Advertisement

Journal of Neural Transmission

, Volume 122, Issue 4, pp 607–617 | Cite as

Passive immunization targeting the N-terminal projection domain of tau decreases tau pathology and improves cognition in a transgenic mouse model of Alzheimer disease and tauopathies

  • Chun-ling Dai
  • Xia Chen
  • Syed Faraz Kazim
  • Fei Liu
  • Cheng-Xin Gong
  • Inge Grundke-Iqbal
  • Khalid Iqbal
Neurology and Preclinical Neurological Studies - Original Article

Abstract

Intraneuronal accumulation of abnormally hyperphosphorylated tau in the brain is a histopathological hallmark of Alzheimer’s disease and a family of related neurodegenerative disorders collectively called tauopathies. At present there is no effective treatment available for these progressive neurodegenerative diseases which are clinically characterized by dementia in mid to old-age. Here we report the treatment of 14–17-months-old 3xTg-AD mice with tau antibodies 43D (tau 6–18) and 77E9 (tau 184–195) to the N-terminal projection domain of tau or mouse IgG as a control by intraperitoneal injection once a week for 4 weeks, and the effects of the passive immunization on reduction of hyperphosphorylated tau, Aβ accumulation and cognitive performance in these animals. We found that treatment with tau antibodies 43D and 77E9 reduced total tau level, decreased tau hyperphosphorylated at Ser199, Ser202/Thr205 (AT8), Thr205, Ser262/356 (12E8), and Ser396/404 (PHF-1) sites, and a trend to reduce Aβ pathology. Most importantly, targeting N-terminal tau especially by 43D (tau 6–18) improved reference memory in the Morris water maze task in 3xTg-AD mice. We did not observe any abnormality in general physical characteristics of the treated animals with either of the two antibodies during the course of this study. Taken together, our studies demonstrate for the first time (1) that passive immunization targeting normal tau can effectively clear the hyperphosphorylated protein and possibly reduce Aβ pathology from the brain and (2) that targeting N-terminal projection domain of tau containing amino acid 6–18 is especially beneficial. Thus, targeting selective epitopes of N-terminal domain of tau may present a novel effective therapeutic opportunity for Alzheimer disease and other tauopathies.

Keywords

Aβ Alzheimer’s disease Immunotherapy Tau Tauopathy 

Notes

Acknowledgments

We are thankful to Ms. Janet Murphy for secretarial assistance. Studies described in this publication were supported by the New York State Office of People with Developmental Disabilities (OPWDD). Tau antibodies 43D and 77E9 employed for this study were generated and characterized under the supervision of Dr. Inge Grundke-Iqbal who passed away on September 22, 2012.

Conflict of interest

The authors declare no conflict of interest.

