Advertisement

Journal of Neural Transmission

, Volume 123, Issue 10, pp 1219–1234 | Cite as

Transcranial direct current stimulation in children and adolescents: a comprehensive review

  • Ulrich PalmEmail author
  • Felix M. Segmiller
  • Ann Natascha Epple
  • Franz-Joseph Freisleder
  • Nikolaos Koutsouleris
  • Gerd Schulte-Körne
  • Frank Padberg
Psychiatry and Preclinical Psychiatric Studies - Review Article

Abstract

Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation method that has shown promising results in various neuropsychiatric disorders in adults. This review addresses the therapeutic use of tDCS in children and adolescents including safety, ethical, and legal considerations. There are several studies addressing the dosage of tDCS in children and adolescents by computational modeling of electric fields in the pediatric brain. Results suggest halving the amperage used in adults to obtain the same peak electric fields, however, there are some studies reporting on the safe application of tDCS with standard adult parameters in children (2 mA; 20–30 min). There are several randomized placebo controlled trials suggesting beneficial effects of tDCS for the treatment of cerebral palsy. For dystonia there are mixed data. Some studies suggest efficacy of tDCS for the treatment of refractory epilepsy, and for the improvement of attention deficit/hyperactivity disorder and autism. Interestingly, there is a lack of data for the treatment of childhood and adolescent psychiatric disorders, i.e., childhood onset schizophrenia and affective disorders. Overall, tDCS seems to be safe in pediatric population. More studies are needed to confirm the preliminary encouraging results; however, ethical deliberation has to be weighed carefully for every single case.

Keywords

Developmental disorder Psychiatric disorder Epilepsy Cerebral palsy ADHD Ethics 

Notes

Acknowledgments

This work was supported by the German Center for Brain Stimulation (GCBS) research consortium (FKZ 01EE1403), funded by the Federal Ministry of Education and Research (BMBF).

Compliance with ethical standards

Conflict of interest

F. P. has received speaker’s honorarium from Mag&More GmbH and support with equipment from neuroConn GmbH, Ilmenau, Germany, and Brainsway Inc., Jerusalem, Israel.

