Journal of Neural Transmission

, Volume 123, Issue 9, pp 1037–1052 | Cite as

The transgenerational transmission of childhood adversity: behavioral, cellular, and epigenetic correlates

  • Nicole Gröger
  • Emmanuel Matas
  • Tomasz Gos
  • Alexandra Lesse
  • Gerd Poeggel
  • Katharina Braun
  • Jörg BockEmail author
Psychiatry and Preclinical Psychiatric Studies - Review Article


The view that the functional maturation of the brain is the result of an environmentally driven adaptation of genetically preprogrammed neuronal networks is an important current concept in developmental neuroscience and psychology. This hypothesis proposes that early traumatic experiences or early life stress (ELS) as a negative environmental experience provide a major risk factor for the development of dysfunctional brain circuits and as a consequence for the emergence of behavioral dysfunctions and mental disorders in later life periods. This view is supported by an increasing number of clinical as well as experimental animal studies revealing that early life traumas can induce functional ‘scars’ in the brain, especially in brain circuits, which are essential for emotional control, learning, and memory functions. Such gene × environment interactions are modulated by specific epigenetic mechanisms, which are suggested to be the key factors of transgenerational epigenetic inheritance. Indeed, there is increasing evidence for inter- and transgenerational cycles of environmentally driven neuronal and behavioral adaptations mediated by epigenetic mechanisms. Finally, recent concepts postulate that, dependent on type, time point, and duration of ELS exposure, also positive functional adaptations may occur in the relevant brain pathways, leading to better stress coping and resilience against adversities later in life.


Early life stress Psychopathology Resilience Epigenetics Sex differences 



This work was supported by Grants from the Bundesministerium für Bildung und Forschung (BMBF; UBICA, 01KR1207D to JB and TRANSGEN 01KR1304B to KB) and a grant from the German–Israeli Foundation for Scientific Research and Development (GIF) to KB.


  1. Abraham A, Gruss M (2010) Stress inoculation facilitates active avoidance learning of the semi-precocial rodent Octodon degus. Behav Brain Res 213:293–303. doi: 10.1016/j.bbr.2010.05.018 PubMedCrossRefGoogle Scholar
  2. Agid O, Kohn Y, Lerer B (2000) Environmental stress and psychiatric illness. Biomed Pharmacother 54:135–141. doi: 10.1016/S0753-3322(00)89046-0 PubMedCrossRefGoogle Scholar
  3. Aisa B, Tordera R, Lasheras B, Del Rio J, Ramirez MJ (2008) Effects of maternal separation on hypothalamic-pituitary-adrenal responses, cognition and vulnerability to stress in adult female rats Neuroscience 154:1218-1226 doi: 10.1016/j.neuroscience.2008.05.011
  4. Andersen SL (2003) Trajectories of brain development: point of vulnerability or window of opportunity? Neurosci Biobehav Rev 27:3–18PubMedCrossRefGoogle Scholar
  5. Andersen SL, Teicher MH (2004) Delayed effects of early stress on hippocampal development. Neuropsychopharmacology 29:1988–1993. doi: 10.1038/sj.npp.1300528 PubMedCrossRefGoogle Scholar
  6. Andersen SL, Teicher MH (2008) Stress, sensitive periods and maturational events in adolescent depression. Trends Neurosci 31:183–191. doi: 10.1016/j.tins.2008.01.004 PubMedCrossRefGoogle Scholar
  7. Anway MD, Cupp AS, Uzumcu M, Skinner MK (2005) Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science 308:1466–1469. doi: 10.1126/science.1108190 PubMedCrossRefGoogle Scholar
  8. Avital A, Richter-Levin G (2005) Exposure to juvenile stress exacerbates the behavioural consequences of exposure to stress in the adult rat. Int J Neuropsychopharmacol 8:163–173. doi: 10.1017/S1461145704004808 PubMedCrossRefGoogle Scholar
  9. Baker LM, Williams LM, Korgaonkar MS, Cohen RA, Heaps JM, Paul RH (2013) Impact of early vs. late childhood early life stress on brain morphometrics. Brain Imaging Behav 7:196–203. doi: 10.1007/s11682-012-9215-y PubMedCrossRefGoogle Scholar
  10. Bale TL et al (2010) Early life programming and neurodevelopmental disorders. Biol Psychiatry 68:314–319. doi: 10.1016/j.biopsych.2010.05.028 PubMedPubMedCentralCrossRefGoogle Scholar
  11. Baram TZ, Davis EP, Obenaus A, Sandman CA, Small SL, Solodkin A, Stern H (2012) Fragmentation and unpredictability of early-life experience in mental disorders. Am J Psychiatry 169:907–915. doi: 10.1176/appi.ajp.2012.11091347 PubMedPubMedCentralCrossRefGoogle Scholar
  12. Barker DJ (1998) In utero programming of chronic disease. Clin Sci (Lond) 95:115–128CrossRefGoogle Scholar
  13. Blaze J, Roth TL (2015) Evidence from clinical and animal model studies of the long-term and transgenerational impact of stress on DNA methylation. Semin Cell Dev Biol. doi: 10.1016/j.semcdb.2015.04.004 PubMedPubMedCentralGoogle Scholar
  14. Bock J, Braun K (2011) The impact of perinatal stress on the functional maturation of prefronto-cortical synaptic circuits: implications for the pathophysiology of ADHD? Prog Brain Res 189:155–169. doi: 10.1016/B978-0-444-53884-0.00023-3 PubMedCrossRefGoogle Scholar
  15. Bock J, Gruss M, Becker S, Braun K (2005) Experience-induced changes of dendritic spine densities in the prefrontal and sensory cortex: correlation with developmental time windows. Cereb Cortex 15:802–808. doi: 10.1093/cercor/bhh181 PubMedCrossRefGoogle Scholar
  16. Bock J, Murmu RP, Ferdman N, Leshem M, Braun K (2008) Refinement of dendritic and synaptic networks in the rodent anterior cingulate and orbitofrontal cortex: critical impact of early and late social experience. Dev Neurobiol 68:685–695. doi: 10.1002/dneu.20622 PubMedCrossRefGoogle Scholar
  17. Bock J, Murmu MS, Biala Y, Weinstock M, Braun K (2011) Prenatal stress and neonatal handling induce sex-specific changes in dendritic complexity and dendritic spine density in hippocampal subregions of prepubertal rats. Neuroscience 193:34–43. doi: 10.1016/j.neuroscience.2011.07.048 PubMedCrossRefGoogle Scholar
  18. Bock J et al (2014a) Transgenerational sex-specific impact of preconception stress on the development of dendritic spines and dendritic length in the medial prefrontal cortex. Brain Struct Funct. doi: 10.1007/s00429-014-0940-4 Google Scholar
  19. Bock J, Rether K, Gröger N, Xie L, Braun K (2014b) Perinatal programming of emotional brain circuits: an integrative view from systems to molecules. Front Neurosci 8:11. doi: 10.3389/fnins.2014.00011 PubMedPubMedCentralCrossRefGoogle Scholar
