Advertisement

Journal of Neural Transmission

, Volume 122, Issue 2, pp 225–235 | Cite as

The physiology of the pedunculopontine nucleus: implications for deep brain stimulation

  • E. Garcia-RillEmail author
  • J. Hyde
  • N. Kezunovic
  • F. J. Urbano
  • E. Petersen
Neurology and Preclinical Neurological Studies - Review article

Abstract

This brief review resolves a number of persistent conflicts regarding the location and characteristics of the mesencephalic locomotor region, which has in the past been described as not locomotion-specific and is more likely the pedunculopontine nucleus (PPN). The parameters of stimulation used to elicit changes in posture and locomotion we now know are ideally suited to match the intrinsic membrane properties of PPN neurons. The physiology of these cells is important not only because it is a major element of the reticular activating system, but also because it is a novel target for the treatment of gait and postural deficits in Parkinson’s disease (PD). The discussion explains many of the effects reported following deep brain stimulation (DBS) of the PPN by different groups and provides guidelines for the determination of long-term assessment and effects of PPN DBS. A greater understanding of the physiology of the target nuclei within the brainstem and basal ganglia, amassed over the past decades, has enabled increasingly better patient outcomes from DBS for movement disorders. Despite these improvements, there remains a great opportunity for further understanding of the mechanisms through which DBS has its effects and for further development of appropriate technology to effect these treatments. We review the scientific basis for one of the newest targets, the PPN, in the treatment of PD and other movement disorders, and address the needs for further investigation.

Keywords

Reticular activating system Pedunculopontine nucleus Deep brain stimulation Calcium channels 

Notes

Acknowledgments

This work was supported by NIH award R01 NS020246, and by core facilities of the Center for Translational Neuroscience supported by NIH awards P20 GM103425 and P30 GM110702 to Dr. Garcia-Rill. In addition, this work was supported by grants from FONCYT-Agencia Nacional de Promoción Científica y Tecnológica; BID 1728 OC.AR.PICT-2012-1769 (to Dr. Urbano).

Conflict of interest

The authors declare no conflict of interest.