References

  1. Alexander GE, Crutcher MD, DeLong MR (1990) Basal gangliathalamocortical circuits: parallel substrates for motor, oculomotor, ‘‘prefrontal’’ and ‘‘limbic’’ functions. Prog Brain Res 85:119–146. doi: 10.1016/S0079-6123(08)62678-3 PubMedCrossRefGoogle Scholar
  2. Alon G, Syron SC, Smith GV (1998) Is transcranial electrical stimulation (tCES) a safe intervention for children with cerebral palsy? J Neuro Rehab 12:65–72Google Scholar
  3. Amatachaya A, Auvichayapat N, Patjanasoontorn N, Suphakunpinyo C, Ngernyam N, Aree-Uea B et al (2014) Effect of anodal transcranial direct current stimulation on autism: a randomized double-blind crossover trial. Behav Neurol 2014:173073. doi: 10.1155/2014/173073 PubMedPubMedCentralCrossRefGoogle Scholar
  4. Amatachaya A, Jensen MP, Patjanasoontorn N, Auvichayapat N, Suphakunpinyo C, Janjarasjitt S et al (2015) The short-term effects of transcranial direct current stimulation on electroencephalography in children with autism: a randomized crossover controlled trial. Behav Neurol 2015:928631. doi: 10.1155/2015/928631 PubMedPubMedCentralCrossRefGoogle Scholar
  5. Andrade AC, Magnavita GM, Allegro JV, Neto CE, Lucena Rde C, Fregni F (2014) Feasibility of transcranial direct current stimulation use in children aged 5–12 years. J Child Neurol 29:1360–1365. doi: 10.1177/0883073813503710 PubMedCrossRefGoogle Scholar
  6. Aree-uea B, Auvichayapat N, Janyacharoen T, Siritaratiwat W, Amatachaya A, Prasertnoo J et al (2014) Reduction of spasticity in cerebral palsy by anodal transcranial direct current stimulation. J Med Assoc Thai 97:954–962PubMedGoogle Scholar
  7. Aron AR, Robbins TW, Poldrack RA (2004) Inhibition and the right inferior frontal cortex. Trends Cogn Sci 8:170–177. doi: 10.1016/j.tics.2004.02.010 PubMedCrossRefGoogle Scholar
  8. Auvichayapat N, Rotenberg A, Gersner R, Ngodklang S, Tiamkao S, Tassaneeyakul W, Auvichayapat P (2013) Transcranial direct current stimulation for treatment of refractory childhood focal epilepsy. Brain Stimul 6:696–700. doi: 10.1016/j.brs.2013.01.009 PubMedCrossRefGoogle Scholar
  9. Bandeira ID, Guimarães RS, Jagersbacher JG, Barretto TL, de Jesus-Silva JR, Santos SN, Argollo N, Lucena R (2016) Transcranial direct current stimulation in children and adolescents with attention-deficit/hyperactivity disorder (ADHD): a pilot study. J Child NeurolGoogle Scholar
  10. Batty MJ, Liddle EB, Pitiot A, Toro R, Groom MJ, Scerif G, Liotti M, Liddle PF, Paus T, Hollis C (2010) Cortical gray matter in attention-deficit/hyperactivity disorder: a structural magnetic resonance imaging study. J Am Acad Child Adolesc Psychiatry 49:229–238PubMedPubMedCentralGoogle Scholar
  11. Beauchamp MS, Beurlot MR, Fava E, Nath AR, Parikh NA, Saad ZS, Bortfeld H, Oghalai JS (2011) The developmental trajectory of brain-scalp distance from birth through childhood: implications for functional neuroimaging. PLoS One 6:e24981. doi: 10.1371/journal.pone.0024981 PubMedPubMedCentralCrossRefGoogle Scholar
  12. Bhanpuri NH, Bertucco M, Young SJ, Lee AA, Sanger TD (2015) Multiday transcranial direct current stimulation causes clinically insignificant changes in childhood dystonia: a pilot study. J Child Neurol 30:1604–1615. doi: 10.1177/0883073815575369 PubMedCrossRefGoogle Scholar
  13. Bindman LJ, Lippold OC, Redfearn JW (1964) The action of brief polarizing currents in the cerebral cortex of the rat (1) during current flow and (2) in the production of long-lasting after-effects. J Physiol 172:369–382PubMedPubMedCentralCrossRefGoogle Scholar
  14. Bogdanov OG, Pinchuk DY, Pisar’kova EV, Shelyakin AM, Sirbiladze KT (1994) The use of the method of transcranial micropolarization to decrease the severity hyperkineses in patients with infantile cerebral palsy. Neurosci Behav Physiol 24:442–445PubMedCrossRefGoogle Scholar
  15. Bostrom N (2005) In defence of posthuman dignity. Bioethics 19:202–214PubMedCrossRefGoogle Scholar