  20. Bock J, Wainstock T, Braun K, Segal M (2015) Stress in utero: prenatal programming of brain plasticity and cognition. Biol Psychiatry 78:315–326. doi: 10.1016/j.biopsych.2015.02.036 PubMedCrossRefGoogle Scholar
  21. Boyce WT, Chesterman E (1990) Life events, social support, and cardiovascular reactivity in adolescence. J Dev Behav Pediatr 11:105–111PubMedGoogle Scholar
  22. Boyce WT, Ellis BJ (2005) Biological sensitivity to context: I. An evolutionary-developmental theory of the origins and functions of stress reactivity. Dev Psychopathol 17:271–301PubMedCrossRefGoogle Scholar
  23. Boyce WT, Kobor MS (2015) Development and the epigenome: the ‘synapse’ of gene–environment interplay. Dev Sci 18:1–23. doi: 10.1111/desc.12282 PubMedCrossRefGoogle Scholar
  24. Brunson KL et al (2005) Mechanisms of late-onset cognitive decline after early-life stress. J Neurosci 25:9328–9338. doi: 10.1523/JNEUROSCI.2281-05.2005 PubMedPubMedCentralCrossRefGoogle Scholar
  25. Brunton PJ (2015) Programming the brain and behaviour by early-life stress: a focus on neuroactive steroids. J Neuroendocrinol 27:468–480. doi: 10.1111/jne.12265 PubMedCrossRefGoogle Scholar
  26. Brydges NM, Hall L, Nicolson R, Holmes MC, Hall J (2012) The effects of juvenile stress on anxiety, cognitive bias and decision making in adulthood: a rat model. PLoS One 7:e48143. doi: 10.1371/journal.pone.0048143 PubMedPubMedCentralCrossRefGoogle Scholar
  27. Brydges NM, Jin R, Seckl J, Holmes MC, Drake AJ, Hall J (2014a) Juvenile stress enhances anxiety and alters corticosteroid receptor expression in adulthood. Brain Behav 4:4–13. doi: 10.1002/brb3.182 PubMedCrossRefGoogle Scholar
  28. Brydges NM, Seckl J, Torrance HS, Holmes MC, Evans KL, Hall J (2014b) Juvenile stress produces long-lasting changes in hippocampal DISC1, GSK3ss and NRG1 expression. Mol Psychiatry 19:854–855. doi: 10.1038/mp.2013.193 PubMedCrossRefGoogle Scholar
  29. Caldji C, Tannenbaum B, Sharma S, Francis D, Plotsky PM, Meaney MJ (1998) Maternal care during infancy regulates the development of neural systems mediating the expression of fearfulness in the rat. Proc Natl Acad Sci USA 95:5335–5340PubMedPubMedCentralCrossRefGoogle Scholar
  30. Cannizzaro C, Plescia F, Martire M, Gagliano M, Cannizzaro G, Mantia G, Cannizzaro E (2006) Single, intense prenatal stress decreases emotionality and enhances learning performance in the adolescent rat offspring: interaction with a brief, daily maternal separation. Behav Brain Res 169:128–136. doi: 10.1016/j.bbr.2005.12.010 PubMedCrossRefGoogle Scholar
  31. Carpenter LL, Tyrka AR, McDougle CJ, Malison RT, Owens MJ, Nemeroff CB, Price LH (2004) Cerebrospinal fluid corticotropin-releasing factor and perceived early-life stress in depressed patients and healthy control subjects. Neuropsychopharmacology 29:777–784. doi: 10.1038/sj.npp.1300375 PubMedCrossRefGoogle Scholar
  32. Champagne FA (2008) Epigenetic mechanisms and the transgenerational effects of maternal care. Front Neuroendocrinol 29:386–397. doi: 10.1016/j.yfrne.2008.03.003 PubMedPubMedCentralCrossRefGoogle Scholar
  33. Champagne FA, Curley JP (2009) Epigenetic mechanisms mediating the long-term effects of maternal care on development. Neurosci Biobehav Rev 33:593–600. doi: 10.1016/j.neubiorev.2007.10.009 PubMedCrossRefGoogle Scholar
  34. Champagne FA, Meaney MJ (2007) Transgenerational effects of social environment on variations in maternal care and behavioral response to novelty. Behav Neurosci 121:1353–1363. doi: 10.1037/0735-7044.121.6.1353 PubMedCrossRefGoogle Scholar
  35. Champagne DL et al (2008) Maternal care and hippocampal plasticity: evidence for experience-dependent structural plasticity, altered synaptic functioning, and differential responsiveness to glucocorticoids and stress. J Neurosci 28:6037–6045. doi: 10.1523/JNEUROSCI.0526-08.2008 PubMedCrossRefGoogle Scholar
  36. Charil A, Laplante DP, Vaillancourt C, King S (2010) Prenatal stress and brain development. Brain Res Rev 65:56–79. doi: 10.1016/j.brainresrev.2010.06.002 PubMedCrossRefGoogle Scholar
  37. Chocyk A, Bobula B, Dudys D, Przyborowska A, Majcher-Maslanka I, Hess G, Wedzony K (2013) Early-life stress affects the structural and functional plasticity of the medial prefrontal cortex in adolescent rats. Eur J Neurosci. doi: 10.1111/ejn.12208 PubMedGoogle Scholar
  38. Cicchetti D (2010) Resilience under conditions of extreme stress: a multilevel perspective. World Psychiatry 9:145–154PubMedPubMedCentralCrossRefGoogle Scholar
  39. Cirulli F, Laviola G, Ricceri L (2009) Risk factors for mental health: translational models from behavioural neuroscience. Neurosci Biobehav Rev 33:493–497PubMedPubMedCentralCrossRefGoogle Scholar
  40. Clarke AS, Wittwer DJ, Abbott DH, Schneider ML (1994) Long-term effects of prenatal stress on HPA axis activity in juvenile rhesus monkeys. Dev Psychobiol 27:257–269. doi: 10.1002/dev.420270502 PubMedCrossRefGoogle Scholar
  41. Coe CL, Kramer M, Czeh B, Gould E, Reeves AJ, Kirschbaum C, Fuchs E (2003) Prenatal stress diminishes neurogenesis in the dentate gyrus of juvenile rhesus monkeys. Biol Psychiatry 54:1025–1034PubMedCrossRefGoogle Scholar
  42. Constantinof A, Moisiadis VG, Matthews SG (2015) Programming of stress pathways: a transgenerational perspective. J Steroid Biochem Mol Biol. doi: 10.1016/j.jsbmb.2015.10.008 PubMedGoogle Scholar
  43. Cordero MI, Ansermet F, Sandi C (2013) Long-term programming of enhanced aggression by peripuberty stress in female rats. Psychoneuroendocrinology 38:2758–2769. doi: 10.1016/j.psyneuen.2013.07.005 PubMedCrossRefGoogle Scholar
  44. Daskalakis NP, Bagot RC, Parker KJ, Vinkers CH, de Kloet ER (2013) The three-hit concept of vulnerability and resilience: toward understanding adaptation to early-life adversity outcome. Psychoneuroendocrinology 38:1858–1873. doi: 10.1016/j.psyneuen.2013.06.008 PubMedPubMedCentralCrossRefGoogle Scholar
  45. De Bellis MD, Keshavan MS, Shifflett H, Iyengar S, Beers SR, Hall J, Moritz G (2002) Brain structures in pediatric maltreatment-related posttraumatic stress disorder: a sociodemographically matched study. Biol Psychiatry 52:1066–1078PubMedCrossRefGoogle Scholar
  46. Dias BG, Ressler KJ (2014) Parental olfactory experience influences behavior and neural structure in subsequent generations. Nat Neurosci 17:89–96. doi: 10.1038/nn.3594 PubMedCrossRefGoogle Scholar