References

  1. Alafuzoff I, Iqbal K, Friden H, Adolfsson R, Winblad B (1987) Histopathological criteria for progressive dementia disorders: clinical-pathological correlation and classification by multivariate data analysis. Acta Neuropathol (Berl) 74:209–225CrossRefGoogle Scholar
  2. Alonso AD, Zaidi T, Grundke-Iqbal I, Iqbal K (1994) Role of abnormally phosphorylated tau in the breakdown of microtubules in Alzheimer disease. Proc Natl Acad Sci USA 91:5562–5566CrossRefPubMedCentralPubMedGoogle Scholar
  3. Alonso AD, Grundke-Iqbal I, Iqbal K (1996) Alzheimer’s disease hyperphosphorylated tau sequesters normal tau into tangles of filaments and disassembles microtubules. Nat Med 2:783–787CrossRefPubMedGoogle Scholar
  4. Amadoro G, Serafino AL, Barbato C, Ciotti MT, Sacco A, Calissano P, Canu N (2004) Role of N-terminal tau domain integrity on the survival of cerebellar granule neurons. Cel Death Differ 11:217–230. doi: 10.1038/sj.cdd.4401314 CrossRefGoogle Scholar
  5. Amadoro G, Ciotti MT, Costanzi M, Cestari V, Calissano P, Canu N (2006) NMDA receptor mediates tau-induced neurotoxicity by calpain and ERK/MAPK activation. Proc Natl Acad Sci USA 103:2892–2897. doi: 10.1073/pnas.0511065103 CrossRefPubMedCentralPubMedGoogle Scholar
  6. Arriagada PV, Growdon JH, Hedley-Whyte ET, Hyman BT (1992) Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer’s disease. Neurology 42:631–639CrossRefPubMedGoogle Scholar
  7. Asuni AA, Boutajangout A, Quartermain D, Sigurdsson EM (2007) Immunotherapy targeting pathological tau conformers in a tangle mouse model reduces brain pathology with associated functional improvements. J Neurosci 27:9115–9129CrossRefPubMedGoogle Scholar
  8. Avila J, Simon D, Diaz-Hernandez M, Pintor J, Hernandez F (2014) Sources of extracellular tau and its signaling. J Alzheimers Dis 40(Suppl 1):S7–S15. doi: 10.3233/JAD-131832 PubMedGoogle Scholar
  9. Bensadoun A, Weinstein D (1976) Assay of proteins in the presence of interfering materials. Anal Biochem 70:241–250CrossRefPubMedGoogle Scholar
  10. Bi M, Ittner A, Ke YD, Gotz J, Ittner LM (2011) Tau-targeted immunization impedes progression of neurofibrillary histopathology in aged P301L tau transgenic mice. PLoS One 6:e26860. doi: 10.1371/journal.pone.0026860 CrossRefPubMedCentralPubMedGoogle Scholar
  11. Boimel M, Grigoriadis N, Lourbopoulos A, Haber E, Abramsky O, Rosenmann H (2010) Efficacy and safety of immunization with phosphorylated tau against neurofibrillary tangles in mice. Exp Neurol 224:472–485. doi: 10.1016/j.expneurol.2010.05.010 CrossRefPubMedGoogle Scholar
  12. Boutajangout A, Quartermain D, Sigurdsson EM (2010) Immunotherapy targeting pathological tau prevents cognitive decline in a new tangle mouse model. J Neurosci 30:16559–16566. doi: 10.1523/JNEUROSCI.4363-10.2010 CrossRefPubMedCentralPubMedGoogle Scholar
  13. Boutajangout A, Ingadottir J, Davies P, Sigurdsson EM (2011) Passive immunization targeting pathological phospho-tau protein in a mouse model reduces functional decline and clears tau aggregates from the brain. J Neurochem 118:658–667. doi: 10.1111/j.1471-4159.2011.07337.x CrossRefPubMedCentralPubMedGoogle Scholar
  14. Braak H, Braak E (1997) Frequency of stages of Alzheimer-related lesions in different age categories. Neurobiol Aging 18:351–357CrossRefPubMedGoogle Scholar
