Advertisement

Journal of Neural Transmission

, Volume 123, Issue 8, pp 949–959 | Cite as

Brain morphological changes in adolescent and adult patients with anorexia nervosa

  • J. SeitzEmail author
  • B. Herpertz-Dahlmann
  • K. Konrad
Psychiatry and Preclinical Psychiatric Studies - Original Article

Abstract

Gray matter (GM) and white matter (WM) volume loss occur in the brains of patients with acute anorexia nervosa (AN) and improve again upon weight restoration. Adolescence is an important time period for AN to begin. However, little is known about the differences between brain changes in adolescents vs adults. We used a meta-analysis and a qualitative review of all MRI studies regarding acute structural brain volume changes and their recovery in adolescents and adults with AN. 29 studies with 473 acute, 121 short-term weight-recovered and 255 long-term recovered patients with AN were included in the meta-analysis. In acute AN, GM and WM were reduced compared to healthy controls. Acute adolescent patients showed a significantly greater GM reduction than adults (−8.4 vs −3.1 %), the difference in WM (−4.0 vs −2.1 %) did not reach significance. Short-term weight-recovered patients showed a remaining GM deficit of 3.6 % and a non-significant WM reduction of 0.9 % with no age differences. Following 1.5–8 years of remission, GM and WM were no longer significantly reduced in adults (GM −0.4 %, WM −0.7 %); long-term studies for adolescents were scarce. The qualitative review showed that GM volume loss was correlated with cognitive deficits and three studies found GM regions, cerebellar deficits and WM to be predictive of outcome. GM and WM are strongly reduced in acute AN and even more pronounced in adolescence. Long-term recovery appears to be complete for adults while no conclusions can be drawn for adolescents, thus caution remains.

Keywords

Anorexia nervosa Meta-analysis Volume change Adolescents Time course Developm. Psych 

Notes

Compliance with ethical standards

Funding

This study was funded by internal board funds.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

702_2016_1567_MOESM1_ESM.pdf (1.9 mb)
RevMan 5.3 results for GM, WM and CSF for acutely ill AN compared to HC (Supp Fig. 1–3), short term recovered compared to HC (Supp Fig. 4–6) and longterm recovered AN compared to HC (Supp Fig. 7–9). For studies where brain volumes correction for ICV was possible, means indicate % of ICV. For studies without brain volume correction, means indicate mm3 brain volume. (PDF 1899 kb)