  47. Dickerson PA, Lally BE, Gunnel E, Birkle DL, Salm AK (2005) Early emergence of increased fearful behavior in prenatally stressed rats. Physiol Behav 86:586–593. doi: 10.1016/j.physbeh.2005.08.025 PubMedCrossRefGoogle Scholar
  48. Dietz DM, Nestler EJ (2012) From father to offspring: paternal transmission of depressive-like behaviors. Neuropsychopharmacology 37:311–312. doi: 10.1038/npp.2011.167 PubMedCrossRefGoogle Scholar
  49. Dudley KJ, Li X, Kobor MS, Kippin TE, Bredy TW (2011) Epigenetic mechanisms mediating vulnerability and resilience to psychiatric disorders. Neurosci Biobehav Rev 35:1544–1551. doi: 10.1016/j.neubiorev.2010.12.016 PubMedCrossRefGoogle Scholar
  50. Ellenbroek BA, Cools AR (2000) Animal models for the negative symptoms of schizophrenia. Behav Pharmacol 11:223–233PubMedCrossRefGoogle Scholar
  51. Estanislau C, Morato S (2005) Prenatal stress produces more behavioral alterations than maternal separation in the elevated plus-maze and in the elevated T-maze. Behav Brain Res 163:70–77. doi: 10.1016/j.bbr.2005.04.003 PubMedCrossRefGoogle Scholar
  52. Fagiolini M, Jensen CL, Champagne FA (2009) Epigenetic influences on brain development and plasticity. Curr Opin Neurobiol 19:207–212. doi: 10.1016/j.conb.2009.05.009 PubMedPubMedCentralCrossRefGoogle Scholar
  53. Feder A, Nestler EJ, Charney DS (2009) Psychobiology and molecular genetics of resilience. Nat Rev Neurosci 10:446–457. doi: 10.1038/nrn2649 PubMedPubMedCentralCrossRefGoogle Scholar
  54. Forest KB (1990) The interplay of childhood stress and adult life events on women’s symptoms of depression. Cornell University, IthacaGoogle Scholar
  55. Fox SE, Levitt P, Nelson CA 3rd (2010) How the timing and quality of early experiences influence the development of brain architecture. Child Dev 81:28–40. doi: 10.1111/j.1467-8624.2009.01380.x PubMedPubMedCentralCrossRefGoogle Scholar
  56. Francis D, Diorio J, Liu D, Meaney MJ (1999) Nongenomic transmission across generations of maternal behavior and stress responses in the rat. Science 286:1155–1158PubMedCrossRefGoogle Scholar
  57. Frankenhuis WE, Del Giudice M (2012) When do adaptive developmental mechanisms yield maladaptive outcomes? Dev Psychol 48:628–642. doi: 10.1037/a0025629 PubMedCrossRefGoogle Scholar
  58. Franklin TB et al (2010) Epigenetic transmission of the impact of early stress across generations. Biol Psychiatry 68:408–415. doi: 10.1016/j.biopsych.2010.05.036 PubMedCrossRefGoogle Scholar
  59. Franklin TB, Linder N, Russig H, Thony B, Mansuy IM (2011) Influence of early stress on social abilities and serotonergic functions across generations in mice. PLoS One 6:e21842. doi: 10.1371/journal.pone.0021842 PubMedPubMedCentralCrossRefGoogle Scholar
  60. Fride E, Weinstock M (1988) Prenatal stress increases anxiety related behavior and alters cerebral lateralization of dopamine activity. Life Sci 42:1059–1065PubMedCrossRefGoogle Scholar
  61. Frodl T, Reinhold E, Koutsouleris N, Reiser M, Meisenzahl EM (2010) Interaction of childhood stress with hippocampus and prefrontal cortex volume reduction in major depression. J Psychiatr Res 44:799–807. doi: 10.1016/j.jpsychires.2010.01.006 PubMedCrossRefGoogle Scholar
  62. Frye CA, Wawrzycki J (2003) Effect of prenatal stress and gonadal hormone condition on depressive behaviors of female and male rats. Horm Behav 44:319–326PubMedCrossRefGoogle Scholar
  63. Fuentes S et al (2014) Sex-dependent effects of an early life treatment in rats that increases maternal care: vulnerability or resilience? Front Behav Neurosci 8:56. doi: 10.3389/fnbeh.2014.00056 PubMedPubMedCentralCrossRefGoogle Scholar
  64. Fujioka A, Fujioka T, Ishida Y, Maekawa T, Nakamura S (2006) Differential effects of prenatal stress on the morphological maturation of hippocampal neurons. Neuroscience 141:907–915. doi: 10.1016/j.neuroscience.2006.04.046 PubMedCrossRefGoogle Scholar
  65. Furukawa TA, Ogura A, Hirai T, Fujihara S, Kitamura T, Takahashi K (1999) Early parental separation experiences among patients with bipolar disorder and major depression: a case-control study. J Affect Disord 52:85–91PubMedCrossRefGoogle Scholar
  66. Gapp K et al (2014) Implication of sperm RNAs in transgenerational inheritance of the effects of early trauma in mice. Nat Neurosci 17:667–669. doi: 10.1038/nn.3695 PubMedPubMedCentralCrossRefGoogle Scholar
  67. Gluckman P, Hanson M (2006) Developmental origins of health and disease. Cambridge University Press. doi: 10.1017/CBO9780511544699
  68. Gluckman PD, Hanson MA, Beedle AS (2007) Early life events and their consequences for later disease: a life history and evolutionary perspective. Am J Hum Biol 19:1–19. doi: 10.1002/ajhb.20590 PubMedCrossRefGoogle Scholar
  69. Gos T, Bock J, Poeggel G, Braun K (2008) Stress-induced synaptic changes in the rat anterior cingulate cortex are dependent on endocrine developmental time windows. Synapse 62:229–232. doi: 10.1002/syn.20477 PubMedCrossRefGoogle Scholar
  70. Graeff J, Mansuy IM (2008) Epigenetic codes in cognition and behaviour. Behav Brain Res 192:70–87. doi: 10.1016/j.bbr.2008.01.021 CrossRefGoogle Scholar
  71. Grigoryan G, Segal M (2013) Prenatal stress affects network properties of rat hippocampal neurons. Biol Psychiatry 73:1095–1102. doi: 10.1016/j.biopsych.2013.02.003 PubMedCrossRefGoogle Scholar
  72. Grigoryan G, Ardi Z, Albrecht A, Richter-Levin G, Segal M (2015) Juvenile stress alters LTP in ventral hippocampal slices: involvement of noradrenergic mechanisms. Behav Brain Res 278:559–562. doi: 10.1016/j.bbr.2014.09.047 PubMedCrossRefGoogle Scholar
  73. Gunnar MR, Frenn K, Wewerka SS, Van Ryzin MJ (2009) Moderate versus severe early life stress: associations with stress reactivity and regulation in 10–12-year-old children. Psychoneuroendocrinology 34:62–75. doi: 10.1016/j.psyneuen.2008.08.013 PubMedCrossRefGoogle Scholar
  74. Gutierrez-Rojas C, Pascual R, Bustamante C (2013) Prenatal stress alters the behavior and dendritic morphology of the medial orbitofrontal cortex in mouse offspring during lactation. Int J Dev Neurosci 31:505–511. doi: 10.1016/j.ijdevneu.2013.05.008 PubMedCrossRefGoogle Scholar
  75. Hayashi A, Nagaoka M, Yamada K, Ichitani Y, Miake Y, Okado N (1998) Maternal stress induces synaptic loss and developmental disabilities of offspring. Int J Dev Neurosci 16:209–216PubMedCrossRefGoogle Scholar
  76. Heard E, Martienssen RA (2014) Transgenerational epigenetic inheritance: myths and mechanisms. Cell 157:95–109. doi: 10.1016/j.cell.2014.02.045 PubMedPubMedCentralCrossRefGoogle Scholar