References

  1. Alam M, Schwabe K, Krauss JK (2011) The pedunculopontine nucleus area: critical evaluation of interspecies differences relevant for its use as a target for deep brain stimulation. Brain 134:11–23PubMedCrossRefGoogle Scholar
  2. Alessandro S, Ceravolo R, Brusa L, Pierantozzi M, Costa A, Galati S, Placidi F, Romigi A, Iani C, Marzetti F, Peppe A (2010) Non-motor functions in parkinsonian patients implanted in the pedunculopontine nucleus: focus on sleep and cognitive problems. J Neurol Sci 289:44–48PubMedCrossRefGoogle Scholar
  3. Aviles-Olmos I, Foltynie T, Panicker J, Cowie D, Limousin P, Hariz M, Fowler CJ, Zrinzo L (2011) Urinary incontinence following deep brain stimulation of the pedunculopontine nucleus. Acta Neurochir (Wien) 153(12):2357–2360. doi: 10.1007/s00701-011-1155-6 CrossRefGoogle Scholar
  4. Baghdoyan HA, Rodrigo-Angulo ML, McCarley RW, Hobson JA (1984) Site-specific enhancement and suppression of desynchronized sleep signs following cholinergic stimulation of three brainstem regions. Brain Res 306:39–52PubMedCrossRefGoogle Scholar
  5. Chase MH, Morales FR (1994) The control of motoneurons during sleep. In: Kryger MH, Roth T, Dement WC (eds) Principles and practice of sleep medicine. WB Saunders, London, pp 163–176Google Scholar
  6. Davis M (1984) The mammalian startle response. In: Eaton RC (ed) Neural Mechanisms of Startle Behavior. Plenum Press, New York, pp 287–342CrossRefGoogle Scholar
  7. Ferraye MU, Debu B, Fraix V, Goetz L, Ardouin C, Yelnik J et al (2010) Effects of pedunculopontine nucleus area stimulation on gait disorders in Parkinson’s disease. Brain 133:205–214. doi: 10.1093/brain/awp229 PubMedCrossRefGoogle Scholar
  8. Flynn G, Alexander D, Harris A, Whitford T, Wong W, Galletly C et al (2008) Increased absolute magnitude of gamma synchrony in first-episode psychosis. Schizophr Res 105:262–271. doi: 10.1016/j.schres.2008.05.029 PubMedCrossRefGoogle Scholar
  9. Garcia-Rill E (1986) The basal ganglia and the locomotor regions. Brain Res Rev 11:47–63CrossRefGoogle Scholar
  10. Garcia-Rill E (1991) The pedunculopontine nucleus. Prog Neurobiol 36:363–389PubMedCrossRefGoogle Scholar
  11. Garcia-Rill E (1997) Disorders of the reticular activating system. Med Hypotheses 49:379–387PubMedCrossRefGoogle Scholar
  12. Garcia-Rill E, Skinner RD (1988) Modulation of rhythmic function in the posterior midbrain. Neuroscience 17:639–654CrossRefGoogle Scholar
  13. Garcia-Rill E, Skinner RD (1991) Modulation of rhythmic functions by the brainstem. In: Shimamura M, Grillner S, Edgerton VR (eds) Neurobiological basis of human locomotion. Japan Scientific Societies Press, Tokyo, pp 137–158 Google Scholar
  14. Garcia-Rill E, Hull CD, Levine MS, Buchwald NA (1979) The spontaneous firing patterns of forebrain neurons. IV. Effects of bilateral and unilateral frontal cortical ablations on firing of caudate, globus pallidus and thalamic neurons. Brain Res 165:23–36PubMedCrossRefGoogle Scholar
  15. Garcia-Rill E, Skinner RD, Gilmore SA (1981) Pallidal projections to the mesencephalic locomotor region (MLR) in the cat. Am J Anat 161:311–322PubMedCrossRefGoogle Scholar
  16. Garcia-Rill E, Skinner RD, Fitzgerald JA (1983) Activity in the mesencephalic locomotor region (MLR) during locomotion. Exp Neurol 82:609–622PubMedCrossRefGoogle Scholar
  17. Garcia-Rill E, Skinner RD, Fitzgerald JA (1985) Chemical activation of the mesencephalic locomotor region. Brain Res 330:43–54PubMedCrossRefGoogle Scholar
  18. Garcia-Rill E, Houser CR, Skinner RD, Smith W, Woodward DJ (1987) Locomotion-inducing sites in the vicinity of the pedunculopontine nucleus. Brain Res Bull 18:731–738PubMedCrossRefGoogle Scholar
  19. Garcia-Rill E, Biedermann JA, Chambers T, Skinner RD, Mrak RE, Husain M, Karson CN (1995) Mesopontine neurons in schizophrenia. Neuroscience 66:321–335PubMedCrossRefGoogle Scholar
  20. Garcia-Rill E, Reese NB, Skinner RD (1996) Arousal and locomotion: from schizophrenia to narcolepsy. In: Holstege G, Saper CB (eds) The emotional motor system. Prog Brain Res 107:417–434Google Scholar