References

  1. Amianto F, Caroppo P, D’Agata F et al (2013) Brain volumetric abnormalities in patients with anorexia and bulimia nervosa: a voxel-based morphometry study. Psychiatry Res 213:210–216. doi: 10.1016/j.pscychresns.2013.03.010 CrossRefPubMedGoogle Scholar
  2. Aoki C (2016) Synaptic changes in the hippocampus of adolescent female rodents associated with resilience to anxiety and suppression of food restriction-evoked hyperactivity in an animal model for anorexia nervosa. Brain Res. doi: 10.1016/j.brainres.2016.01.019 Google Scholar
  3. Bailer UF, Kaye WH (2011) Serotonin: imaging findings in eating disorders. Curr Top Behav Neurosci 6:59–79. doi: 10.1007/7854_2010_78 CrossRefPubMedGoogle Scholar
  4. Banasr M, Dwyer JM, Duman RS (2011) Cell atrophy and loss in depression: reversal by antidepressant treatment. Curr Opin Cell Biol 23:730–737. doi: 10.1016/j.ceb.2011.09.002 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bär K-J, de la Cruz F, Berger S et al (2015) Structural and functional differences in the cingulate cortex relate to disease severity in anorexia nervosa. J Psychiatry Neurosci JPN 40:269–279CrossRefPubMedGoogle Scholar
  6. Barbarich-Marsteller NC, Fornal CA, Takase LF et al (2013) Activity-based anorexia is associated with reduced hippocampal cell proliferation in adolescent female rats. Behav Brain Res 236:251–257. doi: 10.1016/j.bbr.2012.08.047 CrossRefPubMedGoogle Scholar
  7. Beadle JN, Paradiso S, Brumm M et al (2015) Larger hippocampus size in women with anorexia nervosa who exercise excessively than healthy women. Psychiatry Res 232:193–199. doi: 10.1016/j.pscychresns.2014.10.013 CrossRefPubMedGoogle Scholar
  8. Benitez-Bribiesca L, De la R-A, Mansilla-Olivares A (1999) Dendritic spine pathology in infants with severe protein-calorie malnutrition. Pediatrics 104:e21CrossRefPubMedGoogle Scholar
  9. Bodell LP, Keel PK, Brumm MC et al (2014) Longitudinal examination of decision-making performance in anorexia nervosa: before and after weight restoration. J Psychiatr Res 56:150–157. doi: 10.1016/j.jpsychires.2014.05.015 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Boghi A, Sterpone S, Sales S et al (2011) In vivo evidence of global and focal brain alterations in anorexia nervosa. Psychiatry Res 192:154–159CrossRefPubMedGoogle Scholar
  11. Bomba M, Riva A, Veggo F et al (2013) Impact of speed and magnitude of weight loss on the development of brain trophic changes in adolescents with anorexia nervosa: a case control study. Ital J Pediatr 39:14. doi: 10.1186/1824-7288-39-14 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Bomba M, Riva A, Morzenti S et al (2015) Global and regional brain volumes normalization in weight-recovered adolescents with anorexia nervosa: preliminary findings of a longitudinal voxel-based morphometry study. Neuropsychiatr Dis Treat 11:637–645. doi: 10.2147/NDT.S73239 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Brooks SJ, Barker GJ, O’Daly OG et al (2011) Restraint of appetite and reduced regional brain volumes in anorexia nervosa: a voxel-based morphometric study. BMC Psychiatry 11:179. doi: 10.1186/1471-244X-11-179 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Buhren K, Holtkamp K, Herpertz-Dahlmann B, Konrad K (2008) Neuropsychological performance in anorexia and bulimia nervosa. ZKinder JugendpsychiatrPsychother 36:377–386Google Scholar
  15. Burkert NT, Koschutnig K, Ebner F, Freidl W (2015) Structural hippocampal alterations, perceived stress, and coping deficiencies in patients with anorexia nervosa. Int J Eat Disord 48:670–676. doi: 10.1002/eat.22397 CrossRefPubMedGoogle Scholar
  16. Castro-Fornieles J, Bargallo N, Lazaro L et al (2009) A cross-sectional and follow-up voxel-based morphometric MRI study in adolescent anorexia nervosa. J Psychiatr Res 43:331–340CrossRefPubMedGoogle Scholar
  17. Chui HT, Christensen BK, Zipursky RB et al (2008) Cognitive function and brain structure in females with a history of adolescent-onset anorexia nervosa. Pediatrics 122:e426–e437CrossRefPubMedGoogle Scholar
  18. Connan F, Murphy F, Connor SE et al (2006) Hippocampal volume and cognitive function in anorexia nervosa. Psychiatry Res 146:117–125CrossRefPubMedGoogle Scholar