  77. Heim C, Nemeroff CB (2001) The role of childhood trauma in the neurobiology of mood and anxiety disorders: preclinical and clinical studies. Biol Psychiatry 49:1023–1039PubMedCrossRefGoogle Scholar
  78. Heindel JJ et al (2015) Developmental origins of health and disease: integrating environmental influences. Endocrinology 156:3416–3421. doi: 10.1210/EN.2015-1394 PubMedPubMedCentralCrossRefGoogle Scholar
  79. Helmeke C, Poeggel G, Braun K (2001) Differential emotional experience induces elevated spine densities on basal dendrites of pyramidal neurons in the anterior cingulate cortex of Octodon degus. Neuroscience 104:927–931PubMedCrossRefGoogle Scholar
  80. Herrman H, Stewart DE, Diaz-Granados N, Berger EL, Jackson B, Yuen T (2011) What is resilience? Can J Psychiatry 56:258–265PubMedGoogle Scholar
  81. Hoffmann A, Spengler D (2012) The lasting legacy of social stress on the epigenome of the hypothalamic-pituitary-adrenal axis. Epigenomics 4:431–444. doi: 10.2217/epi.12.34 PubMedCrossRefGoogle Scholar
  82. Hosseini-Sharifabad M, Hadinedoushan H (2007) Prenatal stress induces learning deficits and is associated with a decrease in granules and CA3 cell dendritic tree size in rat hippocampus. Anat Sci Int 82:211–217. doi: 10.1111/j.1447-073X.2007.00186.x PubMedCrossRefGoogle Scholar
  83. Huot RL, Thrivikraman KV, Meaney MJ, Plotsky PM (2001) Development of adult ethanol preference and anxiety as a consequence of neonatal maternal separation in Long Evans rats and reversal with antidepressant treatment. Psychopharmacology 158:366–373. doi: 10.1007/s002130100701 PubMedCrossRefGoogle Scholar
  84. Huttenlocher PR (1979) Synaptic density in human frontal cortex—developmental changes and effects of aging. Brain Res 163:195–205PubMedCrossRefGoogle Scholar
  85. Huttenlocher PR, Dabholkar AS (1997) Regional differences in synaptogenesis in human cerebral cortex. J Comp Neurol 387:167–178PubMedCrossRefGoogle Scholar
  86. Isgor C, Kabbaj M, Akil H, Watson SJ (2004) Delayed effects of chronic variable stress during peripubertal-juvenile period on hippocampal morphology and on cognitive and stress axis functions in rats. Hippocampus 14:636–648. doi: 10.1002/hipo.10207 PubMedCrossRefGoogle Scholar
  87. Ishikawa J, Nishimura R, Ishikawa A (2015) Early-life stress induces anxiety-like behaviors and activity imbalances in the medial prefrontal cortex and amygdala in adult rats. Eur J Neurosci 41:442–453. doi: 10.1111/ejn.12825 PubMedCrossRefGoogle Scholar
  88. Ito A, Kikusui T, Takeuchi Y, Mori Y (2006) Effects of early weaning on anxiety and autonomic responses to stress in rats. Behav Brain Res 171:87–93. doi: 10.1016/j.bbr.2006.03.023 PubMedCrossRefGoogle Scholar
  89. Jablonka E, Raz G (2009) Transgenerational epigenetic inheritance: prevalence, mechanisms, and implications for the study of heredity and evolution. Q Rev Biol 84:131–176PubMedCrossRefGoogle Scholar
  90. Jia N et al (2010) Prenatal stress causes dendritic atrophy of pyramidal neurons in hippocampal CA3 region by glutamate in offspring rats. Dev Neurobiol 70:114–125. doi: 10.1002/dneu.20766 PubMedGoogle Scholar
  91. Joseph R (1999) Environmental influences on neural plasticity, the limbic system, emotional development and attachment: a review. Child Psychiatry Hum Dev 29:189–208PubMedCrossRefGoogle Scholar
  92. Kalpachidou T, Raftogianni A, Melissa P, Kollia AM, Stylianopoulou F, Stamatakis A (2015) Effects of a neonatal experience involving reward through maternal contact on the noradrenergic system of the rat prefrontal cortex. Cereb Cortex. doi: 10.1093/cercor/bhv192 PubMedGoogle Scholar
  93. Kanari K, Kikusui T, Takeuchi Y, Mori Y (2005) Multidimensional structure of anxiety-related behavior in early-weaned rats. Behav Brain Res 156:45–52. doi: 10.1016/j.bbr.2004.05.008 PubMedCrossRefGoogle Scholar
  94. Karatsoreos IN, McEwen BS (2013) Annual Research Review: the neurobiology and physiology of resilience and adaptation across the life course. J Child Psychol Psychiatry 54:337–347. doi: 10.1111/jcpp.12054 PubMedCrossRefGoogle Scholar
  95. Katz M et al (2009) Prefrontal plasticity and stress inoculation-induced resilience. Dev Neurosci 31:293–299. doi: 10.1159/000216540 PubMedPubMedCentralCrossRefGoogle Scholar
  96. Kawamura T, Chen J, Takahashi T, Ichitani Y, Nakahara D (2006) Prenatal stress suppresses cell proliferation in the early developing brain. Neuroreport 17:1515–1518. doi: 10.1097/01.wnr.0000236849.53682.6d PubMedCrossRefGoogle Scholar
  97. Keshet GI, Weinstock M (1995) Maternal naltrexone prevents morphological and behavioral alterations induced in rats by prenatal stress. Pharmacol Biochem Behav 50:413–419PubMedCrossRefGoogle Scholar
  98. Khan A, McCormack HC, Bolger EA, McGreenery CE, Vitaliano G, Polcari A, Teicher MH (2015) Childhood maltreatment, depression, and suicidal ideation: critical importance of parental and peer emotional abuse during developmental sensitive periods in males and females. Front Psychiatry 6:42. doi: 10.3389/fpsyt.2015.00042 PubMedPubMedCentralGoogle Scholar
  99. Khoshaba DM, Maddi SR (1999) Early experiences in hardiness development. Consult Psychol J Pract Res 51:106–116. doi: 10.1037/1061-4087.51.2.106 CrossRefGoogle Scholar
  100. Kikusui T, Isaka Y, Mori Y (2005) Early weaning deprives mouse pups of maternal care and decreases their maternal behavior in adulthood. Behav Brain Res 162:200–206. doi: 10.1016/j.bbr.2005.03.013 PubMedCrossRefGoogle Scholar
  101. Kikusui T, Nakamura K, Kakuma Y, Mori Y (2006) Early weaning augments neuroendocrine stress responses in mice. Behav Brain Res 175:96–103. doi: 10.1016/j.bbr.2006.08.007 PubMedCrossRefGoogle Scholar
  102. Kikusui T, Kiyokawa Y, Mori Y (2007) Deprivation of mother-pup interaction by early weaning alters myelin formation in male, but not female. ICR mice Brain Res 1133:115–122. doi: 10.1016/j.brainres.2006.11.031 PubMedCrossRefGoogle Scholar
  103. Kikusui T, Ichikawa S, Mori Y (2009) Maternal deprivation by early weaning increases corticosterone and decreases hippocampal BDNF and neurogenesis in mice. Psychoneuroendocrinology 34:762–772. doi: 10.1016/j.psyneuen.2008.12.009 PubMedCrossRefGoogle Scholar
  104. Kraszpulski M, Dickerson PA, Salm AK (2006) Prenatal stress affects the developmental trajectory of the rat amygdala. Stress 9:85–95. doi: 10.1080/10253890600798109 PubMedCrossRefGoogle Scholar
  105. Kundakovic M, Champagne FA (2015) Early-life experience, epigenetics, and the developing brain. Neuropsychopharmacology 40:141–153. doi: 10.1038/npp.2014.140 PubMedCrossRefGoogle Scholar
