pathological conditions.

Keywords

Basal ganglia MPTP monkey Human Parkinson’s disease Mouse Rat 

Notes

Acknowledgements

The study was supported by research grants from the Canadian Institutes of Health Research (CIHR MOP-115008 to M.P.) and the Natural Sciences and Engineering Research Council of Canada (NSERC 386396 to M.P.). The authors have no conflict of interest to declare.

References

  1. Albin RL, Tagle DA (1995) Genetics and molecular biology of Huntington’s disease. Trends Neurosci 18:11–14CrossRefPubMedGoogle Scholar
  2. Beighton P, Hayden MR (1981) Huntington’s chorea. S Afr Med J 59:250PubMedGoogle Scholar
  3. Bennett BD, Bolam JP (1993) Characterization of calretinin-immunoreactive structures in the striatum of the rat. Brain Res 609:137–148CrossRefPubMedGoogle Scholar
  4. Bergson C, Mrzljak L, Smiley JF, Pappy M, Levenson R, Goldman-Rakic PS (1995) Regional, cellular, and subcellular variations in the distribution of D1 and D5 dopamine receptors in primate brain. J Neurosci 15:7821–7836PubMedGoogle Scholar
  5. Bernácer J, Prensa L, Giménez-Amaya JM (2012) Distribution of GABAergic interneurons and dopaminergic cells in the functional territories of the human striatum. PLoS One 7:e30504. doi: 10.1371/journal.pone.0030504 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Betarbet R et al (1997) Dopaminergic neurons intrinsic to the primate striatum. J Neurosci 17:6761–6768PubMedGoogle Scholar
  7. Blumcke I et al (1996) Preservation of calretinin-immunoreactive neurons in the hippocampus of epilepsy patients with Ammon’s horn sclerosis. J Neuropathol Exp Neurol 55:329–341CrossRefPubMedGoogle Scholar
  8. Christel CJ et al (2012) Calretinin regulates Ca2+-dependent inactivation and facilitation of Ca(v)2.1 Ca2+ channels through a direct interaction with the alpha12.1 subunit. J Biol Chem 287:39766–39775. doi: 10.1074/jbc.M112.406363 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Cicchetti F, Parent A (1996) Striatal interneurons in Huntington’s disease: selective increase in the density of calretinin-immunoreactive medium-sized neurons. Mov Disord 11:619–626. doi: 10.1002/mds.870110605 CrossRefPubMedGoogle Scholar
  10. Cicchetti F, Gould PV, Parent A (1996) Sparing of striatal neurons coexpressing calretinin and substance P (NK1) receptor in Huntington’s disease. Brain Res 730:232–237CrossRefPubMedGoogle Scholar
  11. Cicchetti F, Beach TG, Parent A (1998) Chemical phenotype of calretinin interneurons in the human striatum. Synapse 30:284–297. doi: 10.1002/(SICI)1098-2396(199811)30:3<284:AID-SYN6>3.0.CO;2-7 CrossRefPubMedGoogle Scholar
  12. Cicchetti F, Prensa L, Wu Y, Parent A (2000) Chemical anatomy of striatal interneurons in normal individuals and in patients with Huntington’s disease. Brain Res Brain Res Rev 34:80–101CrossRefPubMedGoogle Scholar
  13. Cossette M, Levesque D, Parent A (2005) Neurochemical characterization of dopaminergic neurons in human striatum. Parkinsonism Relat Disord 11:277–286. doi: 10.1016/j.parkreldis.2005.02.008 CrossRefPubMedGoogle Scholar
  14. Daviss SR, Lewis DA (1995) Local circuit neurons of the prefrontal cortex in schizophrenia: selective increase in the density of calbindin-immunoreactive neurons. Psychiatry Res 59:81–96CrossRefPubMedGoogle Scholar
  15. Dawbarn D, De Quidt ME, Emson PC (1985) Survival of basal ganglia neuropeptide Y-somatostatin neurones in Huntington’s disease. Brain Res 340:251–260CrossRefPubMedGoogle Scholar
  16. Dawson VL, Dawson TM, Filloux FM, Wamsley JK (1988) Evidence for dopamine D-2 receptors on cholinergic interneurons in the rat caudate-putamen. Life Sci 42:1933–1939CrossRefPubMedGoogle Scholar
  17. Dayer AG, Cleaver KM, Abouantoun T, Cameron HA (2005) New GABAergic interneurons in the adult neocortex and striatum are generated from different precursors. J Cell Biol 168:415–427. doi: 10.1083/jcb.200407053 CrossRefPubMedPubMedCentralGoogle Scholar
