Journal of Neural Transmission

, Volume 121, Issue 8, pp 945–955 | Cite as

The role of glutamate and its receptors in multiple sclerosis

  • Ivana R. StojanovicEmail author
  • Milos Kostic
  • Srdjan Ljubisavljevic
Neurology and Preclinical Neurological Studies - Review Article


Glutamate is an excitatory neurotransmitter of the central nervous system, which has a central role in a complex communication network established between neurons, astrocytes, oligodendrocytes, and microglia. Multiple abnormal triggers such as energy deficiency, oxidative stress, mitochondrial dysfunction, and calcium overload can lead to abnormalities in glutamate signaling. Thus, the disturbance of glutamate homeostasis could affect practically all physiological functions and interactions of brain cells, leading to excitotoxicity. Excitotoxicity is the pathological process by which nerve cells are damaged or killed by excessive stimulation by glutamate. Although neuron degeneration and death are the ultimate consequences of multiple sclerosis (MS), it is now widely accepted that alterations in the function of surrounding glial cells are key features in the progression of the disease. The present knowledge raise the possibility that the modulation of glutamate release and transport, as well as receptors blockade or glutamate metabolism modulation, might be relevant targets for the development of future therapeutic interventions in MS.


Multiple sclerosis Glutamate Excitotoxicity Neurodegeneration 



This paper was supported by The Ministry of Education and Science of the Republic of Serbia under the project number 41018.


  1. Aarum J, Sandberg K, Haeberlein SL, Persson MA (2003) Migration and differentiation of neural precursor cells can be directed by microglia. Proc Natl Acad Sci USA 100:15983–15988PubMedPubMedCentralGoogle Scholar
  2. Abbott NJ (2000) Inflammatory mediators and modulation of bloodbrain barrier permeability. Cell Mol Neurobiol 20:131–147PubMedGoogle Scholar
  3. Agulhon C, Fiacco TA, McCarthy KD (2010) Hippocampal short- and longterm plasticity are not modulated by astrocyte Ca2+ signaling. Science 327:1250–1254PubMedGoogle Scholar
  4. Alix JJ, Domingues AM (2011) White matter synapses: form, function, and dysfunction. Neurology 76:397–404PubMedGoogle Scholar
  5. Allen M, Zou F, Chai HS, Younkin CS, Miles R, Nair AA, Crook JE, Pankratz VS, Carrasquillo MM, Rowley CN, Nguyen T, Ma L, Malphrus KG, Bisceglio G, Ortolaza AI, Palusak R, Middha S, Maharjan S, Georgescu C, Schultz D, Rakhshan F, Kolbert CP, Jen J, Sando SB, Aasly JO, Barcikowska M, Uitti RJ, Wszolek ZK, Ross OA, Petersen RC, Graff-Radford NR, Dickson DW, Younkin SG, Ertekin-Taner N (2012) Glutathione S-transferase omega genes in Alzheimer and Parkinson disease risk, age-at-diagnosis and brain gene expression: an association study with mechanistic implications. Mol Neurodegener 7:13PubMedPubMedCentralGoogle Scholar
  6. Ames AI (2000) CNS energy metabolism as related to function. Brain Res Brain Res Rev 34:42–68PubMedGoogle Scholar
  7. Bagasra O, Michaels FH, Zheng YM, Bobroski LE, Spitsin SV, Fu ZF (1995) Activation of the inducible form of nitric oxide synthase in the brains of patients with multiple sclerosis. Proc Natl Acad Sci USA 92(26):12041–12045PubMedPubMedCentralGoogle Scholar
  8. Bender LM, Morgan MJ, Thomas LR, Liu ZG, Thorburn A (2005) The adaptor protein TRADD activates distinct mechanisms of apoptosis from the nucleus and the cytoplasm. Cell Death Differ 12:473–481PubMedGoogle Scholar