  19. D’Agata F, Caroppo P, Amianto F et al (2015) Brain correlates of alexithymia in eating disorders: a voxel-based morphometry study. Psychiatry Clin Neurosci 69:708–716. doi: 10.1111/pcn.12318 CrossRefPubMedGoogle Scholar
  20. Favaro A, Tenconi E, Degortes D et al (2014) Effects of obstetric complications on volume and functional connectivity of striatum in anorexia nervosa patients. Int J Eat Disord 47:686–695. doi: 10.1002/eat.22320 CrossRefPubMedGoogle Scholar
  21. Favaro A, Tenconi E, Degortes D et al (2015) Gyrification brain abnormalities as predictors of outcome in anorexia nervosa. Hum Brain Mapp. doi: 10.1002/hbm.22998 PubMedGoogle Scholar
  22. Fonville L, Giampietro V, Williams SCR et al (2013) Alterations in brain structure in adults with anorexia nervosa and the impact of illness duration. Psychol Med 44:1965–1975. doi: 10.1017/S0033291713002389 CrossRefPubMedGoogle Scholar
  23. Fonville L, Giampietro V, Williams SCR et al (2014) Alterations in brain structure in adults with anorexia nervosa and the impact of illness duration. Psychol Med 44:1965–1975. doi: 10.1017/S0033291713002389 CrossRefPubMedGoogle Scholar
  24. Frank GKW (2014) Could dopamine agonists aid in drug development for anorexia nervosa? Front Nutr 1:19. doi: 10.3389/fnut.2014.00019 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Frank GK, Shott ME, Hagman JO, Mittal VA (2013) Alterations in brain structures related to taste reward circuitry in ill and recovered anorexia nervosa and in bulimia nervosa. Am J Psychiatry 170:1152–1160. doi: 10.1176/appi.ajp.2013.12101294 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Friederich H-C, Herzog W (2011) Cognitive-behavioral flexibility in anorexia nervosa. Curr Top Behav Neurosci 6:111–123. doi: 10.1007/7854_2010_83 CrossRefPubMedGoogle Scholar
  27. Friederich HC, Walther S, Bendszus M et al (2012) Grey matter abnormalities within cortico-limbic-striatal circuits in acute and weight-restored anorexia nervosa patients. Neuroimage 59:1106–1113CrossRefPubMedGoogle Scholar
  28. Fuglset TS, Endestad T, Landrø NI, Rø Ø (2015) Brain structure alterations associated with weight changes in young females with anorexia nervosa: a case series. Neurocase 21:169–177. doi: 10.1080/13554794.2013.878728 CrossRefPubMedGoogle Scholar
  29. Fujisawa TX, Yatsuga C, Mabe H et al (2015) Anorexia Nervosa during Adolescence Is Associated with Decreased Gray Matter Volume in the Inferior Frontal Gyrus. PloS One 10:e0128548. doi: 10.1371/journal.pone.0128548 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Garcia-Ruiz M, Diaz-Cintra S, Cintra L, Corkidi G (1993) Effect of protein malnutrition on CA3 hippocampal pyramidal cells in rats of three ages. Brain Res 625:203–212CrossRefPubMedGoogle Scholar
  31. Gaudio S, Nocchi F, Franchin T et al (2011) Gray matter decrease distribution in the early stages of Anorexia Nervosa restrictive type in adolescents. Psychiatry Res 191:24–30CrossRefPubMedGoogle Scholar
  32. Gibson KR, Petersen AC (1991) Brain maturation and cognitive development: comparative and cross-cultural perspectives. Transaction PublishersGoogle Scholar
  33. Giordano GD, Renzetti P, Parodi RC et al (2001) Volume measurement with magnetic resonance imaging of hippocampus-amygdala formation in patients with anorexia nervosa. J Endocrinol Invest 24:510–514CrossRefPubMedGoogle Scholar
  34. Herpertz-Dahlmann B (2015) Adolescent eating disorders: update on definitions, symptomatology, epidemiology, and comorbidity. Child Adolesc Psychiatr Clin N Am 24:177–196. doi: 10.1016/j.chc.2014.08.003 CrossRefPubMedGoogle Scholar
  35. Joos A, Kloppel S, Hartmann A et al (2010) Voxel-based morphometry in eating disorders: correlation of psychopathology with grey matter volume. Psychiatry Res 182:146–151CrossRefPubMedGoogle Scholar
  36. Joos AAB, Perlov E, Büchert M et al (2011a) Magnetic resonance spectroscopy of the anterior cingulate cortex in eating disorders. Psychiatry Res 191:196–200. doi: 10.1016/j.pscychresns.2010.10.004 CrossRefPubMedGoogle Scholar
  37. Joos A, Hartmann A, Glauche V et al (2011b) Grey matter deficit in long-term recovered anorexia nervosa patients. Eur Eat Disord Rev J Eat Disord Assoc 19:59–63. doi: 10.1002/erv.1060 CrossRefGoogle Scholar