  21. Garcia-Rill E, Homma Y, Skinner RD (2004) Arousal mechanisms related to posture and movement. I. Descending modulation. In: Mori S, Stuart DG, Wiesendanger M (eds) Brain Mechanisms for the integration of posture and movement. Prog Brain Res 143:283–290Google Scholar
  22. Garcia-Rill E, Kezunovic N, Hyde J, Beck P, Urbano FJ (2013) Coherence and frequency in the reticular activating system (RAS). Sleep Med Rev 17:227–238Google Scholar
  23. Garcia-Rill E, Kezunovic N, D’Onofrio S, Luster B, Hyde J, Bisagno V, Urbano FJ (2014) Gamma band activity in the RAS-intracellular mechanisms. Exp Brain Res 232:1509–1522Google Scholar
  24. Hazrati LN, Wong JC, Hamani C, Lozano AM, Poon YY, Dostrovsky JO, Hutchison WD, Zadikoff C, Moro E (2012) Clinicopathological study in progressive supranuclear palsy with pedunculopontine stimulation. MovDisord 27:1304–1307. doi: 10.1002/mds.25123 Google Scholar
  25. Hyde J, Kezunovic N, Urbano FJ, Garcia-Rill E (2013) Spatiotemporal properties of high speed calcium oscillations in the pedunculopontine nucleus. J Appl Physiol 115:1402–1414. doi: 10.1152/japplphysiol.00762.2013 PubMedCentralPubMedCrossRefGoogle Scholar
  26. Insola A, Padua L, Mazzone P, Scarnati E, Valeriani M (2014) Low and high-frequency somatosensory evoked potentials recorded from the human pedunculopontine nucleus. Clin Neurophysiol. doi: 10.1016/j.clinph.2013.12.112
  27. Karson DH, Garcia RillE, Biedermann JA, Mrak RE, Husain M, Skinner RD (1991) The brain stem reticular formation in schizophrenia. Psychiatry Res 40:31–48PubMedCrossRefGoogle Scholar
  28. Kezunovic N, Urbano FJ, Simon C, Hyde J, Smith K, Garcia-Rill E (2011) Mechanism behind gamma band activity in the pedunculopontine nucleus (PPN). Eur J Neurosci 34(3):404–415. doi: 10.1111/j.1460-9568.2011.07766.x PubMedCentralPubMedCrossRefGoogle Scholar
  29. Lindsley DB, Bowden JW, Magoun HW (1949) Effect upon the EEG of acute injury to the brain stem activating system. Electroenceph Clin Neurophysiol 1:475–486PubMedCrossRefGoogle Scholar
  30. Mazzone PSP, Lozano A, Sposato S, Scarnati E, Stefani A (2005) Brain stimulation and movement disorders: where we going? In: Proceedings of 14th meeting of the world society of stereotactic and functional neurosurgery (WSSFN). Monduzzi, BolognaGoogle Scholar
  31. Mazzone P, Sposato S, Insola A, Dilazzaro V, Scarnati E (2008) Stereotactic surgery of nucleus tegmenti pedunculopontine [corrected]. Br J Neurosurg 22(1):S33–S40. doi: 10.1080/02688690802448327 PubMedCrossRefGoogle Scholar
  32. Mazzone P, Insola A, Sposato S, Scarnati E (2009) The deep brain stimulation of the pedunculopontine tegmental nucleus. Neuromodulation 12:191–204. doi: 10.1111/j.1525-1403.2009.00214.x PubMedCrossRefGoogle Scholar
  33. Mazzone P, Scarnati E, Garcia-Rill E (2011) Commentary: the pedunculopontine nucleus: clinical experience, basic questions and future directions. J Neural Trans 118:1391–1396. doi: 10.1007/s00702-010-0530-4 CrossRefGoogle Scholar
  34. Mena-Segovia J, Sims HM, Magill PJ, Bolam JP (2008) Cholinergic brainstem neurons modulate cortical gamma band activity during slow oscillations. J Physiol (Lond) 586:2947–2960. doi: 10.1113/jphysiol.2008.153874 CrossRefGoogle Scholar
  35. Mesulam MM, Mufson EJ, Wainer BH, Levey AI (1983) Central cholinergic pathways in the rat: an overview based on an alternative nomenclature (Ch1–Ch6). Neuroscience 10:1185–1201PubMedCrossRefGoogle Scholar
  36. Moro E, Hamani C, Poon YY, Al-Khairallah T, Dostrovsky JO, Hutchison WD, Lozano AM (2010) Unilateral pedunculopontine stimulation improves falls in Parkinson’s disease. Brain 133:215–224. doi: 10.1093/brain/awp261 PubMedCrossRefGoogle Scholar
  37. Nauta WJH, Mehler WR (1966) Projections of the lentiform nucleus in the monkey. Brain Res 1:3–42PubMedCrossRefGoogle Scholar