  9. Block ML, Hong JS (2005) Microglia and inflammation-mediated neurodegeneration: multiple triggers with a common mechanism. Prog Neurobiol 76(2):77–98PubMedGoogle Scholar
  10. Bogaert L, Scheller D, Moonen J, Sarre S, Smolders I, Ebinger G, Michotte Y (2000) Neurochemical changes and laser Doppler flowmetry in the endothelin-1 rat model for focal cerebral ischemia. Brain Res 887:266–275PubMedGoogle Scholar
  11. Bolton C, Paul C (2006) Glutamate receptors in neuroinflammatory demyelinating disease. Mediat Inflamm 2:93684Google Scholar
  12. Brandon M, Baldi P, Wallace DC (2006) Mitochondrial mutations in cancer. Oncogene 25(34):4647–4662PubMedGoogle Scholar
  13. Browne SE, Bowling AC, MacGarvey U, Baik MJ, Berger SC, Muqit MM, Bird ED, Beal MF (1997) Oxidative damage and metabolic dysfunction in Huntington’s disease: selective vulnerability of the basal ganglia. Ann Neurol 41:646–653PubMedGoogle Scholar
  14. Burdo J, Dargusch R, Schubert D (2006) Distribution of the cystine/glutamate antiporter system xc- in the brain, kidney, and duodenum. J Histochem Cytochem 54:549–557PubMedGoogle Scholar
  15. Butovsky O, Landa G, Kunis G, Ziv Y, Avidan H, Greenberg N (2006) Induction and blockage of oligodendrogenesis by differently activated microglia in an animal model of multiple sclerosis. J Clin Invest 116:905–915PubMedPubMedCentralGoogle Scholar
  16. Centonze D, Muzio L, Rossi S, Cavasinni F, De Chiara V, Bergami A (2009) Inflammation triggers synaptic alteration and degeneration in experimental autoimmune encephalomyelitis. J Neurosci 29:3442–3452PubMedGoogle Scholar
  17. Centonze D, Muzio L, Rossi S, Furlan R, Bernardi G, Martino G (2010) The link between inflammation, synaptic transmission and neurodegeneration in multiple sclerosis. Cell Death Differ 17:1083–1091PubMedGoogle Scholar
  18. Choi IY, Lim JH, Kim C, Song HY, Ju C, Kim WK (2013) 4-Hydroxy-2(E)-nonenal facilitates NMDA-induced neurotoxicity via triggering mitochondrial permeability transition pore opening and mitochondrial calcium overload. Exp Neurobiol 22(3):200–207PubMedPubMedCentralGoogle Scholar
  19. Chung RS, McCormack GH, King AE, West AK, Vickers JK (2005) Glutamate induces rapid loss of axonal neurofilament proteins from cortical neurons in vitro. Exp Neurol 193:481–488PubMedGoogle Scholar
  20. Cianfoni A, Niku S, Imbesi SG (2007) Metabolite findings in tumefactive demyelinating lesions utilizing short echo time proton magnetic resonance spectroscopy. AJNR Am J Neuroradiol 28:272–277PubMedGoogle Scholar
  21. Collard CD, Park KA, Montalto MC, Alapati S, Buras JA, Stahl GL, Colgan SP (2002) Neutrophil-derived glutamate regulates vascular endothelial barrier function. J Biol Chem 277:14801–14811PubMedGoogle Scholar
  22. Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65(1):1–105PubMedGoogle Scholar
  23. Decoursey TE, Ligeti E (2005) Regulation and termination of NADPH oxidase activity. Cell Mol Life Sci 62(19–20):2173–2193PubMedGoogle Scholar
  24. Degos V, Peineau P, Kaindl AM, Sigaut S, Favrais G, Plaisant F, Teissier N, Gouadon E, Lombet A, Saliba E, Collingridge GL, Maze M, Nicoletti F, Heijnen C, Mantz J, Kavelaars A, Gressens P (2013) G protein-coupled receptor kinase 2 and group I metabotropic glutamate receptors mediate inflammation-induced sensitization to excitotoxic neurodegeneration. Ann Neurol 73(5):667–678PubMedGoogle Scholar