  38. Joos A, Saum B, Hartmann A et al (2012) Distinct functional and structural cerebral abnormalities in eating disorders in the light of diagnostic classification systems. Psychother Psychosom 81:394–395. doi: 10.1159/000337747 CrossRefPubMedGoogle Scholar
  39. Katzman DK, Lambe EK, Mikulis DJ, et al (1996) Cerebral gray matter and white matter volume deficits in adolescent girls with anorexia nervosa. J Pediatr 129:794–803CrossRefPubMedGoogle Scholar
  40. Katzman DK, Zipursky RB, Lambe EK, Mikulis DJ (1997) A longitudinal magnetic resonance imaging study of brain changes in adolescents with anorexia nervosa. Arch Pediatr Adolesc Med 151:793–797CrossRefPubMedGoogle Scholar
  41. King JA, Geisler D, Ritschel F et al (2015) Global cortical thinning in acute anorexia nervosa normalizes following long-term weight restoration. Biol Psychiatry 77:624–632. doi: 10.1016/j.biopsych.2014.09.005 CrossRefPubMedGoogle Scholar
  42. Kochunov P, Glahn DC, Lancaster J et al (2011) Fractional anisotropy of cerebral white matter and thickness of cortical gray matter across the lifespan. NeuroImage 58:41–49. doi: 10.1016/j.neuroimage.2011.05.050 CrossRefPubMedGoogle Scholar
  43. Lambe EK, Katzman DK, Mikulis DJ, et al (1997) Cerebral gray matter volume deficits after weight recovery from anorexia nervosa. Arch Gen Psychiatry 54:537–542CrossRefPubMedGoogle Scholar
  44. Lang K, Stahl D, Espie J et al (2014) Set shifting in children and adolescents with anorexia nervosa: an exploratory systematic review and meta-analysis. Int J Eat Disord 47:394–399. doi: 10.1002/eat.22235 CrossRefPubMedGoogle Scholar
  45. Lazaro L, Andres S, Calvo A, et al (2013) Normal gray and white matter volume after weight restoration in adolescents with anorexia nervosa. Int J Eat Disord 46:841–848. doi: 10.1002/eat.22161 CrossRefPubMedGoogle Scholar
  46. Lenroot RK, Giedd JN (2006) Brain development in children and adolescents: insights from anatomical magnetic resonance imaging. Neurosci Biobehav Rev 30:718–729. doi: 10.1016/j.neubiorev.2006.06.001 CrossRefPubMedGoogle Scholar
  47. Mainz V, Schulte-Rüther M, Fink GR et al (2012) Structural brain abnormalities in adolescent anorexia nervosa before and after weight recovery and associated hormonal changes. Psychosom Med 74:574–582. doi: 10.1097/PSY.0b013e31824ef10e CrossRefPubMedGoogle Scholar
  48. McCormick LM, Keel PK, Brumm MC et al (2008) Implications of starvation-induced change in right dorsal anterior cingulate volume in anorexia nervosa. Int J Eat Disord 41:602–610CrossRefPubMedPubMedCentralGoogle Scholar
  49. Mühlau M, Gaser C, Ilg R et al (2007) Gray matter decrease of the anterior cingulate cortex in anorexia nervosa. AmJPsychiatry 164:1850–1857Google Scholar
  50. Murrin LC, Sanders JD, Bylund DB (2007) Comparison of the maturation of the adrenergic and serotonergic neurotransmitter systems in the brain: implications for differential drug effects on juveniles and adults. Biochem Pharmacol 73:1225–1236. doi: 10.1016/j.bcp.2007.01.028 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Nagahara Y, Nakamae T, Nishizawa S et al (2014) A tract-based spatial statistics study in anorexia nervosa: abnormality in the fornix and the cerebellum. Prog Neuropsychopharmacol Biol Psychiatry 51:72–77. doi: 10.1016/j.pnpbp.2014.01.009 CrossRefPubMedGoogle Scholar
  52. Neumärker KJ, Dudeck U, Meyer U et al (1997) Anorexia nervosa and sudden death in childhood: clinical data and results obtained from quantitative neurohistological investigations of cortical neurons. Eur Arch Psychiatry Clin Neurosci 247:16–22CrossRefPubMedGoogle Scholar
  53. Nogal P, Pniewska-Siark B, Lewinski A (2008) Relation of trophic changes in the central nervous system, measured by the width of cordical sulci, to the clinical course of anorexia nervosa (II). NeuroEndocrinolLett 29:879–883Google Scholar
  54. Reyes-Haro D, Labrada-Moncada FE, Miledi R, Martínez-Torres A (2015) Dehydration-induced anorexia reduces astrocyte density in the rat corpus callosum. Neural Plast 2015:474917. doi: 10.1155/2015/474917 PubMedPubMedCentralGoogle Scholar
  55. Roberto CA, Mayer LE, Brickman AM, et al (2011) Brain tissue volume changes following weight gain in adults with anorexia nervosa. Int J Eat Disord 44:406–411CrossRefPubMedGoogle Scholar