  106. Kundakovic M, Lim S, Gudsnuk K, Champagne FA (2013) Sex-specific and strain-dependent effects of early life adversity on behavioral and epigenetic outcomes. Front Psychiatry 4:78. doi: 10.3389/fpsyt.2013.00078 PubMedPubMedCentralCrossRefGoogle Scholar
  107. Lehmann J, Pryce CR, Bettschen D, Feldon J (1999) The maternal separation paradigm and adult emotionality and cognition in male and female Wistar rats. Pharmacol Biochem Behav 64:705–715PubMedCrossRefGoogle Scholar
  108. Lemaire V, Koehl M, Le Moal M, Abrous DN (2000) Prenatal stress produces learning deficits associated with an inhibition of neurogenesis in the hippocampus. Proc Natl Acad Sci USA 97:11032–11037PubMedPubMedCentralCrossRefGoogle Scholar
  109. Leshem M, Schulkin J (2012) Transgenerational effects of infantile adversity and enrichment in male and female rats. Dev Psychobiol 54:169–186. doi: 10.1002/dev.20592 PubMedCrossRefGoogle Scholar
  110. Levenson JM, Sweatt JD (2005) Epigenetic mechanisms in memory formation. Nat Rev Neurosci 6:108–118. doi: 10.1038/nrn1604 PubMedCrossRefGoogle Scholar
  111. Leventopoulos M, Russig H, Feldon J, Pryce CR, Opacka-Juffry J (2009) Early deprivation leads to long-term reductions in motivation for reward and 5-HT1A binding and both effects are reversed by fluoxetine. Neuropharmacology 56:692–701. doi: 10.1016/j.neuropharm.2008.12.005 PubMedCrossRefGoogle Scholar
  112. Levine S (1956) A further study of infantile handling and adult avoidance learning. J Personal 25:70–80CrossRefGoogle Scholar
  113. Levine S (1957) Infantile experience and resistance to physiological stress. Science 126:405PubMedCrossRefGoogle Scholar
  114. Levine S (1960) Stimulation in infancy. Sci Am 202:81–86PubMedCrossRefGoogle Scholar
  115. Levine S, Alpert M, Lewis GW (1957) Infantile experience and the maturation of the pituitary adrenal axis. Science 126:1347PubMedCrossRefGoogle Scholar
  116. Levine A, Worrell TR, Zimnisky R, Schmauss C (2012) Early life stress triggers sustained changes in histone deacetylase expression and histone H4 modifications that alter responsiveness to adolescent antidepressant treatment. Neurobiol Dis 45:488–498. doi: 10.1016/j.nbd.2011.09.005 PubMedCrossRefGoogle Scholar
  117. Liebers R, Rassoulzadegan M, Lyko F (2014) Epigenetic regulation by heritable RNA. PLoS Genet 10:e1004296. doi: 10.1371/journal.pgen.1004296 PubMedPubMedCentralCrossRefGoogle Scholar
  118. Lippmann M, Bress A, Nemeroff CB, Plotsky PM, Monteggia LM (2007) Long-term behavioural and molecular alterations associated with maternal separation in rats. Eur J Neurosci 25:3091–3098. doi: 10.1111/j.1460-9568.2007.05522.x PubMedCrossRefGoogle Scholar
  119. Liu D et al (1997) Maternal care, hippocampal glucocorticoid receptors, and hypothalamic–pituitary–adrenal responses to stress. Science 277:1659–1662PubMedCrossRefGoogle Scholar
  120. Liu D, Diorio J, Day JC, Francis DD, Meaney MJ (2000) Maternal care, hippocampal synaptogenesis and cognitive development in rats. Nat Neurosci 3:799–806. doi: 10.1038/77702 PubMedCrossRefGoogle Scholar
  121. Loman MM, Gunnar MR (2010) Early experience and the development of stress reactivity and regulation in children. Neurosci Biobehav Rev 34:867–876. doi: 10.1016/j.neubiorev.2009.05.007 PubMedCrossRefGoogle Scholar
  122. Lucassen PJ, Bosch OJ, Jousma E, Kromer SA, Andrew R, Seckl JR, Neumann ID (2009) Prenatal stress reduces postnatal neurogenesis in rats selectively bred for high, but not low, anxiety: possible key role of placental 11beta-hydroxysteroid dehydrogenase type 2. Eur J Neurosci 29:97–103. doi: 10.1111/j.1460-9568.2008.06543.x PubMedCrossRefGoogle Scholar
  123. Lucassen PJ, Naninck EF, van Goudoever JB, Fitzsimons C, Joels M, Korosi A (2013) Perinatal programming of adult hippocampal structure and function; emerging roles of stress, nutrition and epigenetics. Trends Neurosci 36:621–631. doi: 10.1016/j.tins.2013.08.002 PubMedCrossRefGoogle Scholar
  124. Luo XM, Yuan SN, Guan XT, Xie X, Shao F, Wang WW (2014) Juvenile stress affects anxiety-like behavior and limbic monoamines in adult rats. Physiol Behav 135:7–16. doi: 10.1016/j.physbeh.2014.05.035 PubMedCrossRefGoogle Scholar
  125. Lupien SJ, McEwen BS, Gunnar MR, Heim C (2009) Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nat Rev Neurosci 10:434–445. doi: 10.1038/nrn2639 PubMedCrossRefGoogle Scholar
  126. Lutz PE, Turecki G (2014) DNA methylation and childhood maltreatment: from animal models to human studies. Neuroscience 264:142–156. doi: 10.1016/j.neuroscience.2013.07.069 PubMedCrossRefGoogle Scholar
  127. Lyons DM, Parker KJ (2007) Stress inoculation-induced indications of resilience in monkeys. J Trauma Stress 20:423–433. doi: 10.1002/jts.20265 PubMedCrossRefGoogle Scholar
  128. Maccari S, Darnaudery M, Morley-Fletcher S, Zuena AR, Cinque C, Van Reeth O (2003) Prenatal stress and long-term consequences: implications of glucocorticoid hormones. Neurosci Biobehav Rev 27:119–127PubMedCrossRefGoogle Scholar
  129. Maccari S, Krugers HJ, Morley-Fletcher S, Szyf M, Brunton PJ (2014) The consequences of early-life adversity: neurobiological, behavioural and epigenetic adaptations. J Neuroendocrinol 26:707–723. doi: 10.1111/jne.12175 PubMedCrossRefGoogle Scholar
  130. Mackay M, Rymer TL, Pillay N (2014) Separation at weaning from the family is stressful for naturally group-living, but not solitary-living, male African striped mice Rhabdomys. Stress 17:266–274. doi: 10.3109/10253890.2014.910762 PubMedCrossRefGoogle Scholar
  131. Macri S, Zoratto F, Laviola G (2011) Early-stress regulates resilience, vulnerability and experimental validity in laboratory rodents through mother-offspring hormonal transfer. Neurosci Biobehav Rev 35:1534–1543. doi: 10.1016/j.neubiorev.2010.12.014 PubMedCrossRefGoogle Scholar
  132. Marais L, van Rensburg SJ, van Zyl JM, Stein DJ, Daniels WM (2008) Maternal separation of rat pups increases the risk of developing depressive-like behavior after subsequent chronic stress by altering corticosterone and neurotrophin levels in the hippocampus. Neurosci Res 61:106–112. doi: 10.1016/j.neures.2008.01.011 PubMedCrossRefGoogle Scholar
  133. Marquez C et al (2013) Peripuberty stress leads to abnormal aggression, altered amygdala and orbitofrontal reactivity and increased prefrontal MAOA gene expression Transl. Psychiatry 3:e216. doi: 10.1038/tp.2012.144 Google Scholar
