Advertisement

Journal of Neural Transmission

, Volume 123, Issue 6, pp 643–651 | Cite as

Prefrontal cortical thinning in HIV infection is associated with impaired striatal functioning

  • Stéfan du Plessis
  • Matthijs Vink
  • John A. Joska
  • Eleni Koutsilieri
  • Asif Bagadia
  • Dan J. Stein
  • Robin Emsley
Psychiatry and Preclinical Psychiatric Studies - Original Article

Abstract

While cortical thinning has been associated with HIV infection, it is unclear whether this reflects a direct effect of the virus, whether it is related to disruption of subcortical function or whether it is better explained by epiphenomena, such as drug abuse or comorbid medical conditions. The present study investigated the relationship between cortical thickness and subcortical function in HIV+ patients. Specifically, we examined the relationship between prefrontal cortical thickness and striatal function. Twenty-three largely treatment naïve, non-substance abusing HIV+ participants and 19 healthy controls matched for age, gender, and educational status were included. Cortical morphometry was performed using FreeSurfer software analysis. Striatal function was measured during an fMRI stop-signal anticipation task known to engage the striatum. Any cortical regions showing significant thinning were entered as dependent variables into a single linear regression model which included subcortical function, age, CD4 count, and a measure of global cognitive performance as independent predictors. The only cortical region that was significantly reduced after correction for multiple comparisons was the right superior frontal gyrus. Striatal activity was found to independently predict superior frontal gyral cortical thickness. While cortical thinning in HIV infection is likely multifactorial, viral induced subcortical dysfunction appears to play a role.

Keywords

fMRI Cortex Atrophy HIV Inhibition Striatum 

Notes

Acknowledgments

The authors would like to thank Dr Hetta Gouse from the University of Cape Town, as well as Prof Rob Paul from the University of Missouri-St. Louis, for their assistance in determining the neuropsychological assessment battery as well as giving input into the neuropsychological assessments. The authors would also like to thank Mr Teboho Linda from the University of Cape Town for assisting in the recruiting of participants. S.D.P has received support from a National Research Fund International Research Training Grant (IRTG 1522), as well as support from the Medical Research Council of South Africa, Biological Psychiatry Special Interest Group of the South African Society of Psychiatrists as well as the HIV research Trust (HIVRT14-049). M.V and A.B. have reported no biomedical financial interests or potential conflicts of interest. J.J has received support from the Medical Research Council of South Africa. E.K. is supported by an EDCTP Strategic Primary Grant (SP. 2011.41304.065.) as well as a “Verein für Parkinson-Forschung” grant. D.S. has received research grants and/or consultancy honoraria from Abbott, Astrazeneca, Biocodex, Eli-Lilly, GlaxoSmithKline, Jazz Pharmaceuticals, Johnson & Johnson, Lundbeck, Novartis, Orion, Pfizer, Pharmacia, Roche, Servier, Solvay, Sumitomo, Sun, Takeda, Tikvah, and Wyeth. He is supported by the MRC of South Africa. R.E. has participated in speakers/advisory boards and received honoraria from AstraZeneca, Bristol-Myers Squibb, Janssen, Lilly, Lundbeck, Servier and Otsuka. He has also received research funding from Janssen, Lundbeck, and AstraZeneca.

Compliance with ethical standards

Conflict of interest

The authors have no conflicts of interest to declare.

