Advertisement

Journal of Neural Transmission

, Volume 122, Issue 11, pp 1581–1592 | Cite as

Genetic markers of cholesterol transport and gray matter diffusion: a preliminary study of the CETP I405V polymorphism

  • Lauren E. SalminenEmail author
  • Peter R. Schofield
  • Kerrie D. Pierce
  • Xi Luo
  • Yi Zhao
  • David H. Laidlaw
  • Ryan P. Cabeen
  • Thomas E. Conturo
  • Elizabeth M. Lane
  • Jodi M. Heaps
  • Jacob D. Bolzenius
  • Laurie M. Baker
  • Sarah A. Cooley
  • Staci Scott
  • Lee M. Cagle
  • Robert H. Paul
Neurology and Preclinical Neurological Studies - Original Article

Abstract

Variations of the cholesteryl ester transfer protein polymorphism (CETP I405V/rs5882) have been associated with an increased risk for neurodegeneration, particularly when examined in conjunction with the epsilon 4 isoform of apolipoprotein E (ApoE4). Despite these identified relationships, the impact of I405V on gray matter microstructure remains unknown. The present study examined the impact of the CETP I405V polymorphism on gray matter integrity among 52 healthy adults between ages 51 and 85. Gray matter was measured bilaterally using diffusion tensor imaging (DTI) metrics of fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD). Participants were grouped according to a dominant statistical model (II genotype vs. IV/VV genotypes) and secondary analyses were completed to examine the interactive effects of CETP and ApoE4 on DTI metrics. Compared to individuals with the IV/VV genotypes, II homozygotes demonstrated significantly higher MD in bilateral temporal, parietal, and occipital gray matter. Secondary analyses revealed higher FA and AD in the left temporal lobe of IV/VV genotypes with an ApoE4 allele. Our results provide preliminary evidence that CETP II homozygosity is a predisposing risk factor for gray matter abnormalities in posterior brain regions in healthy older adults, independent of an ApoE4 allele.

Keywords

CETP APOE Gray matter DTI 

Notes

Acknowledgments

Study Funding: Supported by the National Institutes of Health (NIH)/National Institute of Neurological Disorders and Stroke (NINDS) grants R01 NS052470 and R01 NS039538, and NIH/National Institute of Mental Health (NIMH) grant R21 MH090494 and the Australian National Health and Medical Research Council (NHMRC) grant 1037196. DNA extractions were performed by Genetic Repositories Australia, an Enabling Facility, which is supported by NHMRC Grant 401184. Recruitment database searches were supported in part by NIH/National Center for Research Resources (NCRR) grant UL1 TR000448. Statistical procedures were supported by the NIH grants P01AA019072, P20GM103645, P30AI042853, R01NS052470, and S10OD016366.

Compliance with ethical standards

Conflict of interest

There are no actual or potential conflicts of interest for any of the authors in this manuscript.

Supplementary material

702_2015_1434_MOESM1_ESM.docx (21 kb)
Supplementary material 1 (DOCX 20 kb)