  16. Brunoni AR, Nitsche MA, Bolognini N, Bikson M, Wagner T, Merabet L, Edwards DJ, Valero-Cabre A, Rotenberg A, Pascual-Leone A, Ferrucci R, Priori A, Boggio PS, Fregni F (2012) Clinical research with transcranial direct current stimulation (tDCS): challenges and future directions. Brain Stimul 5:175–195. doi: 10.1016/j.brs.2011.03.002 PubMedCrossRefGoogle Scholar
  17. Campbell M, Rapoport JL, Simpson GM (1999) Antipsychotics in children and adolescents. J Am Acad Child Adolesc Psychiatry 38:537–545PubMedCrossRefGoogle Scholar
  18. Cantor DS, Thatcher RW, Hrybyk M, Kaye H (1986) Computerized EEG analyses of autistic children. J Autism Dev Disord 16:69–187CrossRefGoogle Scholar
  19. Cardinale RC, Shih P, Fishman I, Ford LM, Müller RA (2013) Pervasive rightward asymmetry shifts of functional networks in autism spectrum disorder. JAMA Psychiatry 70:975–982PubMedPubMedCentralCrossRefGoogle Scholar
  20. Castellanos FX, Lee PP, Sharp W, Jeffries NO, Greenstein DK, Clasen LS, Blumenthal JD, James RS, Ebens CL, Walter JM, Zijdenbos A, Evans AC, Giedd JN, Rapoport JL (2002) Developmental trajectories of brain volume abnormalities in children and adolescents with attention-deficit/hyperactivity disorder. JAMA 288:1740–1748PubMedCrossRefGoogle Scholar
  21. Chan AS, Sze SL, Cheung MC (2007) Quantitative electroencephalographic profiles for children with autistic spectrum disorder. Neuropsychol 21:74–81CrossRefGoogle Scholar
  22. Christakou A, Robbins TW, Everitt BJ (2004) Prefrontal cortical-ventral striatal interactions involved in affective modulation of attentional performance: implications for corticostriatal circuit function. J Neurosci 24:773–780. doi: 10.1523/JNEUROSCI.0949-03.2004 PubMedCrossRefGoogle Scholar
  23. Chung MG, Lo WD (2015) Noninvasive brain stimulation: the potential for use in the rehabilitation of pediatric acquired brain injury. Arch Phys Med Rehabil 96:S129–S137. doi: 10.1016/j.apmr.2014.10.013 PubMedCrossRefGoogle Scholar
  24. Collange Grecco LA, de Almeida Carvalho Duarte N, Mendonça ME, Galli M, Fregni F, Oliveira CS (2015) Effects of anodal transcranial direct current stimulation combined with virtual reality for improving gait in children with spastic diparetic cerebral palsy: a pilot, randomized, controlled, double-blind, clinical trial. Clin Rehabil 29:1212–1223. doi: 10.1177/0269215514566997 PubMedCrossRefGoogle Scholar
  25. Cosmo C, Baptista AF, de Araújo AN, do Rosário RS, Miranda JG, Montoya P, de Sena EP (2015) A randomized, double-blind, sham-controlled trial of transcranial direct current stimulation in attention-deficit/hyperactivity disorder. PLoS One 10:e0135371. doi: 10.1371/journal.pone.0135371 PubMedPubMedCentralCrossRefGoogle Scholar
  26. Costanzo F, Menghini D, Casula L, Amendola A, Mazzone L, Valeri G, Vicari S (2015) Transcranial direct current stimulation treatment in an adolescent with autism and drug-resistant catatonia. Brain Stimul 8:1233–1235. doi: 10.1016/j.brs.2015.08.009 PubMedCrossRefGoogle Scholar
  27. Costanzo F, Varuzza C, Rossi S, Sdoia S, Varvara P, Oliveri M, Koch G, Vicari S, Menghini D (2016a) Reading changes in children and adolescents with dyslexia after transcranial direct current stimulation. NeuroReport 27:295–300. doi: 10.1097/WNR.0000000000000536 PubMedGoogle Scholar
  28. Costanzo F, Varuzza C, Rossi S, Sdoia S, Varvara P, Oliveri M, Koch G, Vicari S, Menghini D (2016b) Evidence for reading improvement following tDCS treatment in children and adolescents with Dyslexia. Restor Neurol Neurosci 34:215–226. doi: 10.3233/RNN-150561 PubMedCrossRefGoogle Scholar
  29. David CN, Rapoport JL, Gogtay N (2013) Treatments in context: transcranial direct current brain stimulation as a potential treatment in pediatric psychosis. Expert Rev Neurother 13:447–458. doi: 10.1586/ern.13.29 PubMedPubMedCentralCrossRefGoogle Scholar
  30. Davis NJ (2014) Transcranial stimulation of the developing brain: a plea for extreme caution. Front Hum Neurosci 8:600PubMedPubMedCentralCrossRefGoogle Scholar
  31. Dinstein I, Thomas C, Behrmann M, Heeger DJ (2008) A mirror up to nature. Curr Biol 18:R13–R18PubMedPubMedCentralCrossRefGoogle Scholar