References

  1. Agrawal L, Louboutin J-P, Marusich E et al (2010) Dopaminergic neurotoxicity of HIV-1 gp120: reactive oxygen species as signaling intermediates. Brain Res 1306:116–130. doi: 10.1016/j.brainres.2009.09.113 CrossRefPubMedGoogle Scholar
  2. Alexander GE, Crutcher MD (1990) Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci 13:266–271CrossRefPubMedGoogle Scholar
  3. Amin J, Kaye M, Skidmore S et al (2004) HIV and hepatitis C coinfection within the CAESAR study. HIV Med 5:174–179. doi: 10.1111/j.1468-1293.2004.00207.x CrossRefPubMedGoogle Scholar
  4. An SF, Groves M, Gray F, Scaravilli F (1999) Early entry and widespread cellular involvement of HIV-1 DNA in brains of HIV-1 positive asymptomatic individuals. J Neuropathol Exp Neurol 58:1156–1162CrossRefPubMedGoogle Scholar
  5. Ances BM, Vaida F, Yeh MJ et al (2010) HIV infection and aging independently affect brain function as measured by functional magnetic resonance imaging. J Infect Dis 201:336–340. doi: 10.1086/649899 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Ances BM, Vaida F, Cherner M et al (2011) HIV and chronic methamphetamine dependence affect cerebral blood flow. J Neuroimmune Pharmacol 6:409–419. doi: 10.1007/s11481-011-9270-y CrossRefPubMedPubMedCentralGoogle Scholar
  7. Ances BM, Ortega M, Vaida F et al (2012) Independent effects of HIV, aging, and HAART on brain volumetric measures. J Acquir Immune Defic Syndr 59:469–477. doi: 10.1097/QAI.0b013e318249db17 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Antinori A, Arendt G, Becker JT et al (2007) Updated research nosology for HIV associated neurocognitive disorders. Neurology 69:1789–1799CrossRefPubMedPubMedCentralGoogle Scholar
  9. Aylward EH, Henderer JD, Mcarthur JC et al (1993) Reduced basal ganglia volume in HIV-1-associated dementia: results from quantitative neuroimaging. Neurology 43:2099–2104CrossRefPubMedGoogle Scholar
  10. Bruce-Keller AJ, Chauhan A, Dimayuga FO et al (2003) Synaptic transport of human immunodeficiency virus-Tat protein causes neurotoxicity and gliosis in rat brain. J Neurosci 23:8417–8422PubMedGoogle Scholar
  11. Buckner RL, Head D, Parker J et al (2004) A unified approach for morphometric and functional data analysis in young, old, and demented adults using automated atlas-based head size normalization: reliability and validation against manual measurement of total intracranial volume. Neuroimage 23:724–738. doi: 10.1016/j.neuroimage.2004.06.018 CrossRefPubMedGoogle Scholar
  12. Carey CL, Woods SP, Gonzalez R et al (2004) Predictive validity of global deficit scores in detecting neuropsychological impairment in HIV infection. J Clin Exp Neuropsychol 26:307–319. doi: 10.1080/13803390490510031 CrossRefPubMedGoogle Scholar
  13. Castellon SA, Hinkin CH, Wood S, Yarema KT (1998) Apathy, depression, and cognitive performance in HIV-1 infection. J Neuropsychiatry Clin Neurosci 10:320–329CrossRefPubMedGoogle Scholar
  14. Chang L, Andres M, Sadino J et al (2011) Impact of apolipoprotein E ε4 and HIV on cognition and brain atrophy: antagonistic pleiotropy and premature brain aging. Neuroimage 58:1017–1027. doi: 10.1016/j.neuroimage.2011.07.010 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Dale AM, Fischl B, Sereno MI (1999) Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage 9:179–194. doi: 10.1006/nimg.1998.0395 CrossRefPubMedGoogle Scholar
  16. Desikan RS, Ségonne F, Fischl B et al (2006) An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31:968–980. doi: 10.1016/j.neuroimage.2006.01.021 CrossRefPubMedGoogle Scholar
  17. Desplats P, Dumaop W, Smith D et al (2013) Molecular and pathologic insights from latent HIV-1 infection in the human brain. Neurology 80:1415–1423. doi: 10.1212/WNL.0b013e31828c2e9e CrossRefPubMedPubMedCentralGoogle Scholar
  18. Dewey J, Hana G, Russell T et al (2010) Reliability and validity of MRI-based automated volumetry software relative to auto-assisted manual measurement of subcortical structures in HIV-infected patients from a multisite study. Neuroimage 51:1334–1344. doi: 10.1016/j.neuroimage.2010.03.033 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Draganski B, Kherif F, Klöppel S et al (2008) Evidence for Segregated and integrative connectivity patterns in the human basal ganglia. J Neurosci 28:7143–7152. doi: 10.1523/JNEUROSCI.1486-08.2008 CrossRefPubMedGoogle Scholar