  56. Schmahmann JD, Weilburg JB, Sherman JC (2007) The neuropsychiatry of the cerebellum—insights from the clinic. Cerebellum Lond Engl 6:254–267. doi: 10.1080/14734220701490995 CrossRefGoogle Scholar
  57. Seitz J, Bühren K, von Polier GG et al (2014) Morphological changes in the brain of acutely ill and weight-recovered patients with anorexia nervosa. A meta-analysis and qualitative review. Z Für Kinder- Jugendpsychiatrie Psychother 42:7–17. doi: 10.1024/1422-4917/a000265 (quiz 17–18) CrossRefGoogle Scholar
  58. Seitz J, Walter M, Mainz V et al (2015) Brain volume reduction predicts weight development in adolescent patients with anorexia nervosa. J Psychiatr Res 68:228–237. doi: 10.1016/j.jpsychires.2015.06.019 CrossRefPubMedGoogle Scholar
  59. Shaw P, Kabani NJ, Lerch JP et al (2008) Neurodevelopmental trajectories of the human cerebral cortex. J Neurosci Off J Soc Neurosci 28:3586–3594. doi: 10.1523/JNEUROSCI.5309-07.2008 CrossRefGoogle Scholar
  60. Shott ME, Pryor TL, Yang TT, Frank GKW (2015) Greater insula white matter fiber connectivity in women Recovered from anorexia nervosa. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol. doi: 10.1038/npp.2015.172 Google Scholar
  61. Steen RG, Hamer RM, Lieberman JA (2007) Measuring brain volume by MR imaging: impact of measurement precision and natural variation on sample size requirements. AJNR Am J Neuroradiol 28:1119–1125. doi: 10.3174/ajnr.A0537 CrossRefPubMedGoogle Scholar
  62. Steinhausen HC (2009) Outcome of eating disorders. Child Adolesc Psychiatr Clin N Am 18:225–242CrossRefPubMedGoogle Scholar
  63. Suchan B, Busch M, Schulte D et al (2010) Reduction of gray matter density in the extrastriate body area in women with anorexia nervosa. Behav Brain Res 206:63–67CrossRefPubMedGoogle Scholar
  64. Swayze VW, Andersen AE, Andreasen NC et al (2003) Brain tissue volume segmentation in patients with anorexia nervosa before and after weight normalization. Int J Eat Disord 33:33–44CrossRefPubMedGoogle Scholar
  65. Tchanturia K, Morris RG, Anderluh MB et al (2004) Set shifting in anorexia nervosa: an examination before and after weight gain, in full recovery and relationship to childhood and adult OCPD traits. J Psychiatr Res 38:545–552CrossRefPubMedGoogle Scholar
  66. Titova OE, Hjorth OC, Schiöth HB, Brooks SJ (2013) Anorexia nervosa is linked to reduced brain structure in reward and somatosensory regions: a meta-analysis of VBM studies. BMC Psychiatry 13:110. doi: 10.1186/1471-244X-13-110 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Van den Eynde F, Suda M, Broadbent H et al (2012) Structural magnetic resonance imaging in eating disorders: a systematic review of voxel-based morphometry studies. Eur Eat Disord Rev J Eat Disord Assoc 20:94–105. doi: 10.1002/erv.1163 CrossRefGoogle Scholar
  68. van Opstal AM, Westerink AM, Teeuwisse WM et al (2015) Hypothalamic BOLD response to glucose intake and hypothalamic volume are similar in anorexia nervosa and healthy control subjects. Front Neurosci 9:159. doi: 10.3389/fnins.2015.00159 PubMedPubMedCentralGoogle Scholar
  69. Via E, Zalesky A, Sánchez I, et al (2014) Disruption of brain white matter microstructure in women with anorexia nervosa. J Psychiatry Neurosci JPN 39:130135CrossRefGoogle Scholar
  70. Vocks S, Schulte D, Busch M et al (2011) Changes in neuronal correlates of body image processing by means of cognitive-behavioural body image therapy for eating disorders: a randomized controlled fMRI study. Psychol Med 41:1651–1663. doi: 10.1017/S0033291710002382 CrossRefPubMedGoogle Scholar
  71. Wagner A, Greer P, Bailer UF, et al (2006) Normal brain tissue volumes after long-term recovery in anorexia and bulimia nervosa. Biol Psychiatry 59:291–293CrossRefPubMedGoogle Scholar
  72. Yau WY, Bischoff-Grethe A, Theilmann RJ et al (2013) Alterations in white matter microstructure in women recovered from anorexia nervosa. Int J Eat Disord 46:701–708. doi: 10.1002/eat.22154 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Wien 2016

Authors and Affiliations

  1. 1.Department of Child and Adolescent Psychiatry, Psychotherapy and PsychosomaticsUniversity Hospital RWTH University AachenAachenGermany

Personalised recommendations