  15. Braak H, Zetterberg H, Del Tredici K, Blennow K (2013) Intraneuronal tau aggregation precedes diffuse plaque deposition, but amyloid-beta changes occur before increases of tau in cerebrospinal fluid. Acta Neuropathol 126:631–641. doi: 10.1007/s00401-013-1139-0 CrossRefPubMedGoogle Scholar
  16. Castillo-Carranza DL et al (2014) Passive immunization with Tau oligomer monoclonal antibody reverses tauopathy phenotypes without affecting hyperphosphorylated neurofibrillary tangles. J Neurosci 34:4260–4272. doi: 10.1523/JNEUROSCI.3192-13.2014 CrossRefPubMedGoogle Scholar
  17. Chai X et al (2011) Passive immunization with anti-Tau antibodies in two transgenic models: reduction of Tau pathology and delay of disease progression. J Biol Chem 286:34457–34467. doi: 10.1074/jbc.M111.229633 CrossRefPubMedCentralPubMedGoogle Scholar
  18. Clavaguera F et al (2009) Transmission and spreading of tauopathy in transgenic mouse brain. Nat Cell Biol 11:909–913CrossRefPubMedCentralPubMedGoogle Scholar
  19. Clavaguera F et al (2013) Brain homogenates from human tauopathies induce tau inclusions in mouse brain. Proc Natl Acad Sci USA 110:9535–9540. doi: 10.1073/pnas.1301175110 CrossRefPubMedCentralPubMedGoogle Scholar
  20. Clinton LK et al (2007) Age-dependent sexual dimorphism in cognition and stress response in the 3xTg-AD mice. Neurobiol Dis 28:76–82CrossRefPubMedCentralPubMedGoogle Scholar
  21. Corsetti V et al (2008) Identification of a caspase-derived N-terminal tau fragment in cellular and animal Alzheimer’s disease models. Mol Cell Neurosci 38:381–392. doi: 10.1016/j.mcn.2008.03.011 CrossRefPubMedGoogle Scholar
  22. d’Abramo C, Acker CM, Jimenez HT, Davies P (2013) Tau passive immunotherapy in mutant P301L mice: antibody affinity versus specificity. PLoS One 8:e62402. doi: 10.1371/journal.pone.0062402 CrossRefPubMedCentralPubMedGoogle Scholar
  23. Denk F, Wade-Martins R (2009) Knock-out and transgenic mouse models of tauopathies. Neurobiol Aging 30:1–13. doi: 10.1016/j.neurobiolaging.2007.05.010 CrossRefPubMedCentralPubMedGoogle Scholar
  24. D’Hooge R, De Deyn PP (2001) Applications of the Morris water maze in the study of learning and memory. Brain Res Brain Res Rev 36:60–90CrossRefPubMedGoogle Scholar
  25. Doody RS et al (2014) Phase 3 trials of solanezumab for mild-to-moderate Alzheimer’s disease. N Engl J Med 370:311–321. doi: 10.1056/NEJMoa1312889 CrossRefPubMedGoogle Scholar
  26. Flight MH (2013) Neurodegenerative disease: tau immunotherapy targets transcellular propagation. Nat Rev Drug Discov 12:904. doi: 10.1038/nrd4179 CrossRefPubMedGoogle Scholar
  27. Frost B, Jacks RL, Diamond MI (2009) Propagation of tau misfolding from the outside to the inside of a cell. J Biol Chem 284:12845–12852. doi: 10.1074/jbc.M808759200 CrossRefPubMedCentralPubMedGoogle Scholar
  28. Garg S, Timm T, Mandelkow EM, Mandelkow E, Wang Y (2011) Cleavage of Tau by calpain in Alzheimer’s disease: the quest for the toxic 17 kD fragment. Neurobiol Aging 32:1–14. doi: 10.1016/j.neurobiolaging.2010.09.008 CrossRefPubMedGoogle Scholar
  29. Giacobini E, Gold G (2013) Alzheimer disease therapy-moving from amyloid-beta to tau. Nat Rev Neurol. doi: 10.1038/nrneurol.2013.223 PubMedGoogle Scholar
  30. Giannakopoulos P et al (2003) Tangle and neuron numbers, but not amyloid load, predict cognitive status in Alzheimer’s disease. Neurology 60:1495–1500CrossRefPubMedGoogle Scholar
  31. Glenner GG, Wong CW (1984) Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun 120:885–890CrossRefPubMedGoogle Scholar