  18. DiCaudo C, Riverol M, Mundiñano IC, Ordoñez C, Hernández M, Marcilla I, Luquin MR (2012) Chronic levodopa administration followed by a washout period increased number and induced phenotypic changes in striatal dopaminergic cells in MPTP-monkeys. PLoS One 7:e50842. doi: 10.1371/journal.pone.0050842 CrossRefPubMedPubMedCentralGoogle Scholar
  19. DiFiglia M, Pasik P, Pasik T (1976) A Golgi study of neuronal types in the neostriatum of monkeys. Brain Res 114:245–256CrossRefPubMedGoogle Scholar
  20. Dong G et al (2012) Calretinin interacts with huntingtin and reduces mutant huntingtin-caused cytotoxicity. J Neurochem 123:437–446. doi: 10.1111/j.1471-4159.2012.07919.x CrossRefPubMedGoogle Scholar
  21. Ernst A et al (2014) Neurogenesis in the striatum of the adult human brain. Cell 156:1072–1083. doi: 10.1016/j.cell.2014.01.044 CrossRefPubMedGoogle Scholar
  22. Ferrante RJ, Kowall NW, Beal MF, Martin JB, Bird ED, Richardson EP Jr (1987) Morphologic and histochemical characteristics of a spared subset of striatal neurons in Huntington’s disease. J Neuropathol Exp Neurol 46:12–27CrossRefPubMedGoogle Scholar
  23. Figueredo-Cardenas G, Medina L, Reiner A (1996) Calretinin is largely localized to a unique population of striatal interneurons in rats. Brain Res 709:145–150CrossRefPubMedGoogle Scholar
  24. Fortin M, Parent A (1994) Patches in the striatum of squirrel monkeys are enriched with calretinin fibers but devoid of calretinin cell bodies. Neurosci Lett 182:51–54CrossRefPubMedGoogle Scholar
  25. Garas FN et al (2016) Secretagogin expression delineates functionally-specialized populations of striatal parvalbumin-containing interneurons. Elife. doi: 10.7554/eLife.16088 PubMedPubMedCentralGoogle Scholar
  26. Gerfen C, Bolam J (2010) The neuroanatomical organization of the basal ganglia. Handb Basal Ganglia Struct Funct 20:3–28CrossRefGoogle Scholar
  27. Gerfen C, Bolam JP (2017) The neuroanatomical organization of the basal ganglia. In: Steiner H, Tseng KY (eds) Handbook of basal ganglia structure and function. Elsevier (Academic Press), Amsterdam, pp 3–32CrossRefGoogle Scholar
  28. Gittis AH, Kreitzer AC (2012) Striatal microcircuitry and movement disorders. Trends Neurosci 35:557–564. doi: 10.1016/j.tins.2012.06.008 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Goldberg JA, Ding JB, Surmeier DJ (2012) Muscarinic modulation of striatal function and circuitry. Handb Exp Pharmacol 208:223–241. doi: 10.1007/978-3-642-23274-9_10 CrossRefGoogle Scholar
  30. Graveland GA, DiFiglia M (1985) The frequency and distribution of medium-sized neurons with indented nuclei in the primate and rodent neostriatum. Brain Res 327:307–311CrossRefPubMedGoogle Scholar
  31. Graveland GA, Williams RS, DiFiglia M (1985) A Golgi study of the human neostriatum: neurons and afferent fibers. J Comp Neurol 234:317–333. doi: 10.1002/cne.902340304 CrossRefPubMedGoogle Scholar
  32. Hack NJ, Wride MC, Charters KM, Kater SB, Parks TN (2000) Developmental changes in the subcellular localization of calretinin. J Neurosci 20:RC67PubMedGoogle Scholar
  33. Hiroi N (1995) Compartmental organization of calretinin in the rat striatum. Neurosci Lett 197:223–226CrossRefPubMedGoogle Scholar
  34. Hof PR, Nimchinsky EA, Celio MR, Bouras C, Morrison JH (1993) Calretinin-immunoreactive neocortical interneurons are unaffected in Alzheimer’s disease. Neurosci Lett 152:145–148CrossRefPubMedGoogle Scholar
  35. Höglinger GU, Rizk P, Muriel MP, Duyckaerts C, Oertel WH, Caille I, Hirsch EC (2004) Dopamine depletion impairs precursor cell proliferation in Parkinson disease. Nat Neurosci 7:726–735. doi: 10.1038/nn1265 CrossRefPubMedGoogle Scholar
