Journal of Neural Transmission

, Volume 121, Issue 10, pp 1313–1320 | Cite as

Dopamine differently modulates central cholinergic circuits in patients with Alzheimer disease and CADASIL

  • Raffaele NardoneEmail author
  • Yvonne Höller
  • Aljosha Thomschewski
  • Alexander Baden Kunz
  • Piergiorgio Lochner
  • Stefan Golaszewski
  • Eugen Trinka
  • Francesco Brigo
Neurology and Preclinical Neurological Studies - Original Article


Short-latency afferent inhibition (SAI) technique gives the opportunity to non-invasively test an inhibitory circuit in the human cerebral motor cortex that depends mainly on central cholinergic activity. Important SAI abnormalities have been reported in both patients with Alzheimer disease (AD) and cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), a model of “pure” vascular dementia (VD). Interestingly, a normalization of SAI was observed in AD after levo-dopa (l-dopa) administration. We aimed to determine whether the pharmacological manipulation of the dopaminergic system can also interfere with SAI test in CADASIL patients, compared with AD patients and healthy controls. SAI was found to be significantly reduced in both patient groups. l-Dopa significantly increased SAI in the AD patients, while it failed to restore SAI abnormality in CADASIL patients. Therefore, l-dopa-mediated changes on SAI in AD patients seem to be a specific effect. The present study supports the notion that relationship between acetylcholine and dopamine systems may be specifically abnormal in AD. l-Dopa challenge may thus be able to differentiate the patients with AD or a mixed form of dementia from those with “pure” VD.


Alzheimer disease CADASIL Transcranial magnetic stimulation Short-latency afferent inhibition l-Dopa 


  1. Alberici A, Bonato C, Calabria M, Agosti C, Zanetti O, Miniussi C, Padovani A, Rossini PM, Borroni B (2008) The contribution of TMS to frontotemporal dementia variants. Acta Neurol Scand 118:275–280PubMedCrossRefGoogle Scholar
  2. Allard PO, Rinne J, Marcusson JO (1994) Dopamine uptake sites in Parkinson’s disease and in dementia of the Alzheimer type. Brain Res 637:262–266PubMedCrossRefGoogle Scholar
  3. Beckstead RM, Domesick VB, Nauta WJ (1979) Efferent connections of the substantia nigra and ventral tegmental area in the rat. Brain Res 175:191–217PubMedCrossRefGoogle Scholar
  4. Berlanga ML, Simpson TK, Alcantara AA (2005) Dopamine D5 receptor localization on cholinergic neurons of the rat forebrain and diencephalon: a potential neuroanatomical substrate involved in mediating dopaminergic influences on acetylcholine release. J Comp Neurol 492:34–49PubMedCrossRefGoogle Scholar
  5. Blokland A (1995) Acetylcholine: a neurotransmitter for learning and memory? Brain Res Brain Res Rev 21:285–300PubMedCrossRefGoogle Scholar
  6. Brooks JM, Sarter M, Bruno JP (2007) D2-like receptors in nucleus accumbens negatively modulate acetylcholine release in prefrontal cortex. Neuropharmacology 53:455–463PubMedCrossRefPubMedCentralGoogle Scholar
  7. Buffon F, Porcher R, Hernandez K, Kurtz A, Pointeau S, Vahedi K, Bousser MG, Chabriat H (2006) Cognitive profile in CADASIL. J Neurol Neurosurg Psychiatry 77:175–180PubMedCrossRefPubMedCentralGoogle Scholar