  25. Dempsey RJ, Baskaya MK, Dogan A (2000) Attenuation of brain edema, blood-brain barrier breakdown, and injury volume by ifenprodil, a polyamine-site N-methyl-d-aspartate receptor antagonist, after experimental traumatic brain injury in rats. Neurosurgery 47:399–404PubMedGoogle Scholar
  26. Domercq M, Sánchez-Gómez MV, Sherwin C, Etxebarria E, Fern R, Matute C (2007) System xc and glutamate transporter inhibition mediates microglial toxicity to oligodendrocytes. J Immunol 178:6549–6556PubMedGoogle Scholar
  27. Dutta R, McDonough J, Yin X, Peterson J, Chang A, Torres T, Gudz T, Maclin WB, Lewis DA, Fox RJ, Rudick R, Mirnics K, Trapp BD (2006) Mitochondrial dysfunction as a cause of axonal degeneration in multiple sclerosis patients. Ann Neurol 59(3):478–489PubMedGoogle Scholar
  28. Fang J, Han D, Hong J, Tan Q, Tian Y (2012) The chemokine, macrophage inflammatory protein-2γ, reduces the expression of glutamate transporter-1 on astrocytes and increases neuronal sensitivity to glutamate excitotoxicity. J Neuroinflammation 9:267PubMedPubMedCentralGoogle Scholar
  29. Farooqui T, Farooqui AA (2009) Aging: an important factor for the pathogenesis of neurodegenerative diseases. Mech Ageing Dev 130:203–215PubMedGoogle Scholar
  30. Fiebiger SM, Bros H, Grobosch T, Janssen A, Chanvillard C, Paul F, Dörr J, Millward JM, Infante-Duarte C (2013) The antioxidant idebenone fails to prevent or attenuate chronic experimental autoimmune encephalomyelitis in the mouse. J Neuroimmunol 262:66–71PubMedGoogle Scholar
  31. Floden AM, Li S, Combs CK (2005) Beta-amyloid-stimulated microglia induce neuron death via synergistic stimulation of tumor necrosis factor alpha and NMDA receptors. J Neurosci 25:2566–2575PubMedGoogle Scholar
  32. Forte M, Gold BG, Marracci G, Chaudhary P, Basso E, Johnsen D, Yu X, Fowlkes J, Rahder M, Stem K, Bernardi P, Bourdette D (2007) Cyclophilin D inactivation protects axons in experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis. Proc Natl Acad Sci USA 104:7558–7563PubMedPubMedCentralGoogle Scholar
  33. Frigo M, Cogo MG, Fusco ML, Gardinetti M, Frigeni B (2012) Glutamate and multiple sclerosis. Curr Med Chem 19(9):1295–1299PubMedGoogle Scholar
  34. Gehrmann J, Banati RB (1995) Microglial turnover in the injured CNS: activated microglia undergo delayed DNA fragmentation following peripheral nerve injury. J Neuropathol Exp Neurol 54:680–688PubMedGoogle Scholar
  35. Gray E, Rice C, Nightingale H, Ginty M, Hares K, Kemp K, Cohen N, Love S, Scolding N, Wilkins A (2013) Accumulation of cortical hyperphosphorylated neurofilaments as a marker of neurodegeneration in multiple sclerosis. Mult Scler J 19(2):153–161Google Scholar
  36. Gurwitz D, Kloog Y (1998) Peroxynitrite generation might explain elevated glutamate and aspartate levels in multiple sclerosis cerebrospinal fluid. Eur J Clin Invest 28(9):760–761PubMedGoogle Scholar
  37. Hauser DN, Cookson MR (2011) Astrocytes in Parkinson’s disease and DJ-1. J Neurochem 117:357–358PubMedPubMedCentralGoogle Scholar
  38. Huang Y, Erdmann N, Peng H, Zhao Y, Zheng J (2005) The role of TNF related apoptosis-inducing ligand in neurodegenerative diseases. Cell Mol Immunol 2:113–122PubMedGoogle Scholar
  39. Imai F, Suzuki H, Oda J, Ninomiya T, Ono K, Sano H, Sawada M (2007) Neuroprotective effect of exogenous microglia in global brain ischemia. J Cereb Blood Flow Metab 27(3):488–500PubMedGoogle Scholar
  40. Julio-Pieper M, Flor PJ, Dinan TG, Cryan JF (2011) Exciting times beyond the brain: metabotropic glutamate receptors in peripheral and non-neural tissues. Pharmacol Rev 63:35–58PubMedGoogle Scholar