  36. Holt DJ et al (1999) Evidence for a deficit in cholinergic interneurons in the striatum in schizophrenia. Neuroscience 94:21–31CrossRefPubMedGoogle Scholar
  37. Holt DJ et al (2005) Reduced density of cholinergic interneurons in the ventral striatum in schizophrenia: an in situ hybridization study. Biol Psychiatry 58:408–416. doi: 10.1016/j.biopsych.2005.04.007 CrossRefPubMedGoogle Scholar
  38. Huot P, Lévesque M, Parent A (2007) The fate of striatal dopaminergic neurons in Parkinson’s disease and Huntington’s chorea. Brain 130:222–232. doi: 10.1093/brain/awl332 CrossRefPubMedGoogle Scholar
  39. Huot P, Lévesque M, Morissette M, Calon F, Dridi M, Di Paolo T, Parent A (2008) l-Dopa treatment abolishes the numerical increase in striatal dopaminergic neurons in parkinsonian monkeys. J Chem Neuroanat 35:77–84. doi: 10.1016/j.jchemneu.2007.06.004 CrossRefPubMedGoogle Scholar
  40. Hussain Z, Johnson LR, Totterdell S (1996) A light and electron microscopic study of NADPH-diaphorase-, calretinin- and parvalbumin-containing neurons in the rat nucleus accumbens. J Chem Neuroanat 10:19–39CrossRefPubMedGoogle Scholar
  41. Ibanez-Sandoval O, Tecuapetla F, Unal B, Shah F, Koos T, Tepper JM (2011) A novel functionally distinct subtype of striatal neuropeptide Y interneuron. J Neurosci 31:16757–16769. doi: 10.1523/JNEUROSCI.2628-11.2011 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Inta D, Gass P (2015) Is forebrain neurogenesis a potential repair mechanism after stroke? J Cereb Blood Flow Metab 35:1220–1221. doi: 10.1038/jcbfm.2015.95 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Inta D, Cameron HA, Gass P (2015) New neurons in the adult striatum: from rodents to humans. Trends Neurosci 38:517–523. doi: 10.1016/j.tins.2015.07.005 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Jacobowitz DM, Winsky L (1991) Immunocytochemical localization of calretinin in the forebrain of the rat. J Comp Neurol 304:198–218. doi: 10.1002/cne.903040205 CrossRefPubMedGoogle Scholar
  45. Kataoka Y, Kalanithi PS, Grantz H, Schwartz ML, Saper C, Leckman JF, Vaccarino FM (2010) Decreased number of parvalbumin and cholinergic interneurons in the striatum of individuals with Tourette syndrome. J Comp Neurol 518:277–291. doi: 10.1002/cne.22206 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Kawaguchi Y (1997) Neostriatal cell subtypes and their functional roles. Neurosci Res 27:1–8CrossRefPubMedGoogle Scholar
  47. Kawaguchi Y, Wilson CJ, Augood SJ, Emson PC (1995) Striatal interneurones: chemical, physiological and morphological characterization. Trends Neurosci 18:527–535CrossRefPubMedGoogle Scholar
  48. Kubota Y, Mikawa S, Kawaguchi Y (1993) Neostriatal GABAergic interneurones contain NOS, calretinin or parvalbumin. NeuroReport 5:205–208CrossRefPubMedGoogle Scholar
  49. Kuznicki J, Strauss KI, Jacobowitz DM (1995) Conformational changes and calcium binding by calretinin and its recombinant fragments containing different sets of EF hand motifs. Biochemistry 34:15389–15394CrossRefPubMedGoogle Scholar
  50. Lanciego JL, Luquin N, Obeso JA (2012) Functional neuroanatomy of the basal ganglia. Cold Spring Harb Perspect Med 2:a009621. doi: 10.1101/cshperspect.a009621 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Luzzati F, De Marchis S, Fasolo A, Peretto P (2006) Neurogenesis in the caudate nucleus of the adult rabbit. J Neurosci 26:609–621. doi: 10.1523/JNEUROSCI.4371-05.2006 CrossRefPubMedGoogle Scholar
  52. Ma Y et al (2013) Melatonin ameliorates injury and specific responses of ischemic striatal neurons in rats. J Histochem Cytochem 61:591–605. doi: 10.1369/0022155413492159 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Ma Y et al (2014) The effects of unilateral 6-OHDA lesion in medial forebrain bundle on the motor, cognitive dysfunctions and vulnerability of different striatal interneuron types in rats. Behav Brain Res 266:37–45. doi: 10.1016/j.bbr.2014.02.039 CrossRefPubMedGoogle Scholar