  32. Ditye T, Jacobson L, Walsh V, Lavidor M (2012) Modulating behavioural inhibition by tDCS combined with cognitive training. Exp Brain Res 219:363–368. doi: 10.1007/s00221-012-3098-4 PubMedCrossRefGoogle Scholar
  33. Duarte Nde A, Grecco LA, Galli M, Fregni F, Oliveira CS (2014) Effect of transcranial direct-current stimulation combined with treadmill training on balance and functional performance in children with cerebral palsy: a double-blind randomized controlled trial. PLoS One 9:e105777. doi: 10.1371/journal.pone.0105777 PubMedCrossRefGoogle Scholar
  34. Ekici B (2015) Transcranial direct current stimulation-induced seizure: analysis of a case. Clin EEG Neurosci 46:169PubMedCrossRefGoogle Scholar
  35. Elsabbagh M, Divan G, Koh YJ, Kim YS, Kauchali S, Marcín C, Montiel-Nava C, Patel V, Paula CS, Wang C, Yasamy MT, Fombonne E (2012) Global prevalence of autism and other pervasive developmental disorders. Autism Res 5:160–179PubMedPubMedCentralCrossRefGoogle Scholar
  36. Faria P, Fregni F, Sebastião F, Dias AI, Leal A (2012) Feasibility of focal transcranial DC polarization with simultaneous EEG recording: preliminary assessment in healthy subjects and human epilepsy. Epilepsy Behav 25:417–425PubMedCrossRefGoogle Scholar
  37. Fitz NS, Reiner PB (2015) The challenge of crafting policy for do-it-yourself brain stimulation. J Med Ethics 41:410–412. doi: 10.1136/medethics-2013-101458 PubMedCrossRefGoogle Scholar
  38. Floris DL, Chura LR, Holt RJ, Suckling J, Bullmore ET, Baron-Cohen S, Spencer MD (2013) Psychological correlates of handedness and corpus callosum asymmetry in autism: the left hemisphere dysfunction theory revisited. J Autism Dev Dis 43:1758–1772CrossRefGoogle Scholar
  39. Fregni F, Boggio PS, Nitsche M, Bermpohl F, Antal A, Feredoes E, Marcolin MA, Rigonatti SP, Silva MT, Paulus W, Pascual-Leone A (2005) Anodal transcranial direct current stimulation of prefrontal cortex enhances working memory. Exp Brain Res 166:23–30. doi: 10.1007/s00221-005-2334-6 PubMedCrossRefGoogle Scholar
  40. Fregni F, Boggio PS, Santos MC, Lima M, Vieira AL, Rigonatti SP, Silva MT, Barbosa ER, Nitsche MA, Pascual-Leone A (2006) Noninvasive cortical stimulation with transcranial direct current stimulation in Parkinson’s disease. Mov Disord 21:1693–1702PubMedCrossRefGoogle Scholar
  41. Fregni F, Nitsche MA, Loo CK, Brunoni AR, Marangolo P, Leite J et al (2015) Regulatory considerations for the clinical and research use of transcranial direct current stimulation (tDCS): review and recommendations from an expert panel. Clin Res Regul Aff 32:22–35PubMedCrossRefGoogle Scholar
  42. Geschwind DH (2009) Advances in autism. Ann Rev Med 60:367–380PubMedPubMedCentralCrossRefGoogle Scholar
  43. Gilbert DL, Isaacs KM, Augusta M, Macneil LK, Mostofsky SH (2011) Motor cortex inhibition: a marker of ADHD behavior and motor development in children. Neurology 76:615–621. doi: 10.1212/WNL.0b013e31820c2ebd PubMedPubMedCentralCrossRefGoogle Scholar
  44. Gillick BT, Kirton A, Carmel JB, Minhas P, Bikson M (2014) Pediatric stroke and transcranial direct current stimulation: methods for rational individualized dose optimization. Front Hum Neurosci 8:739. doi: 10.3389/fnhum.2014.00739 PubMedPubMedCentralCrossRefGoogle Scholar
  45. Gillick BT, Feyma T, Menk J, Usset M, Vaith A, Wood TJ et al (2015a) Safety and feasibility of transcranial direct current stimulation in pediatric hemiparesis: randomized controlled preliminary study. Phys Ther 95:337–349. doi: 10.2522/ptj.20130565 PubMedCrossRefGoogle Scholar
  46. Gillick B, Menk J, Mueller B, Meekins G, Krach LE, Feyma T, Rudser K (2015b) Synergistic effect of combined transcranial direct current stimulation/constraint-induced movement therapy in children and young adults with hemiparesis: study protocol. BMC Pediatr 15:178. doi: 10.1186/s12887-015-0498-1 PubMedPubMedCentralCrossRefGoogle Scholar