  38. Olde-Dubbelink KTE, Stoffers D, Deijen JB, Twisk JWR, Stam CJ, Berendse HW (2012) Cognitive decline in Parkinson’s disease is associated with slowing of resting-state brain activity: a longitudinal study. Neurobiol Aging 34(2):408–418. doi: 10.1016/j.neurobiolaging.2012.02.029 PubMedCrossRefGoogle Scholar
  39. Ozerdem A, Guntenkin B, Atagun I, Turp B, Basar E (2011) Reduced long distance gamma (28–48 Hz) coherence in euthymic patients with bipolar disorder. J Affect Disord 132:325–332. doi: 10.1016/j.jad.2011.02.028 PubMedCrossRefGoogle Scholar
  40. Pedroarena C, Llinas RR (2001) Interactions of synaptic and intrinsic electro responsiveness determine corticothalamic activation dynamics. Thalamus Rel Sys 1(1):3–14Google Scholar
  41. Peppe A, Pierantozzi M, Baiamonte V, Moschella V, Caltagirone C, Stanzione P, Stefani A (2012) Deep brain stimulation of pedunculopontine tegmental nucleus: role of sleep modulation in advanced Parkinson disease patients- one-year follow-up. Sleep 35:1637–1642. doi: 10.5665/sleep.2234 PubMedCentralPubMedGoogle Scholar
  42. Reese NB, Garcia-Rill E, Skinner RD (1995) The pedunculopontine nucleus-auditory input, arousal and pathophysiology. Prog Neurobiol 47:105–133PubMedCrossRefGoogle Scholar
  43. Sanford LD, Morrison AR, Mann GL, Harris JS, Yoo L, Ross RJ (1994) Sleep patterning and behaviour in cats with pontine lesions creating REM without atonia. J Sleep Res 3:233–240PubMedCrossRefGoogle Scholar
  44. Shik ML, Severin FV, Orlovskii GN (1966) Control of walking and running by means of electric stimulation of the midbrain. Biofizika 11:659–666PubMedGoogle Scholar
  45. Shimamoto SA, Larson PS, Ostrem JL, Glass GA, Turner RS, Starr PA (2010) Physiological identification of the human pedunculopontine nucleus. J Neurol Neurosurg Psychiatry 81:80–86. doi: 10.1136/jnnp.2009.179069 PubMedCentralPubMedCrossRefGoogle Scholar
  46. Simon C, Kezunovic N, Ye M, Hyde J, Hayar A, Williams DK, Garcia-Rill E (2010) Gamma band unit and population responses in the pedunculopontine nucleus. J Neurophysiol 104:463–474. doi: 10.1152/jn.00242.2010 PubMedCentralPubMedCrossRefGoogle Scholar
  47. Skinner RD, Garcia-Rill E (1990) Brainstem modulation of rhythmic functions and behaviors. In: Klemm WR, Vertes RP (eds) Brainstem mechanisms of behavior. Wiley, New York, pp 419–445Google Scholar
  48. Skinner RD, Garcia-Rill E (1994) Mesolimbic interactions with mesopontine modulation of locomotion. In: Kalivas P, Barnes C (eds) Limbic motor circuits and neuropsychiatry. CRC Press, New York, pp 155–191Google Scholar
  49. Spencer KM, Nestor PG, Niznikiewicz MA, Salisbury DF, McCarley RW (2003) Abnormal neural synchrony in schizophrenia. J Neurosci 23:7407–7411Google Scholar
  50. Stefani A, Lozano AM, Peppe A, Stanzione P, Galati Troppei D, Pierantozzi M, Brusa L, Scarnati E, Mazzone P (2007) Bilateral deep brain stimulation of the pedunculopontine and subthalamic nuclei in severe Parkinson’s disease. Brain 130:1596–1607PubMedCrossRefGoogle Scholar
  51. Stefani A, Peppe A, Galati S, Stampanoni Basso M, D’Angelo V, Pierantozzi M (2013) The serendipity case of the pedunculopontine nucleus low-frequency brain stimulation: chasing a gait response, finding sleep, and cognitive improvement. Frontiers Neurol 4:68CrossRefGoogle Scholar
  52. Steriade M, McCarley RW (1990) Brainstem control of wakefulness and sleep. Plenum Press, New YorkCrossRefGoogle Scholar
  53. Steriade M, Paré D, Datta S, Oakson G, CurroDossi R (1990) Different cellular types in mesopontine cholinergic nuclei related to ponto-geniculo-occipital waves. J Neurosci 10:2560–2579PubMedGoogle Scholar
  54. Steriade M, CurroDossi R, Paré D, Oakson G (1991) Fast oscillations (20–40 Hz) in thalamocortical systems and their potentiation by mesopontine cholinergic nuclei in the cat. Proc Natl Acad Sci USA 88:4396–4400PubMedCentralPubMedCrossRefGoogle Scholar
  55. Symond MP, Harris AW, Gordon E, Williams LM (2005) “Gamma synchrony” in first- episode schizophrenia: a disorder of temporal connectivity? Am J Psychiatry 162:459–465PubMedCrossRefGoogle Scholar