  41. Kaltsonoudis E, Voulgari PV, Konitsiotis S, Drosos AA (2014) Demyelination and other neurological adverse events after anti-TNF therapy. Autoimmun Rev 13:54–58PubMedGoogle Scholar
  42. Kanai Y, Trotti D, Nussberger S, Hediger MA (1997) The high affinity glutamate transporter family: structure, function and physiological relevance. In: Reith MEA (ed) Neurotransmitter transporters: structure, function, and regulation. Humana Press, Totowa, NJ, pp 171–214Google Scholar
  43. Kroemer G, Galluzzi L, Brenner C (2007) Mitochondrial membrane permeabilization in cell death. Physiol Rev 87(1):99–163PubMedGoogle Scholar
  44. Kumar P, Kalonia H, Kumar A (2011) Role of LOX/COX pathways in 3-nitropropionic acid induced Huntington’s disease-like symptoms in rats: protective effect of licofelone. Br J Pharmacol 164(2b):644–654PubMedPubMedCentralGoogle Scholar
  45. Kumar P, Kalonia H, Kumar A (2012) Possible GABAergic mechanism in the neuroprotective effect of gabapentin and lamotrigine against 3-nitropropionic acid induced neurotoxicity. Eur J Pharmacol 674(2–3):265–274PubMedGoogle Scholar
  46. Li JM, Fan LM, Christie MR, Shah AM (2005) Acute tumor necrosis factor alpha signaling via NADPH oxidase in microvascular endothelial cells: role of p47phox phosphorylation and binding to TRAF4. Mol Cell Biol 25(6):2320–2330PubMedPubMedCentralGoogle Scholar
  47. Lim SY, Constantinescu CS (2010) TNF-α: a paradigm of paradox and complexity in multiple sclerosis and its animal models. Open Autoimmun J 2:160–170Google Scholar
  48. Lipton SA (2008) NMDA receptor activity regulates transcription of antioxidant pathways. Nat Neurosci 11(4):381–382PubMedGoogle Scholar
  49. Ljubisavljevic S, Stojanovic I, Pavlovic D, Milojkovic M, Pavlovic D, Vojinovic S, Sokolovic D, Stevanovic I (2012) Correlation of nitric oxide levels in the cerebellum and spinal cord of experimental autoimmune encephalomyelitis rats with clinical symptoms. Acta Neurobiol Exp (Wars) 72:33–39Google Scholar
  50. Love S (1999) Oxidative stress in brain ischemia. Brain Pathol 9:119–131PubMedGoogle Scholar
  51. Lu F, Selak M, O’Connor J, Croul S, Lorenzana C, Butunoi C, Kalman B (2000) Oxidative damage to mitochondrial DNA and activity of mitochondrial enzymes in chronic active lesions of multiple sclerosis. J Neurol Sci 177:95–103PubMedGoogle Scholar
  52. Lucchinetti C, Bruck W, Parisi J, Scheithauer B, Rodriguez M, Lassmann H (2000) Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol 47:707–717PubMedGoogle Scholar
  53. Mahad D, Ziabreva I, Lassmann H, Turnbull D (2008) Mitochondrial defects in acute multiple sclerosis lesions. Brain 131:1722–1735PubMedPubMedCentralGoogle Scholar
  54. Mahad DJ, Ziabreva I, Campbell G, Lax N, White K, Hanson PS, Lassmann H, Turnbull DM (2009) Mitochondrial changes within axons in multiple sclerosis. Brain 132:1161–1174PubMedPubMedCentralGoogle Scholar
  55. Mahler A, Steiniger J, Bock M, Brandt AU, Haas V, Boschmann M, Paul F (2012) Is metabolic flexibility altered in multiple sclerosis patients? PLoS One 7(8):e43675PubMedPubMedCentralGoogle Scholar
  56. Maragakis NJ, Rothstein JD (2006) Mechanisms of disease: astrocytes in neurodegenerative disease. Nat Clin Prac Neurol 2:679–689Google Scholar
  57. Martindale JL, Holbrook NJ (2002) Cellular response to oxidative stress: signaling for suicide and survival. J Cell Physiol 192:1–15PubMedGoogle Scholar