  54. Massouh M, Wallman MJ, Pourcher E, Parent A (2008) The fate of the large striatal interneurons expressing calretinin in Huntington’s disease. Neurosci Res 62:216–224. doi: 10.1016/j.neures.2008.08.007 CrossRefPubMedGoogle Scholar
  55. Ming GL, Song H (2011) Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron 70:687–702. doi: 10.1016/j.neuron.2011.05.001 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Mura A, Feldon J, Mintz M (2000) The expression of the calcium binding protein calretinin in the rat striatum: effects of dopamine depletion and l-DOPA treatment. Exp Neurol 164:322–332. doi: 10.1006/exnr.2000.7441 CrossRefPubMedGoogle Scholar
  57. Oorschot DE (2017) Cell type in the different nucleis of the basal ganglia. In: Steiner H, Tseng KY (eds) Handbook of basal ganglia structure and function. Elsevier (Academic Press), Amsdterdam, pp 99–155CrossRefGoogle Scholar
  58. Ordoñez C et al (2013) Sox-2 Positive neural progenitors in the primate striatum undergo dynamic changes after dopamine denervation. PLoS One 8:e66377. doi: 10.1371/journal.pone.0066377 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Pangrsic T, Gabrielaitis M, Michanski S, Schwaller B, Wolf F, Strenzke N, Moser T (2015) EF-hand protein Ca2+ buffers regulate Ca2+ influx and exocytosis in sensory hair cells. Proc Natl Acad Sci USA 112:E1028–E1037. doi: 10.1073/pnas.1416424112 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Parent A, Hazrati LN (1995) Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop. Brain Res Brain Res Rev 20:91–127CrossRefPubMedGoogle Scholar
  61. Parent A, Cicchetti F, Beach TG (1995) Calretinin-immunoreactive neurons in the human striatum. Brain Res 674:347–351CrossRefPubMedGoogle Scholar
  62. Parent M, Bedard C, Pourcher E (2013) Dopaminergic innervation of the human subventricular zone: a comparison between Huntington’s chorea and Parkinson’s disease. Am J Neurodegener Dis 2:221–227PubMedPubMedCentralGoogle Scholar
  63. Persechini A, Moncrief ND, Kretsinger RH (1989) The EF-hand family of calcium-modulated proteins. Trends Neurosci 12:462–467CrossRefPubMedGoogle Scholar
  64. Petryszyn S, Beaulieu JM, Parent A, Parent M (2014) Distribution and morphological characteristics of striatal interneurons expressing calretinin in mice: a comparison with human and nonhuman primates. J Chem Neuroanat 59–60:51–61. doi: 10.1016/j.jchemneu.2014.06.002 CrossRefPubMedGoogle Scholar
  65. Petryszyn S, Di Paolo T, Parent A, Parent M (2016) The number of striatal cholinergic interneurons expressing calretinin is increased in parkinsonian monkeys. Neurobiol Dis 95:46–53. doi: 10.1016/j.nbd.2016.07.002 CrossRefPubMedGoogle Scholar
  66. Pisani A, Bernardi G, Ding J, Surmeier DJ (2007) Re-emergence of striatal cholinergic interneurons in movement disorders. Trends Neurosci 30:545–553. doi: 10.1016/j.tins.2007.07.008 CrossRefPubMedGoogle Scholar
  67. Pochet R, Parmentier M, Lawson DE, Pasteels JL (1985) Rat brain synthesizes two ‘vitamin D-dependent’ calcium-binding proteins. Brain Res 345:251–256CrossRefPubMedGoogle Scholar
  68. Prensa L, Giménez-Amaya JM, Parent A (1998) Morphological features of neurons containing calcium-binding proteins in the human striatum. J Comp Neurol 390:552–563CrossRefPubMedGoogle Scholar
  69. Ramón y Cajal S (1911) Histologie du Système Nerveux de l’Homme et des Vertébrés (transl. by L. Azoulay) Maloine. Paris 2:504–518Google Scholar
  70. Résibois A, Rogers JH (1992) Calretinin in rat brain: an immunohistochemical study. Neuroscience 46:101–134CrossRefPubMedGoogle Scholar