  32. Grundke-Iqbal I, Iqbal K, Tung YC, Quinlan M, Wisniewski HM, Binder LI (1986) Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci USA 83:4913–4917CrossRefPubMedCentralPubMedGoogle Scholar
  33. Gu J, Congdon EE, Sigurdsson EM (2013) Two novel Tau antibodies targeting the 396/404 region are primarily taken up by neurons and reduce Tau protein pathology. J Biol Chem 288:33081–33095. doi: 10.1074/jbc.M113.494922 CrossRefPubMedCentralPubMedGoogle Scholar
  34. Holmes C et al (2008) Long-term effects of Abeta42 immunisation in Alzheimer’s disease: follow-up of a randomised, placebo-controlled phase I trial. Lancet 372:216–223CrossRefPubMedGoogle Scholar
  35. Iqbal K et al (1986) Defective brain microtubule assembly in Alzheimer’s disease. Lancet 2:421–426CrossRefPubMedGoogle Scholar
  36. Kazim SF, Blanchard J, Dai CL, Tung YC, LaFerla FM, Iqbal IG, Iqbal K (2014) Disease modifying effect of chronic oral treatment with a neurotrophic peptidergic compound in a triple transgenic mouse model of Alzheimer’s disease. Neurobiol Dis. doi: 10.1016/j.nbd.2014.07.001 PubMedGoogle Scholar
  37. Kopke E, Tung YC, Shaikh S, Alonso AC, Iqbal K, Grundke-Iqbal I (1993) Microtubule-associated protein tau. Abnormal phosphorylation of a non-paired helical filament pool in Alzheimer disease. J Biol Chem 268:24374–24384PubMedGoogle Scholar
  38. Lambracht-Washington D, Rosenberg RN (2013) Anti-amyloid beta to tau-based immunization: developments in immunotherapy for Alzheimer disease. Immuno Targets Ther 2013:105–114. doi: 10.2147/ITT.S31428 CrossRefGoogle Scholar
  39. Mandelkow EM, Schweers O, Drewes G, Biernat J, Gustke N, Trinczek B, Mandelkow E (1996) Structure, microtubule interactions, and phosphorylation of tau protein. Ann N Y Acad Sci 777:96–106CrossRefPubMedGoogle Scholar
  40. Masliah E et al (2005) Effects of alpha-synuclein immunization in a mouse model of Parkinson’s disease. Neuron 46:857–868. doi: 10.1016/j.neuron.2005.05.010 CrossRefPubMedGoogle Scholar
  41. Morris RG, Garrud P, Rawlins JN, O’Keefe J (1982) Place navigation impaired in rats with hippocampal lesions. Nature 297:681–683CrossRefPubMedGoogle Scholar
  42. Oddo S, Caccamo A, Kitazawa M, Tseng BP, LaFerla FM (2003a) Amyloid deposition precedes tangle formation in a triple transgenic model of Alzheimer’s disease. Neurobiol Aging 24:1063–1070CrossRefPubMedGoogle Scholar
  43. Oddo S et al (2003b) Triple-transgenic model of Alzheimer’s disease with plaques and tangles: intracellular Abeta and synaptic dysfunction. Neuron 39:409–421CrossRefPubMedGoogle Scholar
  44. Park SY, Ferreira A (2005) The generation of a 17 kDa neurotoxic fragment: an alternative mechanism by which tau mediates beta-amyloid-induced neurodegeneration. J Neurosci 25:5365–5375. doi: 10.1523/JNEUROSCI.1125-05.2005 CrossRefPubMedCentralPubMedGoogle Scholar
  45. Reinecke JB et al (2011) Implicating calpain in tau-mediated toxicity in vivo. PloS One 6:e23865. doi: 10.1371/journal.pone.0023865 CrossRefPubMedCentralPubMedGoogle Scholar
  46. Reitz C (2012) Alzheimer’s disease and the amyloid cascade hypothesis: a critical review. Int J Alzheimers Dis 2012:369808. doi: 10.1155/2012/369808 PubMedCentralPubMedGoogle Scholar
  47. Roberson ED et al (2007) Reducing endogenous tau ameliorates amyloid beta-induced deficits in an Alzheimer’s disease mouse model. Science 316:750–754CrossRefPubMedGoogle Scholar