  8. Calabresi P, Picconi B, Parnetti L, Di Filippo M (2006) A convergent model for cognitive dysfunctions in Parkinson’s disease: the critical dopamine–acetylcholine synaptic balance. Lancet Neurol 5:974–983PubMedCrossRefGoogle Scholar
  9. Cao YJ, Surowy CS, Puttfarcken PS (2005) Different nicotinic acetylcholine receptor subtypes mediating striatal and prefrontal cortical [3H]dopamine release. Neuropharmacology 48:72–79PubMedCrossRefGoogle Scholar
  10. Charlton RA, Morris RG, Nitkunan A, Markus HS (2006) The cognitive profiles of CADASIL and sporadic small vessel disease. Neurology 66:1523–1526PubMedCrossRefGoogle Scholar
  11. Conti F, Barbaresi P, Melone M, Ducati A (1999) Neuronal and glial localization of NR1 and NR2A/B subunits of the NMDA receptor in the human cerebral cortex. Cereb Cortex 9:110–120PubMedCrossRefGoogle Scholar
  12. De Keyser J, Ebinger G, Vauquelin G (1990) D1-dopamine receptor abnormality in frontal cortex points to a functional alteration of cortical cell membranes in Alzheimer’s disease. Arch Neurol 47:761–763PubMedCrossRefGoogle Scholar
  13. Del Arco A, Mora F, Mohammed AH, Fuxe K (2007) Stimulation of D2 receptors in the prefrontal cortex reduces PCP-induced hyperactivity, acetylcholine release and dopamine metabolism in the nucleus accumbens. J Neural Transm 114:185–193PubMedCrossRefGoogle Scholar
  14. DeLong MR (1990) Primate models of movement disorders of basal ganglia origin. Trends Neurosci 13:281–285PubMedCrossRefGoogle Scholar
  15. Di Cara B, Panayi F, Gobert A, Dekeyne A, Sicard D, De Groote L, Millan MJ (2007) Activation of dopamine D1 receptors enhances cholinergic transmission and social cognition: a parallel dialysis and behavioural study in rats. Int J Neuropsychopharmacol 10:383–399PubMedCrossRefGoogle Scholar
  16. Di Lazzaro V, Oliviero A, Profice P, Pennisi MA, Di Giovanni S, Zito G, Tonali P, Rothwell JC (2000) Muscarinic receptor blockade has differential effects on the excitability of intracortical circuits in the human motor cortex. Exp Brain Res 135:455–461PubMedCrossRefGoogle Scholar
  17. Di Lazzaro V, Oliviero A, Tonali PA, Marra C, Daniele A, Profice P, Saturno E, Pilato F, Masullo C, Rothwell JC (2002) Noninvasive in vivo assessment of cholinergic cortical circuits in AD using transcranial magnetic stimulation. Neurology 59:392–397PubMedCrossRefGoogle Scholar
  18. Di Lazzaro V, Oliviero A, Pilato F, Saturno E, Dileone M, Marra C, Daniele A, Ghirlanda S, Gainotti G, Tonali PA (2004) Motor cortex hyperexcitability to transcranial magnetic stimulation in Alzheimer’s disease. J Neurol Neurosurg Psychiatry 75:555–559PubMedCrossRefGoogle Scholar
  19. Di Lazzaro V, Oliviero A, Pilato F, Saturno E, Dileone M, Marra C, Ghirlanda S, Ranieri F, Gainotti G, Tonali P (2005a) Neurophysiological predictors of long term response to AChE inhibitors in AD patients. J Neurol Neurosurg Psychiatry 76:1064–1069PubMedCrossRefGoogle Scholar
  20. Di Lazzaro V, Pilato F, Dileone M, Tonali PA, Ziemann U (2005b) Dissociated effects of diazepam and lorazepam on short-latency afferent inhibition. J Physiol 569:315–323PubMedCrossRefPubMedCentralGoogle Scholar