  134. Martinez-Tellez RI, Hernandez-Torres E, Gamboa C, Flores G (2009) Prenatal stress alters spine density and dendritic length of nucleus accumbens and hippocampus neurons in rat offspring. Synapse 63:794–804. doi: 10.1002/syn.20664 PubMedCrossRefGoogle Scholar
  135. McCrory E, De Brito SA, Viding E (2010) Research review: the neurobiology and genetics of maltreatment and adversity. J Child Psychol Psychiatry 51:1079–1095. doi: 10.1111/j.1469-7610.2010.02271.x PubMedCrossRefGoogle Scholar
  136. McEwen BS (1998) Stress, adaptation, and disease. Allostasis and allostatic load. Ann N Y Acad Sci 840:33–44PubMedCrossRefGoogle Scholar
  137. McGowan PO et al (2009) Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nat Neurosci 12:342–348. doi: 10.1038/nn.2270 PubMedPubMedCentralCrossRefGoogle Scholar
  138. McGowan PO, Suderman M, Sasaki A, Huang TC, Hallett M, Meaney MJ, Szyf M (2011) Broad epigenetic signature of maternal care in the brain of adult rats. PLoS One 6:e14739. doi: 10.1371/journal.pone.0014739 PubMedPubMedCentralCrossRefGoogle Scholar
  139. Meaney MJ (2001) Maternal care, gene expression, and the transmission of individual differences in stress reactivity across generations. Annu Rev Neurosci 24:1161–1192. doi: 10.1146/annurev.neuro.24.1.1161 PubMedCrossRefGoogle Scholar
  140. Meaney MJ, Ferguson-Smith AC (2010) Epigenetic regulation of the neural transcriptome: the meaning of the marks. Nat Neurosci 13:1313–1318. doi: 10.1038/nn1110-1313 PubMedCrossRefGoogle Scholar
  141. Meaney MJ, Aitken DH, van Berkel C, Bhatnagar S, Sapolsky RM (1988) Effect of neonatal handling on age-related impairments associated with the hippocampus. Science 239:766–768PubMedCrossRefGoogle Scholar
  142. Meaney MJ, Aitken DH, Bhatnagar S, Sapolsky RM (1991a) Postnatal handling attenuates certain neuroendocrine, anatomical, and cognitive dysfunctions associated with aging in female rats. Neurobiol Aging 12:31–38PubMedCrossRefGoogle Scholar
  143. Meaney MJ, Mitchell JB, Aitken DH, Bhatnagar S, Bodnoff SR, Iny LJ, Sarrieau A (1991b) The effects of neonatal handling on the development of the adrenocortical response to stress: implications for neuropathology and cognitive deficits in later life. Psychoneuroendocrinology 16:85–103PubMedCrossRefGoogle Scholar
  144. Menard JL, Hakvoort RM (2007) Variations of maternal care alter offspring levels of behavioural defensiveness in adulthood: evidence for a threshold model. Behav Brain Res 176:302–313. doi: 10.1016/j.bbr.2006.10.014 PubMedCrossRefGoogle Scholar
  145. Millstein RA, Holmes A (2007) Effects of repeated maternal separation on anxiety- and depression-related phenotypes in different mouse strains. Neurosci Biobehav Rev 31:3–17. doi: 10.1016/j.neubiorev.2006.05.003 PubMedCrossRefGoogle Scholar
  146. Morley-Fletcher S, Darnaudery M, Koehl M, Casolini P, Van Reeth O, Maccari S (2003) Prenatal stress in rats predicts immobility behavior in the forced swim test. Effects of a chronic treatment with tianeptine. Brain Res 989:246–251PubMedCrossRefGoogle Scholar
  147. Mueller BR, Bale TL (2008) Sex-specific programming of offspring emotionality after stress early in pregnancy. J Neurosci 28:9055–9065. doi: 10.1523/JNEUROSCI.1424-08.2008 PubMedPubMedCentralCrossRefGoogle Scholar
  148. Muhammad A, Kolb B (2011) Mild prenatal stress-modulated behavior and neuronal spine density without affecting amphetamine sensitization. Dev Neurosci 33:85–98. doi: 10.1159/000324744 PubMedCrossRefGoogle Scholar
  149. Murgatroyd C et al (2009) Dynamic DNA methylation programs persistent adverse effects of early-life stress. Nat Neurosci 12:1559–1566. doi: 10.1038/nn.2436 PubMedCrossRefGoogle Scholar
  150. Murmu MS, Salomon S, Biala Y, Weinstock M, Braun K, Bock J (2006) Changes of spine density and dendritic complexity in the prefrontal cortex in offspring of mothers exposed to stress during pregnancy. Eur J Neurosci 24:1477–1487. doi: 10.1111/j.1460-9568.2006.05024.x PubMedCrossRefGoogle Scholar
  151. Mychasiuk R, Gibb R, Kolb B (2012) Prenatal stress alters dendritic morphology and synaptic connectivity in the prefrontal cortex and hippocampus of developing offspring. Synapse 66:308–314. doi: 10.1002/syn.21512 PubMedCrossRefGoogle Scholar
  152. Nakamura K, Kikusui T, Takeuchi Y, Mori Y (2008) Changes in social instigation- and food restriction-induced aggressive behaviors and hippocampal 5HT1B mRNA receptor expression in male mice from early weaning. Behav Brain Res 187:442–448. doi: 10.1016/j.bbr.2007.10.002 PubMedCrossRefGoogle Scholar
  153. Nederhof E, Schmidt MV (2012) Mismatch or cumulative stress: toward an integrated hypothesis of programming effects. Physiol Behav 106:691–700. doi: 10.1016/j.physbeh.2011.12.008 PubMedCrossRefGoogle Scholar
  154. Nishi M, Horii-Hayashi N, Sasagawa T (2014) Effects of early life adverse experiences on the brain: implications from maternal separation models in rodents. Front Neurosci 8:166. doi: 10.3389/fnins.2014.00166 PubMedPubMedCentralCrossRefGoogle Scholar
  155. Oitzl MS, Champagne DL, van der Veen R, de Kloet ER (2010) Brain development under stress: hypotheses of glucocorticoid actions revisited. Neurosci Biobehav Rev 34:853–866. doi: 10.1016/j.neubiorev.2009.07.006 PubMedCrossRefGoogle Scholar
  156. Papaioannou A, Dafni U, Alikaridis F, Bolaris S, Stylianopoulou F (2002) Effects of neonatal handling on basal and stress-induced monoamine levels in the male and female rat brain. Neuroscience 114:195–206. doi: 10.1016/S0306-4522(02)00129-X PubMedCrossRefGoogle Scholar
  157. Parker KJ, Maestripieri D (2011) Identifying key features of early stressful experiences that produce stress vulnerability and resilience in primates. Neurosci Biobehav Rev 35:1466–1483. doi: 10.1016/j.neubiorev.2010.09.003 PubMedCrossRefGoogle Scholar
  158. Parker KJ, Buckmaster CL, Schatzberg AF, Lyons DM (2004) Prospective investigation of stress inoculation in young monkeys. Arch Gen Psychiatry 61:933–941. doi: 10.1001/archpsyc.61.9.933 CrossRefPubMedGoogle Scholar
  159. Pechtel P, Lyons-Ruth K, Anderson CM, Teicher MH (2014) Sensitive periods of amygdala development: the role of maltreatment in preadolescence. Neuroimage 97:236–244. doi: 10.1016/j.neuroimage.2014.04.025 PubMedPubMedCentralCrossRefGoogle Scholar
  160. Plotsky PM, Thrivikraman KV, Nemeroff CB, Caldji C, Sharma S, Meaney MJ (2005) Long-term consequences of neonatal rearing on central corticotropin-releasing factor systems in adult male rat offspring. Neuropsychopharmacology 30:2192–2204. doi: 10.1038/sj.npp.1300769 PubMedCrossRefGoogle Scholar