  20. du Plessis S, Vink M, Joska JA et al (2013) HIV infection and the fronto-striatal system: a systematic review and meta-analysis of fMRI studies. AIDS 28:803–811. doi: 10.1097/QAD.0000000000000151 CrossRefGoogle Scholar
  21. du Plessis S, Vink M, Joska JA et al (2015a) HIV infection results in ventral-striatal reward system hypo-activation during cue processing. AIDS 29:1335–1343. doi: 10.1097/QAD.0000000000000680 CrossRefPubMedGoogle Scholar
  22. du Plessis S, Vink M, Joska JA et al (2015b) HIV infection is associated with impaired striatal function during inhibition with normal cortical functioning on functional MRI. J Int Neuropsychol Soc 21:722–731. doi: 10.1017/S1355617715000971 CrossRefPubMedGoogle Scholar
  23. Elovaara I, Poutiainen E, Raininko R et al (1990) Mild brain atrophy in early HIV infection: the lack of association with cognitive deficits and HIV-specific intrathecal immune response. J Neurol Sci 99:121–136CrossRefPubMedGoogle Scholar
  24. Ernst T, Chang L, Jovicich J et al (2002) Abnormal brain activation on functional MRI in cognitively asymptomatic HIV patients. Neurology 59:1343–1349CrossRefPubMedGoogle Scholar
  25. Grant I (2008) Neurocognitive disturbances in HIV. Int Rev Psychiatry 20:33–47. doi: 10.1080/09540260701877894 CrossRefPubMedGoogle Scholar
  26. Hardy DJ, Hinhn CH (2002) Reaction time performance in adults with HIV/AIDS. J Clin Exp Neuropsychol 24:912–929CrossRefPubMedGoogle Scholar
  27. Heaps J, Niehoff J, Lane E et al (2010) Brain imaging in behavioral medicine and clinical neuroscience. Springer, New YorkGoogle Scholar
  28. Heaps JM, Joska J, Hoare J et al (2012) Neuroimaging markers of human immunodeficiency virus infection in South Africa. J Neurovirol 18:151–156. doi: 10.1007/s13365-012-0090-5 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Heaton RK, Clifford DB, Franklin DR Jr et al (2010) HIV-associated neurocognitive disorders persist in the era of potent antiretroviral therapy. Neurology 75:2087–2095CrossRefPubMedPubMedCentralGoogle Scholar
  30. Hoogendam JM, Kahn RS, Hillegers MHJ et al (2013) Different developmental trajectories for anticipation and receipt of reward during adolescence. Dev Cogn Neurosci 6:113–124. doi: 10.1016/j.dcn.2013.08.004 CrossRefPubMedGoogle Scholar
  31. Jernigan TL, Gamst AC, Archibald SL et al (2005) Effects of methamphetamine dependence and HIV infection on cerebral morphology. Am J Psychiatry 162:1461–1472. doi: 10.1176/appi.ajp.162.8.1461 CrossRefPubMedGoogle Scholar
  32. Joska JA, Westgarth-Taylor J, Myer L et al (2010) Characterization of HIV-associated neurocognitive disorders among individuals starting antiretroviral therapy in south Africa. AIDS Behav 15:1197–1203. doi: 10.1007/s10461-010-9744-6 CrossRefGoogle Scholar
  33. Kellogg SH, McHugh PF, Bell K et al (2003) The Kreek–McHugh–Schluger–Kellogg scale: a new, rapid method for quantifying substance abuse and its possible applications. Drug Alcohol Depend 69:137–150CrossRefPubMedGoogle Scholar
  34. Kikinis Z, Fallon JH, Niznikiewicz M et al (2010) Gray matter volume reduction in rostral middle frontal gyrus in patients with chronic schizophrenia. Schizophr Res 123:153–159. doi: 10.1016/j.schres.2010.07.027 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Maki PM, Cohen MH, Weber K et al (2009) Impairments in memory and hippocampal function in HIV-positive vs HIV-negative women: a preliminary study. Neurology 72:1661–1668. doi: 10.1212/WNL.0b013e3181a55f65 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Meade CS, Lowen SB, MacLean RR et al (2011) fMRI brain activation during a delay discounting task in HIV-positive adults with and without cocaine dependence. Psychiatry Res Neuroimaging 192:167–175. doi: 10.1016/j.pscychresns.2010.12.011 CrossRefPubMedGoogle Scholar
  37. Melrose RJ, Tinaz S, Castelo JMB et al (2008) Compromised fronto-striatal functioning in HIV: an fMRI investigation of semantic event sequencing. Behav Brain Res 188:337–347. doi: 10.1016/j.bbr.2007.11.021 CrossRefPubMedGoogle Scholar