  58. Mattle HP, Lienert C, Greeve I (2004) Uric acid and multiple sclerosis [in German]. Ther Umsch 61(9):553–555PubMedGoogle Scholar
  59. Matute C (2006) Oligodendrocyte NMDA receptors: a novel therapeutic target. Trends Mol Med 12:289–292PubMedGoogle Scholar
  60. Mecocci P, MacGarvey U, Kaufman AE, Koontz D, Shoffner JM, Wallace DC, Beal MF (1993) Oxidative damage to mitochondrial DNA shows marked age dependent increases in human brain. Ann Neurol 34:609–616PubMedGoogle Scholar
  61. Melzer N, Meuth SG, Torres-Salazar D, Bittner S, Zozulya AL, Weidenfeller C, Kotsiari A, Stangel M, Fahlke C, Wiendl H (2008) A beta-lactam antibiotic dampens excitotoxic inflammatory CNS damage in a mouse model of multiple sclerosis. PLoS One 3:e3149PubMedPubMedCentralGoogle Scholar
  62. Neumann H (2001) Control of glial immune function by neurons. Glia 36(2):191–199PubMedGoogle Scholar
  63. Newcombe J, Uddin A, Dove R, Patel B, Turski L, Nishizawa Y (2008) Glutamate receptor expression in multiple sclerosis lesions. Brain Pathol 18:52–61PubMedGoogle Scholar
  64. Newsholme EA, Calder PC (1997) The proposed role of glutamine in some cells of the immune system and speculative consequences for the whole animal. Nutrition 13(7–8):728–730PubMedGoogle Scholar
  65. Nicholls DG (2004) Mitochondrial dysfunction and glutamate excitotoxicity studied in primary neuronal cultures. Curr Mol Med 4:149–177PubMedGoogle Scholar
  66. Norenberg MD, Rao KVR (2007) The mitochondrial permeability transition in neurologic disease. Neurochem Int 50(7–8):983–997PubMedGoogle Scholar
  67. Ohgoh M, Hanada T, Smith T, Hashimoto T, Ueno M, Yamanishi Y, Watanabe M, Nishizawa Y (2002) Altered expression of glutamate transporters in experimental autoimmune encephalomyelitis. J Neuroimmunol 125(1–2):170–178PubMedGoogle Scholar
  68. Palmer GC (2001) Neuroprotection by NMDA receptor antagonists in a variety of neuropathologies. Curr Drug Targets 2:241–271PubMedGoogle Scholar
  69. Pampliega O, Domercq M, Soria FN, Villoslada P, Rodríguez-Antigüedad A, Matute CJ (2011) Increased expression of cystine/glutamate antiporter in multiple sclerosis. J Neuroinflammation 8:63PubMedPubMedCentralGoogle Scholar
  70. Perea G, Araque A (2010) Glia modulates synaptic transmission. Brain Res Rev 63(1–2):93–102PubMedGoogle Scholar
  71. Piani D, Fontana A (1994) Involvement of the cystine transport system xc- in the macrophage-induced glutamate-dependent cytotoxicity to neurons. J Immunol 152(7):3578–3585PubMedGoogle Scholar
  72. Pinteaux-Jones F, Sevastou IG, Fry VA, Heales S, Baker D, Pocock JM (2008) Myelin-induced microglial neurotoxicity can be controlled by microglial metabotropic glutamate receptors. J Neurochem 106(1):442–454PubMedGoogle Scholar
  73. Pitt D, Werner P, Raine CS (2000) Glutamate excitotoxicity in a model of multiple sclerosis. Nat Med 6:67–70PubMedGoogle Scholar
  74. Rahn KA, Slusher BS, Kaplin AI (2012) Glutamate in CNS neurodegeneration and cognition and its regulation by GCPII inhibition. Curr Med Chem 19(9):1335–1345PubMedGoogle Scholar
  75. Ribeiro FM, Paquet M, Cregan SP, Ferguson SS (2010) Group I metabotropic glutamate receptor signalling and its implication in neurological disease. CNS Neurol Disord Drug Targets 9:574–595PubMedGoogle Scholar
  76. Rose JW, Hill KE, Watt HE, Carlson NG (2004) Inflammatory cell expression of cyclooxygenase-2 in the multiple sclerosis lesion. J Neuroimmunol 149(1–2):40–49PubMedGoogle Scholar