  161. Poeggel G, Helmeke C, Abraham A, Schwabe T, Friedrich P, Braun K (2003) Juvenile emotional experience alters synaptic composition in the rodent cortex, hippocampus, and lateral amygdala. Proc Natl Acad Sci USA 100:16137–16142. doi: 10.1073/pnas.2434663100 PubMedPubMedCentralCrossRefGoogle Scholar
  162. Poltyrev T, Keshet GI, Kay G, Weinstock M (1996) Role of experimental conditions in determining differences in exploratory behavior of prenatally stressed rats. Dev Psychobiol 29:453–462. doi: 10.1002/(SICI)1098-2302(199607)29:5<453:AID-DEV4>3.0.CO;2-N PubMedCrossRefGoogle Scholar
  163. Poltyrev T, Gorodetsky E, Bejar C, Schorer-Apelbaum D, Weinstock M (2005) Effect of chronic treatment with ladostigil (TV-3326) on anxiogenic and depressive-like behaviour and on activity of the hypothalamic-pituitary-adrenal axis in male and female prenatally stressed rats. Psychopharmacology 181:118–125. doi: 10.1007/s00213-005-2229-z PubMedCrossRefGoogle Scholar
  164. Pryce CR, Ruedi-Bettschen D, Dettling AC, Weston A, Russig H, Ferger B, Feldon J (2005) Long-term effects of early-life environmental manipulations in rodents and primates: potential animal models in depression research. Neurosci Biobehav Rev 29:649–674. doi: 10.1016/j.neubiorev.2005.03.011 PubMedCrossRefGoogle Scholar
  165. Pryce CR, Aubert Y, Maier C, Pearce PC, Fuchs E (2011) The developmental impact of prenatal stress, prenatal dexamethasone and postnatal social stress on physiology, behaviour and neuroanatomy of primate offspring: studies in rhesus macaque and common marmoset. Psychopharmacology 214:33–53. doi: 10.1007/s00213-010-1989-2 PubMedCrossRefGoogle Scholar
  166. Rana S, Pugh PC, Jackson N, Clinton SM, Kerman IA (2015) Inborn stress reactivity shapes adult behavioral consequences of early-life maternal separation stress. Neurosci Lett 584:146–150. doi: 10.1016/j.neulet.2014.10.011 PubMedCrossRefGoogle Scholar
  167. Rice CJ, Sandman CA, Lenjavi MR, Baram TZ (2008) A novel mouse model for acute and long-lasting consequences of early life stress. Endocrinology 149:4892–4900. doi: 10.1210/en.2008-0633 PubMedPubMedCentralCrossRefGoogle Scholar
  168. Richards EJ (2006) Inherited epigenetic variation—revisiting soft inheritance. Nat Rev Genet 7:395–401. doi: 10.1038/nrg1834 PubMedCrossRefGoogle Scholar
  169. Rodgers AB, Morgan CP, Bronson SL, Revello S, Bale TL (2013) Paternal stress exposure alters sperm microRNA content and reprograms offspring HPA stress axis regulation. J Neurosci 33:9003–9012. doi: 10.1523/JNEUROSCI.0914-13.2013 PubMedPubMedCentralCrossRefGoogle Scholar
  170. Roth TL, Lubin FD, Funk AJ, Sweatt JD (2009) Lasting epigenetic influence of early-life adversity on the BDNF gene. Biol Psychiatry 65:760–769. doi: 10.1016/j.biopsych.2008.11.028 PubMedPubMedCentralCrossRefGoogle Scholar
  171. Ruedi-Bettschen D et al (2006) Early deprivation leads to altered behavioural, autonomic and endocrine responses to environmental challenge in adult Fischer rats. Eur J Neurosci 24:2879–2893. doi: 10.1111/j.1460-9568.2006.05158.x PubMedCrossRefGoogle Scholar
  172. Salm AK, Pavelko M, Krouse EM, Webster W, Kraszpulski M, Birkle DL (2004) Lateral amygdaloid nucleus expansion in adult rats is associated with exposure to prenatal stress. Brain Res Dev Brain Res 148:159–167. doi: 10.1016/j.devbrainres.2003.11.005 PubMedCrossRefGoogle Scholar
  173. Sananbenesi F, Fischer A (2009) The epigenetic bottleneck of neurodegenerative and psychiatric diseases. Biol Chem 390:1145–1153. doi: 10.1515/BC.2009.131 PubMedCrossRefGoogle Scholar
  174. Santarelli S et al (2014) Evidence supporting the match/mismatch hypothesis of psychiatric disorders. Eur Neuropsychopharmacol 24:907–918. doi: 10.1016/j.euroneuro.2014.02.002 PubMedCrossRefGoogle Scholar
  175. Schäble S, Poeggel G, Braun K, Gruss M (2007) Long-term consequences of early experience on adult avoidance learning in female rats: role of the dopaminergic system. Neurobiol Learn Mem 87:109–122. doi: 10.1016/j.nlm.2006.07.005 PubMedCrossRefGoogle Scholar
  176. Schalinski I, Teicher MH (2015) Type and timing of childhood maltreatment and severity of shutdown dissociation in patients with schizophrenia spectrum disorder. PLoS One 10:e0127151. doi: 10.1371/journal.pone.0127151 PubMedPubMedCentralCrossRefGoogle Scholar
  177. Schmidt MV (2011) Animal models for depression and the mismatch hypothesis of disease. Psychoneuroendocrinology 36:330–338. doi: 10.1016/j.psyneuen.2010.07.001 PubMedCrossRefGoogle Scholar
  178. Schneider ML (1992a) Delayed object permanence development in prenatelly stressed rhesus monkey infants (Macaca Mulatta). OTJR Occup Particip Health 12:96–110. doi: 10.1177/153944929201200203 CrossRefGoogle Scholar
  179. Schneider ML (1992b) Prenatal stress exposure alters postnatal behavioral expression under conditions of novelty challenge in rhesus monkey infants. Dev Psychobiol 25:529–540. doi: 10.1002/dev.420250706 PubMedCrossRefGoogle Scholar
  180. Schroeder M, Sultany T, Weller A (2013) Prenatal stress effects on emotion regulation differ by genotype and sex in prepubertal rats. Dev Psychobiol 55:176–192. doi: 10.1002/dev.21010 PubMedCrossRefGoogle Scholar
  181. Segal M (2005) Dendritic spines and long-term plasticity. Nat Rev Neurosci 6:277–284. doi: 10.1038/nrn1649 PubMedCrossRefGoogle Scholar
  182. Shachar-Dadon A, Schulkin J, Leshem M (2009) Adversity before conception will affect adult progeny in rats. Dev Psychol 45:9–16. doi: 10.1037/a0014030 PubMedCrossRefGoogle Scholar
  183. Skinner MK, Guerrero-Bosagna C, Haque MM (2015) Environmentally induced epigenetic transgenerational inheritance of sperm epimutations promote genetic mutations. Epigenetics 10:762–771. doi: 10.1080/15592294.2015.1062207 PubMedPubMedCentralCrossRefGoogle Scholar
  184. Stamatakis A, Diamantopoulou A, Panagiotaropoulos T, Raftogianni A, Stylianopoulou F (2014) A novel model of early experiences involving neonatal learning of a T-maze using maternal contact as a reward or its denial as an event of mild emotional adversity. Dev Psychobiol 56:1651–1660. doi: 10.1002/dev.21248 PubMedCrossRefGoogle Scholar
  185. Steimer T, Driscoll P (2003) Divergent stress responses and coping styles in psychogenetically selected Roman high-(RHA) and low-(RLA) avoidance rats: behavioural, neuroendocrine and developmental aspects. Stress 6:87–100. doi: 10.1080/1025389031000111320 PubMedCrossRefGoogle Scholar