  21. Di Lazzaro V, Pilato F, Dileone M, Saturno E, Profice P, Marra C, Daniele A, Ranieri F, Quaranta D, Gainotti G, Tonali PA (2007) Functional evaluation of cerebral cortex in dementia with Lewy bodies. Neuroimage 37:422–429PubMedCrossRefGoogle Scholar
  22. Di Lazzaro V, Pilato F, Dileone M, Profice P, Marra C, Ranieri F, Quaranta D, Gainotti G, Tonali PA (2008) In vivo functional evaluation of central cholinergic circuits in vascular dementia. Clin Neurophysiol 119:2494–2500PubMedCrossRefGoogle Scholar
  23. Diez-Ariza M, Garcia-AllozaM Lasheras B, Del Rio J, Ramirez MJ (2002) GABA(A) receptor antagonists enhance cortical acetylcholine release induced by 5-HT(3) receptor blockade in freely moving rats. Brain Res 956:81–85PubMedCrossRefGoogle Scholar
  24. Gaykema RP, Zaborszky L (1996) Direct catecholaminergic–cholinergic interactions in the basal forebrain. II. Substantia nigra–ventral tegmental area projections to cholinergic neurons. J Comp Neurol 374:555–577PubMedCrossRefGoogle Scholar
  25. Geula C, Mesulam MM (1999) Cholinergic systems in Alzheimer’s disease. In: Terry RD, Katzman R, Bick KL, Sisodia SS (eds) Alzheimer disease, 2nd edn. Williams & Wilkins, Philadelphia, LippincottGoogle Scholar
  26. Giorgetti M, Bacciottini L, Giovannini MG, Colivicchi MA, Goldfarb J, Blandina P (2000) Local GABAergic modulation of acetylcholine release from the cortex of freely moving rats. Eur J Neurosci 12:1941–1948PubMedCrossRefGoogle Scholar
  27. Gottfries CG, Blennow K, Karlsson I, Wallin A (1994) The neurochemistry of vascular dementia. Dementia 5:163–167PubMedGoogle Scholar
  28. Groppa S, Oliviero A, Eisen A, Quartarone A, Cohen LG, Mall V, Kaelin-Lang A, Mima T, Rossi S, Thickbroom GW, Rossini PM, Ziemann U, Valls-Solé J, Siebner HR (2012) A practical guide to diagnostic transcranial magnetic stimulation: report of an IFCN committee. Clin Neurophysiol 123:858–882PubMedCrossRefGoogle Scholar
  29. Grudzien A, Shaw P, Weintraub S, Bigio E, Mash DC, Mesulam MM (2007) Locus coeruleus neurofibrillary degeneration in aging, mild cognitive impairment and early Alzheimer’s disease. Neurobiol Aging 28:327–335PubMedCrossRefGoogle Scholar
  30. Guillegde AT, Stuart GJ (2005) Cholinergic inhibition of neocortical pyramidal neurons. J Neurosci 25:10308–10320CrossRefGoogle Scholar
  31. Haglund M, Sjobeck M, Englund E (2006) Locus ceruleus degeneration is ubiquitous in Alzheimer’s disease: possible implications for diagnosis and treatment. Neuropathology 26:528–532PubMedCrossRefGoogle Scholar
  32. Hersi AI, Kitaichi K, Srivastava LK, Gaudreau P, Quirion R (2000) Dopamine D-5 receptor modulates hippocampal acetylcholine release. Brain Res Mol Brain Res 76:336–340PubMedCrossRefGoogle Scholar
  33. Ingham CA, bolam JP, Smith AD (1998) GABA-immunoreactive boutons in the rat basal forebrain: comparison of neurons that project to the neocortex with pallidosubthalamic neurones. J Comp Neurol 273:263–282CrossRefGoogle Scholar
  34. Kalaria RN, Ballard K (1999) Overlap between pathology of Alzheimer disease and vascular dementia. Alzheimer Dis Relat Disord 13:S115–S123CrossRefGoogle Scholar
  35. Kemppainen N, Laine M, Laakso MP, Kaasinen V, Någren K, Vahlberg T, Kurki T, Rinne JO (2003) Hippocampal dopamine D2 receptors correlate with memory functions in Alzheimer’s disease. Eur J Neurosci 18:149–154PubMedCrossRefGoogle Scholar