  56. Takakusaki K, Habaguchi T, Ohtinata-Sugimoto J, Saitoh K, Sakamoto T (2003) Basal ganglia efferents to the brainstem centers controlling postural muscle tone and locomotion: a new concept for understanding motor disorders in basal ganglia dysfunction. Neuroscience 119:293–308PubMedCrossRefGoogle Scholar
  57. Teo C, Rasco L, Al-Mefty K, Skinner RD, Garcia-Rill E (1997) Decreased habituation of midlatency auditory evoked responses in Parkinson’s disease. MovDis 12:655–664Google Scholar
  58. Teo C, Rasco L, Skinner RD, Garcia-Rill E (1998) Disinhibition of the sleep-state dependent P1 potential in Parkinson’s disease-improvement after pallidotomy. Sleep Res Online 1:62–70PubMedGoogle Scholar
  59. Thevanasathan W, Silburn PA, Brooker H, Coyne TJ, Kahn S, Gill SS, Aziz TZ, Brown P (2010) The impact of low-frequency stimulation of the pedunculopontine nucleus region on reaction time in Parkinsonism. J Neurol Neurosurg Psychiatry 81:1099–1104CrossRefGoogle Scholar
  60. Thevanasathan W, Cole MH, Grapel CL, Hyam JA, Jenkinson N, Brittain JS, Coyne TJ, Silburn PA, Aziz TZ, Kerr G, Brown P (2012) A spatiotemporal analysis of gait freezing and the impact of pedunculopontine nucleus stimulation. Brain 135:1446–1454CrossRefGoogle Scholar
  61. Tsang EW, Hamani C, Moro E, Mazzella F, Poon YY, Lozano AM, Chen R (2010) Involvement of the human pedunculopontine nucleus region in voluntary movements. Neurology 75:950–959. doi: 10.1212/WNL.0b013e3181f25b35 PubMedCentralPubMedCrossRefGoogle Scholar
  62. Tyckoki T, Mandat T, Nauman P (2011) Pedunculopontine nucleus deep brain stimulation in parkinson’s disease. Arch Med Sci 7:555–564Google Scholar
  63. Uhlhaas PJ, Singer W (2010) Abnormal neural oscillations and synchrony in schizophrenia. Nat Rev Neurosci 11:100–113Google Scholar
  64. Urbano FJ, Kezunovic N, Hyde J, Simon C, Beck P, Garcia-Rill E (2012) Gamma band activity in the reticular activating system. Front Neurol 3:6. doi: 10.3389/fneur.2012.00006 PubMedCentralPubMedCrossRefGoogle Scholar
  65. Villablanca J (1962) Electroencephalogram in the permanently isolated forebrain of the cat. Science 138:44–46PubMedCrossRefGoogle Scholar
  66. Villablanca J (2004) Counterpointing the functional role of the forebrain and of the brainstem in the control of the sleep-waking system. J Sleep Res 13:179–208PubMedCrossRefGoogle Scholar
  67. Wang HL, Morales M (2009) Pedunculopontine and laterodorsal tegmental nuclei contain distinct populations of cholinergic, glutamatergic and GABAergic neurons in the rat. Eur J Neurosci 29:340–358. doi: 10.1111/j.1460-9568.2008.06576.x PubMedCrossRefGoogle Scholar
  68. Weinberger M, Hamani C, Hutchison WD, Moro E, Lozano AM, Dostrovsky JO (2008) Pedunculopontine nucleus microelectrode recordings in movement disorder patients. Exp Brain Res 188:165–174PubMedCrossRefGoogle Scholar
  69. Winn P (2008) Experimental studies of pedunculopontine functions: are they motor, sensory or integrative? Parkinsonism Relat Disord 14(S2):S194198. doi: 10.1016/j.parkreldis.2008.04.030 Google Scholar
  70. Zrinzo L, Zrinzo LV, Tisch S, Limousin PD, Yousry TA, Afshar F, Hariz MI (2008) Stereotactic localization of the human pedunculopontine nucleus: atlas-based coordinates and validation of a magnetic resonance imaging protocol for direct localization. Brain 131(6):1588–1598. doi: 10.1093/brain/awn075 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  • E. Garcia-Rill
    • 1
    • 2
    Email author
  • J. Hyde
    • 1
    • 2
  • N. Kezunovic
    • 1
    • 2
  • F. J. Urbano
    • 3
  • E. Petersen
    • 1
    • 2
  1. 1.Department of Neurobiology and Developmental Sciences, Center for Translational NeuroscienceUniversity of Arkansas for Medical SciencesLittle RockUSA
  2. 2.Department of Neurosurgery, Center for Translational NeuroscienceUniversity of Arkansas for Medical SciencesLittle RockUSA
  3. 3.IFIBYNE-CONICETUniversity of Buenos AiresBuenos AiresArgentina

Personalised recommendations