  47. Goos LM, Crosbie J, Payne S, Schachar R (2009) Validation and extension of the endophenotype model in ADHD patterns of inheritance in a family study of inhibitory control. Am J Psychiatry 166:711–717. doi: 10.1176/appi.ajp.2009.08040621 PubMedCrossRefGoogle Scholar
  48. Grecco LA, Duarte Nde A, de Mendonça ME, Pasini H, Lima VL, Franco RC et al (2013) Effect of transcranial direct current stimulation combined with gait and mobility training on functionality in children with cerebral palsy: study protocol for a double-blind randomized controlled clinical trial. BMC Pediatr 13:168. doi: 10.1186/1471-2431-13-168 PubMedPubMedCentralCrossRefGoogle Scholar
  49. Grecco LA, de Almeida Carvalho Duarte N, Mendonça ME, Cimolin V, Galli M, Fregni F, Santosoliveira C (2014a) Transcranial direct current stimulation during treadmill training in children with cerebral palsy: a randomized controlled double-blind clinical trial. Res Dev Disabil 35:2840–2848. doi: 10.1016/j.ridd.2014.07.030 PubMedCrossRefGoogle Scholar
  50. Grecco LA, Duarte NA, Zanon N, Galli M, Fregni F, Oliveira CS (2014b) Effect of a single session of transcranial direct-current stimulation on balance and spatiotemporal gait variables in children with cerebral palsy: a randomized sham-controlled study. Braz J Phys Ther 18:419–427PubMedPubMedCentralCrossRefGoogle Scholar
  51. Grecco LA, Mendonça EM, Duarte NA, Zanon N, Fregni F, Oliveira CS (2014c) Transcranial direct current stimulation combined with treadmill gait training in delayed neuro-psychomotor development. J Phys Ther Sci 26:945–950. doi: 10.1589/jpts.26.945 PubMedPubMedCentralCrossRefGoogle Scholar
  52. Group BD (2012) Total and regional brain volumes in a population based normative sample from 4 to 18 years: the NIH MRI study of normal brain development. Cereb Cortex 22:1–12CrossRefGoogle Scholar
  53. Hamilton AF (2008) Emulation and mimicry for social interaction: a theoretical approach to imitation in autism. Q J Exp Psychol 61:101–115CrossRefGoogle Scholar
  54. Hasan A, Aborowa R, Nitsche MA, Marshall L, Schmitt A, Gruber O et al (2012a) Abnormal bihemispheric responses in schizophrenia patients following cathodal transcranial direct stimulation. Eur Arch Psychiatry Clin Neurosci 262:415–423PubMedPubMedCentralCrossRefGoogle Scholar
  55. Hasan A, Falkai P, Wobrock T, Lieberman J, Glenthoj B, Gattaz WF et al (2012b) World Federation of Societies of Biological Psychiatry (WFSBP) guidelines for biological treatment of schizophrenia, part 1: update 2012 on the acute treatment of schizophrenia and the management of treatment resistance. World J Biol Psychiatry 13:318–378PubMedCrossRefGoogle Scholar
  56. Herbert MR, Harris GJ, Adrien KT, Ziegler DA, Makris N, Kennedy DN, Lange NT, Chabris CF, Bakardjiev A, Hodgson J, Takeoka M, Tager-Flusberg H, Caviness VS Jr (2002) Abnormal asymmetry in language association cortex in autism. Ann Neurol 52:588–596PubMedCrossRefGoogle Scholar
  57. Iacoboni M, Dapretto M (2006) The mirror neuron system and the consequences of its dysfunction. Nat Rev Neurosci 7:942–951PubMedCrossRefGoogle Scholar
  58. Ilyukhina VA, Kozhushko NY, Matveev YK, Ponomareva EA, Chernysheva EM, Shaptilei MA (2005) Transcranial micropolarization in the combined therapy of speech and general psychomotor retardation in children of late preschool age. Neurosci Behav Physiol 35:969–976PubMedCrossRefGoogle Scholar
  59. Kang N, Summers JJ, Cauraugh JH (2015) Transcranial direct current stimulation facilitates motor learning post-stroke: a systematic review and meta-analysis. J Neurol Neurosurg PsychiatryGoogle Scholar
  60. Kessler SK, Minhas P, Woods AJ, Rosen A, Gorman C, Bikson M (2013) Dosage considerations for transcranial direct current stimulation in children: a computational modeling study. PLoS One 8:e76112. doi: 10.1371/journal.pone.0076112 PubMedPubMedCentralCrossRefGoogle Scholar
  61. Khedr EM, Elfetoh NA, Ali AM, Noamany M (2014) Anodal transcranial direct current stimulation over the dorsolateral prefrontal cortex improves anorexia nervosa: a pilot study. Restor Neurol Neurosci 32:789–797. doi: 10.3233/RNN-140392 PubMedGoogle Scholar