References

  1. Acosta-Cabronero J, Williams GB, Pengas G, Nestor PJ (2010) Absolute diffusivities define the landscape of white matter degeneration in Alzheimer’s disease. Brain 133(2):529–539CrossRefPubMedGoogle Scholar
  2. Adalbert R, Gilley J, Coleman MP (2007) Aβ, tau and ApoE4 in Alzheimer’s disease: the axonal connection. Trends Mol Med 13(4):135–142CrossRefPubMedGoogle Scholar
  3. Alexander AL, Lee JE, Lazar M, Field AS (2007) Diffusion tensor imaging of the brain. Neurotherapeutics 4(3):316–329PubMedCentralCrossRefPubMedGoogle Scholar
  4. Arias-Vásquez A, Isaacs A, Aulchenko YS, Hofman A, Oostra BA, Breteler M, van Duijn CM (2007) The cholesteryl ester transfer protein (CETP) gene and the risk of Alzheimer’s disease. Neurogenetics 8(3):189–193CrossRefPubMedGoogle Scholar
  5. Bartzokis G (2004) Age-related myelin breakdown: a developmental model of cognitive decline and Alzheimer’s disease. Neurobiol Aging 25(1):5–18CrossRefPubMedGoogle Scholar
  6. Bartzokis G, Lu PH, Mintz J (2007) Human brain myelination and amyloid beta deposition in Alzheimer’s disease. Alzheimers Dement 3(2):122–125PubMedCentralCrossRefPubMedGoogle Scholar
  7. Basser PJ, Pierpaoli C (1996) Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J Mag Res Ser B 111(3):209–219CrossRefGoogle Scholar
  8. Bennett IJ, Madden DJ, Vaidya CJ, Howard DV, Howard JH (2010) Age-related differences in multiple measures of white matter integrity: a diffusion tensor imaging study of healthy aging. Hum Brain Mapp 31(3):378–390PubMedCentralPubMedGoogle Scholar
  9. Björkhem I, Meaney S (2004) Brain cholesterol: long secret life behind a barrier. Arterioscl Throm Vas 24(5):806–815CrossRefGoogle Scholar
  10. Boekholdt SM, Thompson JF (2003) Natural genetic variation as a tool in understanding the role of CETP in lipid levels and disease. J Lipid Res 44(6):1080–1093CrossRefPubMedGoogle Scholar
  11. Briggs F (2010) Organizing principles of cortical layer 6. Front Neural Circuits 4:1–8Google Scholar
  12. Burzynska AZ, Preuschhof C, Bäckman L, Nyberg L, Li SC, Lindenberger U, Heekeren HR (2010) Age-related differences in white matter microstructure: region-specific patterns of diffusivity. Neuroimage 49(3):2104–2112CrossRefPubMedGoogle Scholar
  13. Calabrese M, Rinaldi F, Seppi D, Favaretto A, Squarcina L, Mattisi I et al (2011) Cortical diffusion-tensor imaging abnormalities in multiple sclerosis: a 3-year longitudinal study. Radiology 261(3):891–898CrossRefPubMedGoogle Scholar
  14. Carter CJ (2007) Convergence of genes implicated in Alzheimer’s disease on the cerebral cholesterol shuttle: APP, cholesterol, lipoproteins, and atherosclerosis. Neurochem Int 50(1):12–38CrossRefPubMedGoogle Scholar
  15. Castriota-Scanderbeg A, Fasano F, Hagberg G, Nocentini U, Filippi M, Caltagirone C (2003) Coefficient Dav is more sensitive than fractional anisotropy in monitoring progression of irreversible tissue damage in focal nonactive multiple sclerosis lesions. AJNR 24(4):663–670PubMedGoogle Scholar
  16. Coon KD, Myers AJ, Craig DW, Webster JA, Pearson JV, Lince DH et al (2007) A high-density whole-genome association study reveals that APOE is the major susceptibility gene for sporadic late-onset Alzheimer’s disease. J Clin Psychiatry 68(4):613CrossRefPubMedGoogle Scholar
  17. Cosottini M, Giannelli M, Siciliano G, Lazzarotti G, Michelassi MC, Del Corona A (2005) Diffusion-Tensor MR imaging of corticospinal tract in amyotrophic lateral sclerosis and progressive muscular atrophy 1. Radiology 237(1):258–264CrossRefPubMedGoogle Scholar
  18. de Chaves EP, Narayanaswami V (2008) Apolipoprotein E and cholesterol in aging and disease in the brain. Future Lipidol 3(5):505–530PubMedCentralCrossRefPubMedGoogle Scholar
  19. Dietschy JM, Turley SD (2001) Cholesterol metabolism in the brain. Curr Opin Lipidol 12(2):105–112CrossRefPubMedGoogle Scholar