  36. Keverne JS, Low WC, Ziabreva I, Court JA, Oakley AE, Kalaria RN (2007) Cholinergic neuronal deficits in CADASIL 38:188–191Google Scholar
  37. Kimura S, Saito H, Minami M, Togashi H, Nakamura N, Nemoto M, Parvez HS (2000) Pathogenesis of vascular dementia in stroke-prone spontaneously hypertensive rats. Toxicology 153:167–178PubMedCrossRefGoogle Scholar
  38. Kujirai T, Caramia MD, Rothwell JC, Day BL, Thompson PD, Ferbert A, Wroe S, Asselman P, Marsden CD (1993) Corticocortical inhibition in human motor cortex. J Physiol 471:501–519PubMedPubMedCentralGoogle Scholar
  39. Kumar U, Patel SC (2007) Immunohistochemical localization of dopamine receptor subtypes (D1R-D5R) in Alzheimer’s disease brain. Brain Res 1131:187–196PubMedCrossRefGoogle Scholar
  40. Lacroix LP, Hows ME, Shah AJ, Hagan JJ, Heidbreder CA (2003) Selective antagonism at dopamine D3 receptors enhances monaminergic and cholinergic neurotransmission in the rat anterior cingulate cortex. Neuropsychopharmacology 28:839–849PubMedGoogle Scholar
  41. Liepert J, Bar KJ, Meske U, Weiller C (2001) Motor cortex disinhibition in Alzheimer’s disease. Clin Neurophysiol 112:1436–1441PubMedCrossRefGoogle Scholar
  42. Löffler M, Bubl B, Huethe F, Hubbe U, McIntosh JM, Jackisch R, Feuerstein TJ (2006) Dopamine release in human neocortical slices: characterization of inhibitory autoreceptors and of nicotinic acetylcholine receptor-evoked release. Brain Res Bull 68:361–373PubMedCrossRefGoogle Scholar
  43. Lyness SA, Zarow C, Chui HC (2003) Neuron loss in key cholinergic and aminergic nuclei in Alzheimer disease: a meta-analysis. Neurobiol Aging 24:1–23PubMedCrossRefGoogle Scholar
  44. Manganelli F, Ragno M, Cacchio G, Iodice V, Trojano L, Silvaggio F, Scarcella M, Grazioli M, Santoro L, Perretti A (2008) Motor cortex cholinergic dysfunction in CADASIL: a transcranial magnetic demonstration. Clin Neurophysiol 119:351–355PubMedCrossRefGoogle Scholar
  45. Martin-Ruiz C, Court J, Lee M, Piggott M, Johnson M, Ballard C, Kalaria R, Perry R, Perry E (2000) Nicotinic receptors in dementia of Alzheimer, Lewy body and vascular types. Acta Neurol Scand Suppl 176:34–41PubMedCrossRefGoogle Scholar
  46. Martorana A, Stefani A, Calmieri MG, Esposito Z, Bernardi G, Sancesario G, Pierantozzi M (2008) l-dopa modulates motor cortex excitability in Alzheimer’s disease patients. J Neural Transm 115:1313–1319PubMedCrossRefGoogle Scholar
  47. Martorana A, Mori F, Esposito Z, Kusayanagi H, Monteleone F, Codecà C, Sancesario G, Bernardi G, Koch G (2009) Dopamine modulates cholinergic cortical excitability in Alzheimer’s disease patients. Neuropsychopharmacology 34:2323–2328PubMedCrossRefGoogle Scholar
  48. McCormick DA, Prince DA (1986) Mechanisms of action of acetylcholine in the guinea-pig-cerebral cortex in vitro. J Physiol 375:169–194PubMedPubMedCentralGoogle Scholar
  49. McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM (1984) Clinical diagnosis of Alzheimer’s disease: report of theNINCDS-ARDRA Work Group under the auspices of Department of Health and Human ServicesTask Forse on Alzheimer’s Disease. Neurology 34:939–944PubMedCrossRefGoogle Scholar
  50. McNeill TH, Koek LL, Haycock JW (1984) The nigrostriatal system and aging. Peptides 5(Suppl 1):263–268PubMedCrossRefGoogle Scholar