  62. Kleinhans NM, Müller RA, Cohen DN, Courchesne E (2008) Atypical functional lateralization of language in autism spectrum disorders. Brain Res 1221:115–125PubMedPubMedCentralCrossRefGoogle Scholar
  63. Kolb B, Teskey GC (2012) Age, experience, injury, and the changing brain. Dev Psychobiol 54:311–325PubMedCrossRefGoogle Scholar
  64. Krause B, Cohen Kadosh R (2013) Can transcranial electrical stimulation improve learning difficulties in atypical brain development? A future possibility for cognitive training. Dev Cogn Neurosci 6:176–194. doi: 10.1016/j.dcn.2013.04.001 PubMedPubMedCentralCrossRefGoogle Scholar
  65. Krishnan C, Santos L, Peterson MD, Ehinger M (2015) Safety of noninvasive brain stimulation in children and adolescents. Brain Stimul 8:76–87. doi: 10.1016/j.brs.2014.10.012 PubMedCrossRefGoogle Scholar
  66. Lazzari RD, Politti F, Santos CA, Dumont AJ, Rezende FL, Grecco LA et al (2015) Effect of a single session of transcranial direct-current stimulation combined with virtual reality training on the balance of children with cerebral palsy: a randomized, controlled, double-blind trial. J Phys Ther Sci Mar 27:763–768. doi: 10.1589/jpts.27.763
  67. Leucht S, Lasser R (2006) The concepts of remission and recovery in schizophrenia. Pharmacopsychiatry 39:161–170PubMedCrossRefGoogle Scholar
  68. Levy SE, Mandell DS, Schultz RT (2009) Autism. Lancet 374:1627–1638PubMedPubMedCentralCrossRefGoogle Scholar
  69. Liebetanz D, Klinker F, Hering D, Koch R, Nitsche MA, Potschka H, Löscher W, Paulus W, Tergau F (2006) Anticonvulsant effects of transcranial direct-current stimulation (tDCS) in the rat cortical ramp model of focal epilepsy. Epilepsia 47:1216–1224PubMedCrossRefGoogle Scholar
  70. Lindell AK, Hudry K (2013) Atypicalities in cortical structure, handedness, and functional lateralization for language in autism spectrum disorders. Neuropsychol Rev 23:257–270PubMedCrossRefGoogle Scholar
  71. Malden JW, Charash LI (1985) Transcranial stimulation for inhibition of primitive reflexes in children with cerebral palsy. Neurol Rep 9:33–38Google Scholar
  72. Maslen H, Earp BD, Cohen Kadosh R, Savulescu J (2014) Brain stimulation for treatment and enhancement in children: an ethical analysis. Front Hum Neurosci 8:953PubMedPubMedCentralCrossRefGoogle Scholar
  73. Mattai A, Miller R, Weisinger B, Greenstein D, Bakalar J, Tossell J, David C, Wassermann EM, Rapoport J, Gogtay N (2011) Tolerability of transcranial direct current stimulation in childhood-onset schizophrenia. Brain Stimul 4:275–280. doi: 10.1016/j.brs.2011.01.001 PubMedPubMedCentralCrossRefGoogle Scholar
  74. Minhas P, Bikson M, Woods AJ, Rosen AR, Kessler SK (2012) Transcranial direct current stimulation in pediatric brain: a computational modeling study. Conf Proc IEEE Eng Med Biol Soc 2012:859–862. doi: 10.1109/EMBC.2012.6346067 PubMedPubMedCentralGoogle Scholar
  75. Moliadze V, Andreas S, Lyzhko E, Schmanke T, Gurashvili T, Freitag CM, Siniatchkin M (2015a) Ten minutes of 1 mA transcranial direct current stimulation was well tolerated by children and adolescents: self-reports and resting state EEG analysis. Brain Res Bull 119:25–33. doi: 10.1016/j.brainresbull.2015.09.011 PubMedCrossRefGoogle Scholar
  76. Moliadze V, Schmanke T, Andreas S, Lyzhko E, Freitag CM, Siniatchkin M (2015b) Stimulation intensities of transcranial direct current stimulation have to be adjusted in children and adolescents. Clin Neurophysiol 126:1392–1399. doi: 10.1016/j.clinph.2014.10.142 PubMedCrossRefGoogle Scholar
  77. Mondino M, Brunelin J, Palm U, Brunoni AR, Poulet E, Fecteau S (2015) Transcranial direct current stimulation for the treatment of refractory symptoms of schizophrenia. current evidence and future directions. Curr Pharm Des 21:3373–3383PubMedCrossRefGoogle Scholar
  78. Munz MT, Prehn-Kristensen A, Thielking F, Mölle M, Göder R, Baving L (2015) Slow oscillating transcranial direct current stimulation during non-rapid eye movement sleep improves behavioral inhibition in attention-deficit/hyperactivity disorder. Front Cell Neurosci 9:307. doi: 10.3389/fncel.2015.00307 PubMedPubMedCentralCrossRefGoogle Scholar