  20. ElAli A, Rivest S (2013) The role of ABCB1 and ABCA1 in beta-amyloid clearance at the neurovascular unit in Alzheimer’s disease. Front Physiol 4:45Google Scholar
  21. Folstein MF, Folstein SE, McHugh PR (1975) Mini-mental state: a practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12:189–198CrossRefPubMedGoogle Scholar
  22. Grösgen S, Grimm MO, Frieß P, Hartmann T (2010) Role of amyloid beta in lipid homeostasis. BBA Mol Cell Biol L 1801(8):966–974Google Scholar
  23. Haass C, Selkoe DJ (2007) Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid β-peptide. Nat Rev Mol Cell Biol 8(2):101–112CrossRefPubMedGoogle Scholar
  24. Hajnal JV, Bryant DJ, Kasuboski L, Pattany PM, De Coene B, Lewis PD et al (1992) Use of fluid attenuated inversion recovery (FLAIR) pulse sequences in MRI of the brain. J Comput Assist Tomo 16(6):841–844CrossRefGoogle Scholar
  25. Havel RJ (2000) Genetic underpinnings of LDL size and density: a role for hepatic lipase? Am J Clin Nutr 71(6):1390–1391PubMedGoogle Scholar
  26. Heise V, Filippini N, Ebmeier KP, Mackay CE (2010) The APOE e4 allele modulates brain white matter integrity in healthy adults. Mol Psychiatry 16(9):908–916CrossRefPubMedGoogle Scholar
  27. Honea RA, Vidoni E, Harsha A, Burns JM (2009) Impact of APOE on the healthy aging brain: a voxel-based MRI and DTI study. J Alzheimer’s Dis 18(3):553–564Google Scholar
  28. Izaks GJ, van der Knaap AM, Gansevoort RT, Navis G, Slaets JP, Dullaart RP (2012) Cholesteryl ester transfer protein (CETP) genotype and cognitive function in persons aged 35 years or older. Neurobiol Agin 33(8):1851-e7CrossRefGoogle Scholar
  29. Jacobs HI, van Boxtel MP, Gronenschild EH, Uylings H, Jolles J, Verhey FR (2013) Decreased gray matter diffusivity: a potential early Alzheimer’s disease biomarker? Alzheimers Dement 9(1):93–97CrossRefPubMedGoogle Scholar
  30. Leoni V, Solomon A, Kivipelto M (2010) Links between ApoE, brain cholesterol metabolism, tau and amyloid beta-peptide in patients with cognitive impairment. Biochem Soc Trans 38(4):1021–1025CrossRefPubMedGoogle Scholar
  31. Martin M, Dotti CG, Ledesma MD (2010) Brain cholesterol in normal and pathological aging. BBA Mol Cell Biol L 1801(8):934–944Google Scholar
  32. McNab JA, Polimeni JR, Wang R, Augustinack JC, Fujimoto K, Stevens A et al (2013) Surface based analysis of diffusion orientation for identifying architectonic domains in the in vivo human cortex. Neuroimage 69:87–100PubMedCentralCrossRefPubMedGoogle Scholar
  33. Miller KL, Stagg CJ, Douaud G, Jbabdi S, Smith SM, Behrens TE et al (2011) Diffusion imaging of whole, post-mortem human brains on a clinical MRI scanner. Neuroimage 57(1):167–181PubMedCentralCrossRefPubMedGoogle Scholar
  34. Molko N, Pappata S, Mangin JF, Poupon C, Vahedi K, Jobert A et al (2001) Diffusion tensor imaging study of subcortical gray matter in CADASIL. Stroke 32(9):2049–2054CrossRefPubMedGoogle Scholar
  35. Moy G, Millet P, Haller S, Baudois S, De Bilbao F, Weber K et al (2011) Magnetic resonance imaging determinants of intraindividual variability in the elderly: combined analysis of grey and white matter. Neuroscience 186:88–93CrossRefPubMedGoogle Scholar
  36. Mugler JP, Brookeman JR (1990) Three-dimensional magnetization-prepared rapid gradient-echo imaging (3D MP RAGE). Magn Reson Med 15(1):152–157CrossRefPubMedGoogle Scholar
  37. Murphy EA, Roddey JC, McEvoy LK, Holland D, Hagler DJ Jr, Dale AM, Brewer JB (2012) CETP polymorphisms associate with brain structure, atrophy rate, and Alzheimer’s disease risk in an APOE-dependent manner. Brain Imaging Behav 6(1):16–26PubMedCentralCrossRefPubMedGoogle Scholar
  38. Nagy ZS, Esiri MM, Jobst KA, Johnston C, Litchfield S, Sim E, Smith AD (1995) Influence of the apolipoprotein E genotype on amyloid deposition and neurofibrillary tangle formation in Alzheimer’s disease. Neuroscience 69(3):57–761CrossRefGoogle Scholar