  71. Revishchin AV, Okhotin VE, Korochkin LI, Pavlova GV (2010a) A new population of calretinin-positive cells, presumptively neurons, with polymorphous spines in the mouse forebrain. Neurosci Behav Physiol 40:541–552. doi: 10.1007/s11055-010-9295-3 CrossRefPubMedGoogle Scholar
  72. Revishchin AV, Okhotin VE, Pavlova GV (2010b) New calretinin-positive cells with polymorphous spines in the mouse forebrain during early postnatal ontogeny. Neurosci Behav Physiol 40:833–840. doi: 10.1007/s11055-010-9349-6 CrossRefPubMedGoogle Scholar
  73. Rogers JH (1987) Calretinin: a gene for a novel calcium-binding protein expressed principally in neurons. J Cell Biol 105:1343–1353CrossRefPubMedGoogle Scholar
  74. Rymar VV, Sasseville R, Luk KC, Sadikot AF (2004) Neurogenesis and stereological morphometry of calretinin-immunoreactive GABAergic interneurons of the neostriatum. J Comp Neurol 469:325–339. doi: 10.1002/cne.11008 CrossRefPubMedGoogle Scholar
  75. Schwaller B, Durussel I, Jermann D, Herrmann B, Cox JA (1997) Comparison of the Ca2+-binding properties of human recombinant calretinin-22k and calretinin. J Biol Chem 272:29663–29671CrossRefPubMedGoogle Scholar
  76. Tandé D, Höglinger G, Debeir T, Freundlieb N, Hirsch EC, François C (2006) New striatal dopamine neurons in MPTP-treated macaques result from a phenotypic shift and not neurogenesis. Brain 129:1194–1200. doi: 10.1093/brain/awl041 CrossRefPubMedGoogle Scholar
  77. Tepper JM, Koós T (2017) GABAergic interneurons of the striatum. In: Steiner H, Tseng KY (eds) Handbook of basal ganglia structure and function, 2nd edn. Elsevier (Academic Press), Amsdterdam, pp 157–178CrossRefGoogle Scholar
  78. Tepper JM, Tecuapetla F, Koós T, Ibáñez-Sandoval O (2010) Heterogeneity and diversity of striatal GABAergic interneurons. Front Neuroanat 4:150. doi: 10.3389/fnana.2010.00150 CrossRefPubMedPubMedCentralGoogle Scholar
  79. Ünal B, Shah F, Kothari J, Tepper JM (2015) Anatomical and electrophysiological changes in striatal TH interneurons after loss of the nigrostriatal dopaminergic pathway. Brain Struct Funct 220:331–349. doi: 10.1007/s00429-013-0658-8 CrossRefPubMedGoogle Scholar
  80. Vonsattel JP, Myers RH, Stevens TJ, Ferrante RJ, Bird ED, Richardson EP Jr (1985) Neuropathological classification of Huntington’s disease. J Neuropathol Exp Neurol 44:559–577CrossRefPubMedGoogle Scholar
  81. Wei B et al (2011) Emx1-expressing neural stem cells in the subventricular zone give rise to new interneurons in the ischemic injured striatum. Eur J Neurosci 33:819–830. doi: 10.1111/j.1460-9568.2010.07570.x CrossRefPubMedGoogle Scholar
  82. Wu Y, Parent A (2000) Striatal interneurons expressing calretinin, parvalbumin or NADPH-diaphorase: a comparative study in the rat, monkey and human. Brain Res 863:182–191CrossRefPubMedGoogle Scholar
  83. Xenias HS, Ibanez-Sandoval O, Koos T, Tepper JM (2015) Are striatal tyrosine hydroxylase interneurons dopaminergic? J Neurosci 35:6584–6599. doi: 10.1523/JNEUROSCI.0195-15.2015 CrossRefPubMedPubMedCentralGoogle Scholar
  84. Yan Z, Song WJ, Surmeier J (1997) D2 dopamine receptors reduce N-type Ca2+ currents in rat neostriatal cholinergic interneurons through a membrane-delimited, protein-kinase-C-insensitive pathway. J Neurophysiol 77:1003–1015CrossRefPubMedGoogle Scholar
  85. Yang Z, You Y, Levison SW (2008) Neonatal hypoxic/ischemic brain injury induces production of calretinin-expressing interneurons in the striatum. J Comp Neurol 511:19–33. doi: 10.1002/cne.21819 CrossRefPubMedPubMedCentralGoogle Scholar
  86. Zucker RS (1996) Exocytosis: a molecular and physiological perspective. Neuron 17:1049–1055CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Wien 2017

Authors and Affiliations

  1. 1.Department of Psychiatry and Neuroscience, Faculty of Medicine, Centre de recherche de l’Institut universitaire en santé mentale de QuébecUniversité LavalQuebecCanada

Personalised recommendations