  51. Mesulam MM, Mufson EJ, Levey AI, Wainer BH (1983) Cholinergic innervation of cortex by the basal forebrain: cytochemistry and cortical connections of the septal area, diagonal band nuclei, nucleus basalis (substantia innominata), and hypothalamus in the rhesus monkey. J Comp Neurol 214:170–197PubMedCrossRefGoogle Scholar
  52. Mesulam M, Siddique T, Cohen B (2003) Cholinergic denervation in pure multi-infarct state: observations in CADASIL. Neurology 60:1183–1185PubMedCrossRefGoogle Scholar
  53. Millan MJ, Seguin L, Gobert A, Cussac D, Brocco M (2004) The role of dopamine D3 compared with D2 receptors in the control of locomotor activity: a combined behavioural and neurochemical analysis with novel, selective antagonists in rats. Psychopharmacology 174(3):341–357PubMedCrossRefGoogle Scholar
  54. Millan MJ, Di Cara B, Dekeyne A, Panayi F, De Groote L, Sicard D, Cistarelli L, Billiras R, Gobert A (2007) Selective blockade of dopamine D(3) versus D(2) receptors enhances frontocortical cholinergic transmission and social memory in rats: a parallel neurochemical and behavioural analysis. J Neurochem 100:1047–1061PubMedCrossRefGoogle Scholar
  55. Müller CM, Singer W (1989) Acetylcholine-induced inhibition in the cat visual cortex is mediated by a GABAergic mechanism. Brain Res 487:335–342PubMedCrossRefGoogle Scholar
  56. Murray AM, Weihmueller FB, Marshall JF, Hurtig HI, Gottleib GL, Joyce JN (1995) Damage to dopamine systems differs between Parkinson’s disease and Alzheimer’s disease with parkinsonism. Ann Neurol 37:300–312PubMedCrossRefGoogle Scholar
  57. Nardone R, Bratti A, Tezzon F (2006) Motor cortex inhibitory circuits in dementia with Lewy bodies and in Alzheimer’s disease. J Neural Transm 113:1679–1684PubMedCrossRefGoogle Scholar
  58. Nardone R, Bergmann J, Kronbichler M, Kunz A, Klein S, Caleri F, Tezzon F, Ladurner G, Golaszewski S (2008a) Abnormal short latency afferent inhibition in early Alzheimer’s disease: a transcranial magnetic demonstration. J Neural Transm 115:1557–1562PubMedCrossRefGoogle Scholar
  59. Nardone R, Bergmann J, Tezzon F, Ladurner G, Golaszewski S (2008b) Cholinergic dysfunction in subcortical ischaemic vascular dementia: a transcranial magnetic stimulation study. J Neural Transm 115:737–743PubMedCrossRefGoogle Scholar
  60. Pepin JL, Bogacz D, de Pasqua V, Delwaide PJ (1999) Motor cortex inhibition is not impaired in patients with Alzheimer’s disease: evidence from paired transcranial magnetic stimulation. J Neurol Sci 170:119–123PubMedCrossRefGoogle Scholar
  61. Pierantozzi M, Panella M, Palmieri MG, Koch G, Giordano A, Marciani MG, Bernardi G, Stanzione P, Stefani A (2004) Different TMS patterns of intracortical inhibition in early onset Alzheimer dementia and frontotemporal dementia. Clin Neurophysiol 15:2410–2418CrossRefGoogle Scholar
  62. Pizzolato G, Chierichetti F, Fabbri M, Cagnin A, Dam M, Ferlin G, Battistin L (1996) Reduced striatal dopamine receptors in Alzheimer’s disease: single photon emission tomography study with the D2 tracer [123I]-IBZM. Neurology 47:1065–1068PubMedCrossRefGoogle Scholar
  63. Rosen J, Zubenko GS (1991) Emergence of psychosis and depression in the longitudinal evaluation of Alzheimer’s disease. Biol Psychiatry 29:224–232PubMedCrossRefGoogle Scholar