  39. Nierenberg J, Pomara N, Hoptman MJ, Sidtis JJ, Ardekani BA, Lim KO (2005) Abnormal white matter integrity in healthy apolipoprotein E epsilon4 carriers. NeuroReport 16(12):1369–1372CrossRefPubMedGoogle Scholar
  40. Oliveira HC, de Faria EC (2011) Cholesteryl ester transfer protein: the controversial relation to atherosclerosis and emerging new biological roles. IUBMB Life 63(4):248–257CrossRefPubMedGoogle Scholar
  41. Ong WY, Halliwell B (2004) Iron, atherosclerosis, and neurodegeneration: A key role for cholesterol in promoting iron dependent oxidative damage? Ann N Y Acad Sci 1012(1):51–64Google Scholar
  42. Oreja-Guevara C, Rovaris M, Iannucci G, Valsasina P, Caputo D, Cavarretta R et al (2005) Progressive gray matter damage in patients with relapsing-remitting multiple sclerosis: a longitudinal diffusion tensor magnetic resonance imaging study. Arch Neuro 62(4):578–584CrossRefGoogle Scholar
  43. Pfefferbaum A, Adalsteinsson E, Sullivan EV (2005) Frontal circuitry degradation marks healthy adult aging: evidence from diffusion tensor imaging. Neuroimage 26(3):891–899CrossRefPubMedGoogle Scholar
  44. Pfefferbaum A, Adalsteinsson E, Rohlfing T, Sullivan EV (2010) Diffusion tensor imaging of deep gray matter brain structures: effects of age and iron concentration. Neurobiol Aging 31(3):482–493PubMedCentralCrossRefPubMedGoogle Scholar
  45. Qureischie H, Heun R, Popp J, Jessen F, Maier W, Schmitz S et al (2009) Association of CETP polymorphisms with the risk of vascular dementia and white matter lesions. J Neural Transm 116(4):467–472CrossRefPubMedGoogle Scholar
  46. Rabinovici GD, Jagust WJ (2009) Amyloid imaging in aging and dementia: testing the amyloid hypothesis in vivo. Behav Neurol 21(1–2):117–128PubMedCentralCrossRefPubMedGoogle Scholar
  47. Raz N, Lindenberger U, Rodrigue KM, Kennedy KM, Head D, Williamson A et al (2005) Regional brain changes in aging healthy adults: general trends, individual differences and modifiers. Cereb Cortex 15(11):1676–1689CrossRefPubMedGoogle Scholar
  48. Raz N, Ghisletta P, Rodrigue KM, Kennedy KM, Lindenberger U (2010) Trajectories of brain aging in middle-aged and older adults: regional and individual differences. Neuroimage 51(2):501–511PubMedCentralCrossRefPubMedGoogle Scholar
  49. Resnick SM, Pham DL, Kraut MA, Zonderman AB, Davatzikos C (2003) Longitudinal magnetic resonance imaging studies of older adults: a shrinking brain. J Neurosci 23(8):3295–3301PubMedGoogle Scholar
  50. Rodríguez E, Mateo I, Infante J, Llorca J, Berciano J, Combarros O (2006) Cholesteryl ester transfer protein (CETP) polymorphism modifies the Alzheimer’s disease risk associated with APOE ε4 allele. J Neurol 253(2):181–185CrossRefPubMedGoogle Scholar
  51. Rovaris M, Gallo A, Valsasina P, Benedetti B, Caputo D, Ghezzi A et al (2005) Short-term accrual of gray matter pathology in patients with progressive multiple sclerosis: an in vivo study using diffusion tensor MRI. Neuroimage 24(4):1139–1146CrossRefPubMedGoogle Scholar
  52. Salat DH, Buckner RL, Snyder AZ, Greve DN, Desikan RS, Busa E et al (2004) Thinning of the cerebral cortex in aging. Cereb Cortex 14(7):721–730CrossRefPubMedGoogle Scholar
  53. Salminen LE, Schofield PR, Lane EM, Heaps JM, Pierce KD, Cabeen R et al (2013) Neuronal fiber bundle lengths in healthy adult carriers of the ApoE4 allele: a quantitative tractography DTI study. Brain Imaging Behav 7(3):274–281CrossRefPubMedGoogle Scholar
  54. Salminen LE, Schofield PR, Pierce KD, Conturo TE, Tate DF, Lane EM et al (2014a) Impact of the AGTR1 A1166C polymorphism on subcortical hyperintensities and cognition in healthy older adults. AGE 36(4):1–8CrossRefGoogle Scholar
  55. Salminen LE, Schofield PR, Pierce KD, Lane EM, Heaps JM, Bolzenius JD (2014b) Triallelic relationships between the serotonin transporter polymorphism and cognition among healthy older adults. Int J Neurosci 124(5):331–338CrossRefPubMedGoogle Scholar