  186. Suenaga T, Yukie M, Gao S, Nakahara D (2012) Sex-specific effects of prenatal stress on neuronal development in the medial prefrontal cortex and the hippocampus. Neuroreport 23:430–435. doi: 10.1097/WNR.0b013e3283529805 PubMedGoogle Scholar
  187. Sullivan R et al (2006) The International Society for Developmental Psychobiology annual meeting symposium: impact of early life experiences on brain and behavioral development. Dev Psychobiol 48:583–602. doi: 10.1002/dev.20170 PubMedPubMedCentralCrossRefGoogle Scholar
  188. Szyf M (2013) DNA methylation, behavior and early life adversity. J Genet Genom 40:331–338. doi: 10.1016/j.jgg.2013.06.004 CrossRefGoogle Scholar
  189. Szyf M (2015) Nongenetic inheritance and transgenerational epigenetics. Trends Mol Med 21:134–144. doi: 10.1016/j.molmed.2014.12.004 PubMedCrossRefGoogle Scholar
  190. Teicher MH, Parigger A (2015) The ‘Maltreatment and Abuse Chronology of Exposure’ (MACE) scale for the retrospective assessment of abuse and neglect during development. PLoS One 10:e0117423. doi: 10.1371/journal.pone.0117423 PubMedPubMedCentralCrossRefGoogle Scholar
  191. Teicher MH, Anderson CM, Ohashi K, Polcari A (2014) Childhood maltreatment: altered network centrality of cingulate, precuneus, temporal pole and insula. Biol Psychiatry 76:297–305. doi: 10.1016/j.biopsych.2013.09.016 PubMedCrossRefGoogle Scholar
  192. Tzanoulinou S, Garcia-Mompo C, Castillo-Gomez E, Veenit V, Nacher J, Sandi C (2014) Long-term behavioral programming induced by peripuberty stress in rats is accompanied by GABAergic-related alterations in the Amygdala. PLoS One 9:e94666. doi: 10.1371/journal.pone.0094666 PubMedPubMedCentralCrossRefGoogle Scholar
  193. van den Bergh BR et al (2006) ADHD deficit as measured in adolescent boys with a continuous performance task is related to antenatal maternal anxiety. Pediatr Res 59:78–82. doi: 10.1203/01.pdr.0000191143.75673.52 PubMedCrossRefGoogle Scholar
  194. Van den Hove DL et al (2005) Prenatal restraint stress and long-term affective consequences. Dev Neurosci 27:313–320. doi: 10.1159/000086711 PubMedCrossRefGoogle Scholar
  195. van der Doelen RH, Kozicz T, Homberg JR (2013) Adaptive fitness; early life adversity improves adult stress coping in heterozygous serotonin transporter knockout rats. Mol Psychiatry 18:1244–1245. doi: 10.1038/mp.2012.186 PubMedCrossRefGoogle Scholar
  196. van Harmelen AL et al (2010) Reduced medial prefrontal cortex volume in adults reporting childhood emotional maltreatment. Biol Psychiatry 68:832–838. doi: 10.1016/j.biopsych.2010.06.011 PubMedCrossRefGoogle Scholar
  197. Ward HE, Johnson EA, Salm AK, Birkle DL (2000) Effects of prenatal stress on defensive withdrawal behavior and corticotropin releasing factor systems in rat brain. Physiol Behav 70:359–366PubMedCrossRefGoogle Scholar
  198. Weaver IC et al (2001) Early environmental regulation of hippocampal glucocorticoid receptor gene expression: characterization of intracellular mediators and potential genomic target sites. Mol Cell Endocrinol 185:205–218PubMedCrossRefGoogle Scholar
  199. Weaver IC et al (2004) Epigenetic programming by maternal behavior. Nat Neurosci 7:847–854. doi: 10.1038/nn1276 PubMedCrossRefGoogle Scholar
  200. Weiner I, Schnabel I, Lubow RE, Feldon J (1985) The effects of early handling on latent inhibition in male and female rats. Dev Psychobiol 18:291–297. doi: 10.1002/dev.420180402 PubMedCrossRefGoogle Scholar
  201. Weininger O (1954) Physiological damage under emotional stress as a function of early experience. Science 119:285–286PubMedCrossRefGoogle Scholar
  202. Weinstock M (2008) The long-term behavioural consequences of prenatal stress. Neurosci Biobehav Rev 32:1073–1086. doi: 10.1016/j.neubiorev.2008.03.002 PubMedCrossRefGoogle Scholar
  203. Weiss IC, Franklin TB, Vizi S, Mansuy IM (2011) Inheritable effect of unpredictable maternal separation on behavioral responses in mice Front. Behav Neurosci 5:3. doi: 10.3389/fnbeh.2011.00003 Google Scholar
  204. Wolff JR, Missler M (1993) Synaptic remodelling and elimination as integral processes of synaptogenesis. APMIS Suppl 40:9–23PubMedGoogle Scholar
  205. Xie L, Korkmaz KS, Braun K, Bock J (2013) Early life stress-induced histone acetylations correlate with activation of the synaptic plasticity genes Arc and Egr1 in the mouse hippocampus. J Neurochem 125:457–464. doi: 10.1111/jnc.12210 PubMedCrossRefGoogle Scholar
  206. Zaharia MD, Kulczycki J, Shanks N, Meaney MJ, Anisman H (1996) The effects of early postnatal stimulation on Morris water-maze acquisition in adult mice: genetic and maternal factors. Psychopharmacology 128:227–239PubMedCrossRefGoogle Scholar
  207. Zaidan H, Gaisler-Salomon I (2015) Prereproductive stress in adolescent female rats affects behavior and corticosterone levels in second-generation offspring. Psychoneuroendocrinology 58:120–129. doi: 10.1016/j.psyneuen.2015.04.013 PubMedCrossRefGoogle Scholar
  208. Zaidan H, Leshem M, Gaisler-Salomon I (2013) Prereproductive stress to female rats alters corticotropin releasing factor type 1 expression in ova and behavior and brain corticotropin releasing factor type 1 expression in offspring. Biol Psychiatry 74:680–687. doi: 10.1016/j.biopsych.2013.04.014 PubMedCrossRefGoogle Scholar
  209. Zalosnik MI, Pollano A, Trujillo V, Suarez MM, Durando PE (2014) Effect of maternal separation and chronic stress on hippocampal-dependent memory in young adult rats: evidence for the match-mismatch hypothesis. Stress 17:445–450. doi: 10.3109/10253890.2014.936005 PubMedCrossRefGoogle Scholar
  210. Zuena AR et al (2008) Prenatal restraint stress generates two distinct behavioral and neurochemical profiles in male and female rats. PLoS One 3:e2170. doi: 10.1371/journal.pone.0002170 PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2016

Authors and Affiliations

  • Nicole Gröger
    • 1
  • Emmanuel Matas
    • 1
  • Tomasz Gos
    • 2
  • Alexandra Lesse
    • 1
  • Gerd Poeggel
    • 3
  • Katharina Braun
    • 1
    • 5
  • Jörg Bock
    • 4
    • 5
    Email author
  1. 1.Department of Zoology/Developmental Neurobiology, Institute of BiologyOtto von Guericke University MagdeburgMagdeburgGermany
  2. 2.Department of Forensic MedicineMedical University of GdańskGdańskPoland
  3. 3.Institute for Biology, Human BiologyUniversity of LeipzigLeipzigGermany
  4. 4.PG “Epigenetics and Structural Plasticity”, Institute of BiologyOtto von Guericke University MagdeburgMagdeburgGermany
  5. 5.Center for Behavioral Brain SciencesMagdeburgGermany

Personalised recommendations