  79. Nitsche MA, Paulus W (2000) Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol 527:633–639PubMedPubMedCentralCrossRefGoogle Scholar
  80. Nitsche MA, Paulus W (2001) Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology 57:1899–1901PubMedCrossRefGoogle Scholar
  81. Nitsche MA, Liebetanz D, Antal A, Lang N, Tergau F, Paulus W (2003) Modulation of cortical excitability by weak direct current stimulation—technical, safety and functional aspects. Suppl Clin Neurophysiol 56:255–276PubMedCrossRefGoogle Scholar
  82. Nitsche MA, Boggio PS, Fregni F, Pascual-Leone A (2009) Treatment of depression with transcranial direct current stimulation (tDCS): a review. Exp Neurol 219:14–19PubMedCrossRefGoogle Scholar
  83. Okoye R, Malden RW (1986) Use of neurotransmitter modulation to facilitate sensory integration. Neurol Report 10:67–72Google Scholar
  84. Palm U, Hasan A, Strube W, Padberg F (2016) tDCS for the treatment of depression: a comprehensive review. Eur Arch Psychiatry Clin Neurosci. doi: 10.1007/s00406-016-0674-9 PubMedGoogle Scholar
  85. Parazzini M, Fiocchi S, Liorni I, Priori A, Ravazzani P (2014) Computational modelling of transcranial direct current stimulation in the child brain: implications for the treatment of refractory childhood focal epilepsy. Int J Neural Syst 24:1430006. doi: 10.1142/S012906571430006X PubMedCrossRefGoogle Scholar
  86. Persico AM, Bourgeron T (2006) Searching for ways out of the autism maze: genetic, epigenetic and environmental clues. Trends Neurosci 29:349–358PubMedCrossRefGoogle Scholar
  87. Pinchuk D, Pinchuk O, Sirbiladze K, Shugar O (2013) Clinical effectiveness of primary and secondary headache treatment by transcranial direct current stimulation. Front Neurol 4:25PubMedPubMedCentralCrossRefGoogle Scholar
  88. Prehn-Kristensen A, Munz M, Göder R, Wilhelm I, Korr K, Vahl W et al (2014) Transcranial oscillatory direct current stimulation during sleep improves declarative memory consolidation in children with attention-deficit/hyperactivity disorder to a level comparable to healthy controls. Brain Stimul 7:793–799. doi: 10.1016/j.brs.2014.07.036 PubMedCrossRefGoogle Scholar
  89. Rajapakse T, Kirton A (2013) Non-invasive brain stimulation in children: applications and future directions. Transl Neurosci. doi: 10.2478/s13380-013-0116-3 PubMedPubMedCentralGoogle Scholar
  90. Rapoport JL (2004) Childhood onset schizophrenia: a progressive neurodevelopmental disorder. Int J Neuropsychopharmacol 7:S22Google Scholar
  91. Rapoport JL, Addington AM, Frangou S, Psych MR (2005) The neurodevelopmental model of schizophrenia: update 2005. Mol Psychiatry 10:434–449PubMedCrossRefGoogle Scholar
  92. Reiner PB (2013) Comment on “Can transcranial electrical stimulation improve learning difficulties in atypical brain development? A future possibility for cognitive training” by Krause and Cohen Kadosh. Dev Cogn Neurosci 6:195–196. doi: 10.1016/j.dcn.2013.05.002 PubMedCrossRefGoogle Scholar
  93. Rosenbaum P, Paneth N, Leviton A, Goldstein M, Bax M (2007) A report: the definition and classification of cerebral palsy. Dev Med Child Neurol 49:8–14Google Scholar
  94. Rossi S, Hallett M, Rossini PM, Pascual-Leone A, Safety of TMS Consensus Group (2009) Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin Neurophysiol 120:2008–2039PubMedPubMedCentralCrossRefGoogle Scholar
  95. Rubia K, Overmeyer S, Taylor E, Brammer M, Williams SC, Simmons A, Bullmore ET (1999) Hypofrontality in attention deficit hyperactivity disorder during higher-order motor control: a study with functional MRI. Am J Psychiatry 156:891–896PubMedCrossRefGoogle Scholar
  96. Rubio B, Boes AD, Laganiere S, Rotenberg A, Jeurissen D, Pascual-Leone A (2015) Noninvasive brain stimulation in pediatric attention-deficit hyperactivity disorder (ADHD): a review. J Child NeurolGoogle Scholar
