Journal of Neural Transmission

, Volume 122, Issue 9, pp 1319–1322 | Cite as

Elevated fecal calprotectin in patients with Alzheimer’s dementia indicates leaky gut

  • Friedrich Leblhuber
  • Simon Geisler
  • Kostja Steiner
  • Dietmar Fuchs
  • Burkhard Schütz
Neurology and Preclinical Neurological Studies - Short communication


Fecal concentrations of calprotectin were examined in 22 patients with Alzheimer’s disease (AD) and compared with serum concentrations of aromatic amino acids. Calprotectin concentrations were mean ± SEM 140 ± 31.9 mg/kg, 16 patients (73 %) presented with concentrations outside normal (>50 mg/kg). Concentrations correlated inversely with serum levels of tryptophan, tyrosine and phenylalanine (all p < 0.05). Increased concentrations of fecal calprotectin indicate a disturbed intestinal barrier function in AD patients which could be of relevance for the lowering of essential aromatic amino acids concentrations in the blood.


Alzheimer disease Calprotectin Leaky gut Phenylalanine Tryptophan Tyrosine 



The authors thank Mr. Simon Geisler and Mr. Thomas Nuener for excellent technical assistance.

Conflict of interest



  1. Ait-Belgnaoui A, Durand H, Cartier C, Chaumaz G, Eutamene H, Ferrier L, Houdeau E, Fioramonti J, Bueno L, Theodorou V (2012) Prevention of gut leakiness by a probiotic treatment leads to attenuated HPA response to an acute psychological stress in rats. Psychoneuroendocrinology 37:1885–1895CrossRefPubMedGoogle Scholar
  2. Chang KA, Kim HJ, Suh YH (2012) The role of S110a9 in the pathogenesis of Alzheimer’s disease: the therapeutic effects of S100a9 knockdown or knockout. Neurodegener Dis 10:27–29CrossRefPubMedGoogle Scholar
  3. Clark TA, Lee HP, Rolston RK, Zhu X, Marlatt MW, Castellani RJ, Nunomura A, Casadesus G, Smith MA, Lee HG, Perry G (2010) Oxidative stress and its implications for future treatments and management of Alzheimer disease. Int J Biomed Sci 6:225–227PubMedCentralPubMedGoogle Scholar
  4. Detrait ER, Danis B, Lamberty Y, Foerch P (2014) Peripheral administration of an anti-TNF-alpha receptor fusion protein counteracts the amyloid induced elevation of hippocampal TNF-alpha levels and memory deficits in mice. Neurochem Int 72:10–13CrossRefPubMedGoogle Scholar
  5. Ehrchen JM, Sunderkötter C, Foell D, Vogl T, Roth J (2009) The endogenous Toll-like receptor 4 agonist S100A8/S100A9 (calprotectin) as innate amplifier of infection, autoimmunity, and cancer. J Leukoc Biol 86:557–566CrossRefPubMedGoogle Scholar
  6. Joshi S, Lewis SJ, Creanor S, Ayling RM (2010) Age-related faecal calprotectin, lactoferrin and tumour M2-PK concentrations in healthy volunteers. Ann Clin Biochem 47(Pt 3):259–263CrossRefPubMedGoogle Scholar
  7. Kim HJ, Chang KA, Ha TY, Kim J, Ha S, Shin KY, Moon C, Nacken W, Kim HS, Suh YH (2014) S100A9 knockout decreases the memory impairment and neuropathology in crossbreed mice of Tg2576 and S100A9 knockout mice model. PLoS ONE 9(2):e88924PubMedCentralCrossRefPubMedGoogle Scholar
  8. Manz M, Burri E, Rothen C, Tchanguizi N, Niederberger C, Rossi L, Beglinger C, Lehmann FS (2012) Value of fecal calprotectin in the evaluation of patients with abdominal discomfort: an observational study. BMC Gastroenterol 12:5PubMedCentralCrossRefPubMedGoogle Scholar
  9. Mc Manus RM, Higgins SC, Mills KH, Lynch MA (2014) Respiratory infection promotes T cell infiltration and amyloid ß-deposition in APP/PS1 mice. Neurobiol Aging 35:109–121CrossRefGoogle Scholar
  10. Neurauter G, Schröcksnadel K, Scholl-Bürgi S, Sperner-Unterweger B, Schubert C, Ledochowski M, Fuchs D (2008) Chronic immune stimulation correlates with reduced phenylalanine turnover. Curr Drug Metab 9:622–627CrossRefPubMedGoogle Scholar
  11. Neurauter G, Scholl-Bürgi S, Haara A, Geisler S, Mayersbach P, Schennach H, Fuchs D (2013) Simultaneous measurement of phenylalanine and tyrosine by high performance liquid chromatography (HPLC) with fluorescence detection. Clin Biochem 46:1848–1851CrossRefPubMedGoogle Scholar
  12. Striz I, Trebichavsky I (2004) Calprotectin—a pleiotropic molecule in acute and chronic inflammation. Physiol Res 53:245–253PubMedGoogle Scholar
  13. Widner B, Werner ER, Schennach H, Wachter H, Fuchs D (1997) Simultaneous measurement of serum tryptophan and kynurenine by HPLC. Clin Chem 43:2424–2426PubMedGoogle Scholar
  14. Widner B, Leblhuber F, Walli J, Tilz GP, Demel U, Fuchs D (2000) Tryptophan degradation and immune activation in Alzheimer‘s disease. J Neural Transm 107:343–353CrossRefPubMedGoogle Scholar
  15. Wissmann P, Geisler S, Leblhuber F, Fuchs D (2013) Immune activation in patients with Alzheimer’s disease is associated with higher serum phenylalanine concentrations. J Neurol Sci 329:29–33CrossRefPubMedGoogle Scholar
  16. Zhang C, Liu Y, Gilthorpe J, van der Maarel JR (2012) MRP14 (S100A9) protein interacts with Alzheimer beta amyloid peptide and induces its fibrillization. PLoS ONE 7(3):e32953PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  • Friedrich Leblhuber
    • 1
  • Simon Geisler
    • 2
  • Kostja Steiner
    • 1
  • Dietmar Fuchs
    • 2
  • Burkhard Schütz
    • 3
  1. 1.Department of GerontologyLandesnervenklinik Wagner-Jauregg LinzLinzAustria
  2. 2.Division of Biological Chemistry, BiocenterMedical UniversityInnsbruckAustria
  3. 3.Biovis Diagnostik MVZ GmbHLimburgGermany

Personalised recommendations