  56. Sanders AE, Wang C, Katz M, Derby CA, Barzilai N, Ozelius L, Lipton RB (2010) Association of a functional polymorphism in the cholesteryl ester transfer protein (CETP) gene with memory decline and incidence of dementia. JAMA 303(2):150–158PubMedCentralCrossRefPubMedGoogle Scholar
  57. Schmidt R, Schmidt H, Haybaech J, Loitfelder M, Weis S, Cavaleiri M et al (2011) Heterogeneity in age-related white matter changes. Acta Neuropathol 122(2):171–185CrossRefPubMedGoogle Scholar
  58. Stukas S, Robert J, Wellington CL (2014) High-density lipoproteins and cerebrovascular integrity in Alzheimer’s disease. Cell Metab 19(4):574–591CrossRefPubMedGoogle Scholar
  59. Tamnes CK, Walhovd KB, Dale AM, Østby Y, Grydeland H, Richardson G et al (2013) Brain development and aging: overlapping and unique patterns of change. Neuroimage 68:63–74CrossRefPubMedGoogle Scholar
  60. Taoka T, Kin T, Nakagawa H, Hirano M, Sakamoto M, Wada T et al (2007) Diffusivity and diffusion anisotropy of cerebellar peduncles in cases of spinocerebellar degenerative disease. Neuroimage 37(2):387–393CrossRefPubMedGoogle Scholar
  61. Thomalla G, Glauche V, Koch MA, Beaulieu C, Weiller C, Röther J (2004) Diffusion tensor imaging detects early Wallerian degeneration of the pyramidal tract after ischemic stroke. Neuroimage 22(4):1767–1774CrossRefPubMedGoogle Scholar
  62. Thompson A, Di Angelantonio E, Sarwar N, Erqou S, Saleheen D, Dullaart RP et al (2008) Association of cholesteryl ester transfer protein genotypes with CETP mass and activity, lipid levels, and coronary risk. JAMA 299(23):2777–2788CrossRefPubMedGoogle Scholar
  63. Vance JE (2012) Dysregulation of cholesterol balance in the brain: contribution to neurodegenerative diseases. Dis Model Mech 5(6):746–755PubMedCentralCrossRefPubMedGoogle Scholar
  64. Ward MA, Bendlin BB, McLaren DG, Hess TM, Gallagher CL, Kastman EK (2010) Low HDL cholesterol is associated with lower gray matter volume in cognitively healthy adults. FNAGI 2(29):1–8Google Scholar
  65. Weisgraber KH, Rall SC, Mahley RW (1981) Human E apoprotein heterogeneity. Cysteine-arginine interchanges in the amino acid sequence of the apo-E isoforms. J Biol Chem 256(17):9077–9083PubMedGoogle Scholar
  66. Wieshmann UC, Clark CA, Symms MR, Franconi F, Barker GJ, Shorvon SD (1999) Reduced anisotropy of water diffusion in structural cerebral abnormalities demonstrated with diffusion tensor imaging. Magn Reson Imag 17(9):1269–1274CrossRefGoogle Scholar
  67. Wood WG, Schroeder F, Avdulov NA, Chochina SV, Igbavboa U (1999) Recent advances in brain cholesterol dynamics: transport, domains, and Alzheimer’s disease. Lipids 34(3):225–234CrossRefPubMedGoogle Scholar
  68. Yu L, Shulman JM, Chibnik L, Leurgans S, Schneider JA, De Jager PL, Bennett DA (2012) The CETP I405V polymorphism is associated with an increased risk of Alzheimer’s disease. Aging Cell 11(2):228–233PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  • Lauren E. Salminen
    • 1
    Email author
  • Peter R. Schofield
    • 2
    • 3
  • Kerrie D. Pierce
    • 2
  • Xi Luo
    • 4
  • Yi Zhao
    • 4
  • David H. Laidlaw
    • 5
  • Ryan P. Cabeen
    • 5
  • Thomas E. Conturo
    • 6
  • Elizabeth M. Lane
    • 7
  • Jodi M. Heaps
    • 8
  • Jacob D. Bolzenius
    • 1
  • Laurie M. Baker
    • 1
  • Sarah A. Cooley
    • 1
  • Staci Scott
    • 8
  • Lee M. Cagle
    • 1
  • Robert H. Paul
    • 1
    • 8
  1. 1.Department of Psychological SciencesUniversity of Missouri-St. LouisSt. LouisUSA
  2. 2.Neuroscience Research AustraliaSydneyAustralia
  3. 3.School of Medical SciencesUniversity of New South WalesSydneyAustralia
  4. 4.Department of Biostatistics and Center for Statistical SciencesBrown UniversityProvidenceUSA
  5. 5.Computer Science DepartmentBrown UniversityProvidenceUSA
  6. 6.Washington University School of Medicine, Mallinckrodt Institute of RadiologySt. LouisUSA
  7. 7.Vanderbilt University Medical CenterNashvilleUSA
  8. 8.Missouri Institute of Mental HealthBerkeleyUSA

Personalised recommendations