  97. Sanger TD, Chen D, Fehlings DL, Hallett M, Lang AE, Mink JW et al (2010) Definition and classification of hyperkinetic movements in childhood. Mov Disord 25:1538–1549PubMedPubMedCentralCrossRefGoogle Scholar
  98. San-Juan D, Calcáneo Jde D, González-Aragón MF, Bermúdez Maldonado L, Avellán AM, Argumosa EV, Fregni F (2011) Transcranial direct current stimulation in adolescent and adult Rasmussen’s encephalitis. Epilepsy Behav 20:126–131. doi: 10.1016/j.yebeh.2010.10.031 PubMedCrossRefGoogle Scholar
  99. Schmitt A, Hasan A, Gruber O, Falkai P (2011) Schizophrenia as a disorder of disconnectivity. Eur Arch Psychiatry Clin Neurosci 261(Suppl 2):S150–S154PubMedCrossRefGoogle Scholar
  100. Schneider HD, Hopp JP (2011) The use of the Bilingual Aphasia Test for assessment and transcranial direct current stimulation to modulate language acquisition in minimally verbal children with autism. Clin Linguist Phon 25:640–654. doi: 10.3109/02699206.2011.570852 PubMedCrossRefGoogle Scholar
  101. Shelyakin AM, Preobrazhenskaya IG, Kassil’ MV, Bogdanov OV (2001) The effects of transcranial micropolarization on the severity of convulsive fits in children. Neurosci Behav Physiol 31:555–560PubMedCrossRefGoogle Scholar
  102. Soltaninejad Z, Nejati V, Ekhtiari H (2015) Effect of anodal and cathodal transcranial direct current stimulation on DLPFC on modulation of inhibitory control in ADHD. J Atten DisordGoogle Scholar
  103. Sonuga-Barke EJ (2005) Causal models of attention-deficit/hyperactivity disorder: from common simple deficits to multiple developmental pathways. Biol Psychiatry 57:1231–1238. doi: 10.1016/j.biopsych.2004.09.008 PubMedCrossRefGoogle Scholar
  104. Stahl SM, Buckley PF (2007) Negative symptoms of schizophrenia: a problem that will not go away. Acta Psychiatr Scand 115:4–11PubMedCrossRefGoogle Scholar
  105. Stortelder F, Ploegmakers-Burg M (2010) Adolescence and the reorganization of infant development: a neuro-psychoanalytic model. J Am Acad Psychanal Dyn Psychiatry 38:503–531CrossRefGoogle Scholar
  106. Trottier G, Srivastava L, Walker CD (1999) Etiology of infantile autism: a review of recent advances in genetic and neurobiological research. J Psychiatry Neurosci 24:103–115PubMedPubMedCentralGoogle Scholar
  107. Varga ET, Terney D, Atkins MD, Nikanorova M, Jeppesen DS, Uldall P, Hjalgrim H, Beniczky S (2011) Transcranial direct current stimulation in refractory continuous spikes and waves during slow sleep: a controlled study. Epilepsy Res 97:142–145PubMedCrossRefGoogle Scholar
  108. Vicario CM, Nitsche MA (2013) Transcranial direct current stimulation: a remediation tool for the treatment of childhood congenital dyslexia? Front Hum Neurosci 7:139. doi: 10.3389/fnhum.2013.00139 PubMedPubMedCentralGoogle Scholar
  109. Yook SW, Park SH, Seo JH, Kim SJ, Ko MH (2012) Suppression of seizure by cathodal transcranial direct current stimulation in an epileptic patient—a case report. Ann Rehabil Med 35:579–582CrossRefGoogle Scholar
  110. Young SJ, Bertucco M, Sheehan-Stross R, Sanger TD (2013) Cathodal transcranial direct current stimulation in children with dystonia a pilot open-label trial. J Child Neurol 28:1238–1244. doi: 10.1177/0883073812460092 PubMedCrossRefGoogle Scholar
  111. Young SJ, Bertucco M, Sanger TD (2014) Cathodal transcranial direct current stimulation in children with dystonia: a sham-controlled study. J Child Neurol 29:232–239. doi: 10.1177/0883073813492385 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2016

Authors and Affiliations

  • Ulrich Palm
    • 1
    Email author
  • Felix M. Segmiller
    • 1
  • Ann Natascha Epple
    • 2
  • Franz-Joseph Freisleder
    • 2
  • Nikolaos Koutsouleris
    • 1
  • Gerd Schulte-Körne
    • 3
  • Frank Padberg
    • 1
  1. 1.Department of Psychiatry and PsychotherapyKlinikum der Universität MünchenMunichGermany
  2. 2.KBO Heckscher-KlinikumMunichGermany
  3. 3.Department of Childhood and Adolescent PsychiatryKlinikum der Universität MünchenMunichGermany

Personalised recommendations