  64. Rossini PM, Barker T, Berardelli A, Caramia MD, Caruso G, Cracco RQ, Dimitrijevic MR, Hallett M, Katayama Y, Lucking CH, Maertens de Noordhout AL, Marsden CD, Murray NMF, Rothwell JC, Swash M, Tomberg C (1994) Non invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application: report of IFCN committee. Electroenceph Clin Neurophysiol 91:79–92PubMedCrossRefGoogle Scholar
  65. Sailer A, Molnar GF, Paradiso G, Gunraj CA, Lang AE, Chen R (2003) Short and long latency afferent inhibition in Parkinson’s disease. Brain 26:1883–1894CrossRefGoogle Scholar
  66. Sarter M, Bruno JP, Turchi J (1999) Basal forebrain afferent projections modulating cortical acetylcholine, attention, and implications for neuropsychiatric disorders. Ann NY Acad Sci 877:368–382PubMedCrossRefGoogle Scholar
  67. Selden NR, Gitelman DR, Salamon-Murayama N, Parrish TB, Mesulam MM (1998) Trajectories of cholinergic pathways within the cerebral hemispheres of the human brain. Brain 121:2249–2257PubMedCrossRefGoogle Scholar
  68. Smiley JF, Subramanian M, Mesulam MM (1999) Monoaminergic-cholinergic interactions in the primate basal forebrain. Neuroscience 93:817–829PubMedCrossRefGoogle Scholar
  69. Swartz RH, Sahlas DJ, Black SE (2003) Strategic involvement of cholinergic pathways and executive dysfunction: does location of white matter signal hyperintensities matter? J Stroke Cerebrovasc Dis 12:29–36PubMedCrossRefGoogle Scholar
  70. Togashi H, Matsumoto M, Yoshioka M, Hirokami M, Minami M, Saito H (1994) Neurochemical profiles in cerebrospinal fluid of stroke-prone spontaneously hypertensive rats. Neurosci Lett 166:117–120PubMedCrossRefGoogle Scholar
  71. Tokimura H, Di Lazzaro V, Tokimura Y, Oliviero A, Profice P, Insola A, Mazzone P, Tonali P, Rothwell JC (2000) Short latency inhibition of human hand motor cortex by somatosensory input from the hand. J Physiol 523:503–513PubMedCrossRefPubMedCentralGoogle Scholar
  72. Vasquez J, Baghdoyan HA (2002) Muscarinic and GABAA receptors modulate acetylcholine release in feline basal forebrain. Eur J Neurosci 17:249–259CrossRefGoogle Scholar
  73. Vinters HV, Ellis WG, Zarow C, Zaias BW, Jagust WJ, Mack WJ, Chui HC (2000) Neuropathological substrates of ischemic vascular dementia. J Neuropathol Exp Neurol 59:931–945PubMedGoogle Scholar
  74. Zarow C, Lyness SA, Mortimer JA, Chui HC (2003) Neuronal loss is greater in the locus coeruleus than nucleus basalis and substantia nigra in Alzheimer and Parkinson diseases. Arch Neurol 60:337–341PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  • Raffaele Nardone
    • 1
    • 2
    Email author
  • Yvonne Höller
    • 1
  • Aljosha Thomschewski
    • 1
  • Alexander Baden Kunz
    • 1
  • Piergiorgio Lochner
    • 2
  • Stefan Golaszewski
    • 1
  • Eugen Trinka
    • 1
  • Francesco Brigo
    • 2
    • 3
  1. 1.Department of Neurology, Christian Doppler KlinikParacelsus Medical University and Center for Cognitive NeuroscienceSalzburgAustria
  2. 2.Department of NeurologyFranz Tappeiner HospitalMeranoItaly
  3. 3.Department of Neurological, Neuropsychological, Morphological and Movement Sciences, Section of Clinical NeurologyUniversity of VeronaVeronaItaly

Personalised recommendations