  38. Middleton FA, Strick PL (2002) Basal-ganglia “projections” to the prefrontal cortex of the primate. Cereb Cortex 12:926–935CrossRefPubMedGoogle Scholar
  39. Moore DJ, Masliah E, Rippeth JD et al (2006) Cortical and subcortical neurodegeneration is associated with HIV neurocognitive impairment. AIDS 20:879–887. doi: 10.1097/01.aids.0000218552.69834.00 CrossRefPubMedGoogle Scholar
  40. Navia BA, Jordan BD, Price RW (1986) The AIDS dementia complex: I. Clinical features. Ann Neurol 19:517–524. doi: 10.1002/ana.410190602 CrossRefPubMedGoogle Scholar
  41. Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113CrossRefPubMedGoogle Scholar
  42. Pence BW, Gaynes BN, Whetten K et al (2005) Validation of a brief screening instrument for substance abuse and mental illness in HIV-positive patients. J Acquir Immune Defic Syndr 40:434–444CrossRefPubMedGoogle Scholar
  43. Pfefferbaum A, Rosenbloom MJ, Sassoon SA et al (2012) Regional brain structural dysmorphology in human immunodeficiency virus infection: effects of acquired immune deficiency syndrome, alcoholism, and age. Biol Psychiatry 72:361–370. doi: 10.1016/j.biopsych.2012.02.018 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Schnack HG, van Haren NEM, Brouwer RM et al (2015) Changes in thickness and surface area of the human cortex and their relationship with intelligence. Cereb Cortex 25:1608–1617. doi: 10.1093/cercor/bht357 CrossRefPubMedGoogle Scholar
  45. Sheehan DV, Lecrubier Y, Sheehan KH et al (1998) The Mini-International Neuropsychiatric Interview (M.I.N.I.): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J Clin Psychiatry 59 Suppl 20:22–33 (quiz 34–57) PubMedGoogle Scholar
  46. Stout JC, Ellis RJ, Jernigan TL et al (1998) Progressive cerebral volume loss in human immunodeficiency virus infection: a longitudinal volumetric magnetic resonance imaging study. HIV Neurobehavioral Research Center Group. Arch Neurol 55:161–168CrossRefPubMedGoogle Scholar
  47. Thompson PM, Dutton RA, Hayashi KM et al (2005) Thinning of the cerebral cortex visualized in HIV/AIDS reflects CD4+ T lymphocyte decline. Proc Natl Acad Sci USA 102:15647–15652. doi: 10.1073/pnas.0502548102 CrossRefPubMedPubMedCentralGoogle Scholar
  48. van der Kouwe AJW, Benner T, Salat DH, Fischl B (2008) Brain morphometry with multiecho MPRAGE. Neuroimage 40:559–569. doi: 10.1016/j.neuroimage.2007.12.025 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Van Dijk KRA, Sabuncu MR, Buckner RL (2012) The influence of head motion on intrinsic functional connectivity MRI. Neuroimage 59:431–438. doi: 10.1016/j.neuroimage.2011.07.044 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Wiley CA, Soontornniyomkij V, Radhakrishnan L et al (1998) Distribution of brain HIV load in AIDS. Brain Pathol 8:277–284CrossRefPubMedGoogle Scholar
  51. Zandbelt BB, Vink M (2010) On the role of the striatum in response inhibition. PLoS One 5:e13848. doi: 10.1371/journal.pone.0013848 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Wien 2016

Authors and Affiliations

  • Stéfan du Plessis
    • 1
  • Matthijs Vink
    • 2
  • John A. Joska
    • 5
  • Eleni Koutsilieri
    • 3
  • Asif Bagadia
    • 6
  • Dan J. Stein
    • 4
    • 5
  • Robin Emsley
    • 1
  1. 1.Department of Psychiatry, 2nd Floor Clinical Building, Faculty of Heath SciencesUniversity of StellenboschCape TownSouth Africa
  2. 2.Departments of Experimental and Developmental Psychology, Faculty of Social SciencesUtrecht UniversityUtrechtThe Netherlands
  3. 3.Institute for Virology and ImmunobiologyUniversity of WürzburgWürzburgGermany
  4. 4.Medical Research Council (Unit on Anxiety and Stress Disorders), 2nd Floor Clinical Building, Faculty of Heath SciencesUniversity of StellenboschCape TownSouth Africa
  5. 5.Department of PsychiatryUniversity of Cape Town, J-Block, Groote Schuur HospitalCape TownSouth Africa
  6. 6.Department of Radiology, 5th Floor Clinical Building, Faculty of Heath SciencesUniversity of StellenboschCape TownSouth Africa

Personalised recommendations