  48. Rosario ER, Carroll JC, Oddo S, LaFerla FM, Pike CJ (2006) Androgens regulate the development of neuropathology in a triple transgenic mouse model of Alzheimer’s disease. J Neurosci 26:13384–13389. doi: 10.1523/JNEUROSCI.2514-06.2006 CrossRefPubMedGoogle Scholar
  49. Rosenmann H, Grigoriadis N, Karussis D, Boimel M, Touloumi O, Ovadia H, Abramsky O (2006) Tauopathy-like abnormalities and neurologic deficits in mice immunized with neuronal tau protein. Arch Neurol 63:1459–1467. doi: 10.1001/archneur.63.10.1459 CrossRefPubMedGoogle Scholar
  50. Salloway S et al (2014) Two phase 3 trials of bapineuzumab in mild-to-moderate Alzheimer’s disease. N Engl J Med 370:322–333. doi: 10.1056/NEJMoa1304839 CrossRefPubMedCentralPubMedGoogle Scholar
  51. Sanders DW et al (2014) Distinct tau prion strains propagate in cells and mice and define different tauopathies. Neuron 82:1271–1288. doi: 10.1016/j.neuron.2014.04.047 CrossRefPubMedGoogle Scholar
  52. Sigurdsson EM (2008) Immunotherapy targeting pathological tau protein in Alzheimer’s disease and related tauopathies. J Alzheimers Dis 15:157–168PubMedCentralPubMedGoogle Scholar
  53. Terry RD et al (1991) Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 30:572–580CrossRefPubMedGoogle Scholar
  54. Thies W, Bleiler L, Alzheimer’s A (2013) 2013 Alzheimer’s disease facts and figures. Alzheimers Dement 9:208–245. doi: 10.1016/j.jalz.2013.02.003 CrossRefGoogle Scholar
  55. Tomlinson BE, Blessed G, Roth M (1970) Observations on the brains of demented old people. J Neurol Sci 11:205–242CrossRefPubMedGoogle Scholar
  56. Troquier L et al (2012) Targeting phospho-Ser422 by active Tau Immunotherapy in the THYTau22 mouse model: a suitable therapeutic approach. Curr Alzheimer Res 9:397–405CrossRefPubMedCentralPubMedGoogle Scholar
  57. Vallet PG, Guntern R, Hof PR, Golaz J, Delacourte A, Robakis NK, Bouras C (1992) A comparative study of histological and immunohistochemical methods for neurofibrillary tangles and senile plaques in Alzheimer’s disease. Acta Neuropathol 83:170–178CrossRefPubMedGoogle Scholar
  58. Vorhees CV, Williams MT (2006) Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat Protoc 1:848–858. doi: 10.1038/nprot.2006.116 CrossRefPubMedCentralPubMedGoogle Scholar
  59. Winblad B, Graf A, Riviere ME, Andreasen N, Ryan JM (2014) Active immunotherapy options for Alzheimer’s disease. Alzheimers Res Ther 6:7. doi: 10.1186/alzrt237 CrossRefPubMedCentralPubMedGoogle Scholar
  60. Yanamandra K et al (2013) Anti-tau antibodies that block tau aggregate seeding in vitro markedly decrease pathology and improve cognition in vivo. Neuron 80:402–414. doi: 10.1016/j.neuron.2013.07.046 CrossRefPubMedCentralPubMedGoogle Scholar
  61. Zilka N, Kontsekova E, Novak M (2008) Chaperone-like antibodies targeting misfolded tau protein: new vistas in the immunotherapy of neurodegenerative foldopathies. J Alzheimers Dis 15:169–179PubMedGoogle Scholar

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  • Chun-ling Dai
    • 1
  • Xia Chen
    • 1
  • Syed Faraz Kazim
    • 1
    • 2
    • 3
  • Fei Liu
    • 1
  • Cheng-Xin Gong
    • 1
  • Inge Grundke-Iqbal
    • 1
  • Khalid Iqbal
    • 1
  1. 1.Department of NeurochemistryInge Grundke-Iqbal Research Floor New York State Institute for Basic Research in Developmental DisabilitiesStaten IslandUSA
  2. 2.Neural and Behavioral Science Graduate ProgramState University of New York (SUNY) Downstate Medical CenterBrooklynUSA
  3. 3.SUNY-IBR Center for Developmental Neuroscience (CDN)Staten IslandUSA

Personalised recommendations