  77. Rossi S, Motta C, Studer V, Barbieri F, Buttari F, Bergami A, Sancesario G, Bernardini S, De Angelis G, Martino G, Furlan R, Centonze D (2014) Tumor necrosis factor is elevated in progressive multiple sclerosis and causes excitotoxic neurodegeneration. Mult Scler 20(3):304–312. doi: 10.1177/1352458513498128 Google Scholar
  78. Sarchielli P, Greco L, Floridi A, Floridi A, Gallai V (2003) Excitatory amino acids and multiple sclerosis: evidence from cerebrospinal fluid. Arch Neurol 60:1082–1088PubMedGoogle Scholar
  79. Sendrowski K, Rusak M, Sobaniec P, Iłendo E, Dąbrowska M, Boćkowski L, Koput A, Sobaniec W (2013) Study of the protective effect of calcium channel blockers against neuronal damage induced by glutamate in cultured hippocampal neurons. Pharmacol Rep 65(3):730–746PubMedGoogle Scholar
  80. Sharp CD, Hines I, Houghton J, Warren A, Jackson TH, Jawahar A, Nanda A, Elrod JW, Long A, Chi A, Minagar A, Alexander JS (2003) Glutamate causes a loss in human cerebral endothelial barrier integrity through activation of NMDA receptor. Am J Physiol Heart Circ Physiol 285:H2592–H2598PubMedGoogle Scholar
  81. Sinnecker T, Mittelstaedt P, Dörr J, Pfueller CF, Harms L, Niendorf T, Paul F, Wuerfel J (2012) Multiple sclerosis lesions and irreversible brain tissue damage a comparative ultrahigh-field strength magnetic resonance imaging study. Arch Neurol 69(6):739–745PubMedGoogle Scholar
  82. Steinert JR, Chernova T, Forsythe ID (2010) Nitric oxide signaling in brain function, dysfunction, and dementia. Neuroscientist 16:435–452PubMedGoogle Scholar
  83. Stojanovic I, Vojinovic S, Ljubisavljevic S, Pavlovic R, Basic J, Pavlovic D, Ilic A, Cvetkovic T, Stukalov M (2012) INF-β1b therapy modulates l-arginine and nitric oxide metabolism in patients with relapse remittens multiple sclerosis. J Neurol Sci 323(1–2):187–192PubMedGoogle Scholar
  84. Sulkowski G, Dąbrowska-Bouta B, Chalimoniuk M, Strużyńska (2013) Effects of antagonists of glutamate receptors on pro-inflammatory cytokines in the brain cortex of rats subjected to experimental autoimmune encephalomyelitis. J Neuroimmunol 261(1–2):67–76PubMedGoogle Scholar
  85. Takeuchi H, Jin S, Wang J, Zhang G, Kawanokuchi J, Kuno R, Sonobe Y, Mizuno T, Suzumura A (2006) Tumor necrosis factor-alpha induces neurotoxicity via glutamate release from hemichannels of activated microglia in an autocrine manner. J Biol Chem 281:21362–21368PubMedGoogle Scholar
  86. Tilleux S, Hermans E (2007) Neuroinflammation and regulation of glial glutamate uptake in neurological disorders. J Neurosci Res 85:2059–2070PubMedGoogle Scholar
  87. Tolosa L, Caraballo-Miralles V, Olmos G, Lladó J (2011) TNF-α potentiates glutamate-induced spinal cord motoneuron death via NF-κB. Mol Cell Neurosci 46(1):176–186PubMedGoogle Scholar
  88. Trapp BD, Stys PK (2009) Virtual hypoxia and chronic necrosis of demyelinated axons in multiple sclerosis. Lancet Neurol 8:280–291PubMedGoogle Scholar
  89. Traynelis SF, Wollmuth LP, McBain CJ, Menniti FS, Vance KM, Ogden KK, Hansen KB, Yuan H, Myers SJ, Dingledine R (2010) Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev 62:405–496PubMedPubMedCentralGoogle Scholar
  90. Vallejo-Illarramendi A, Domercq M, Pérez-Cerdá F, Ravid R, Matute C (2006) Increased expression and function of glutamate transporters in multiple sclerosis. Neurobiol Dis 21:154–164PubMedGoogle Scholar
  91. van Horssen J, Witte ME, Ciccarelli O (2012) The role of mitochondria in axonal degeneration and tissue repair in MS. Mult Scler J 18(8):1058–1067Google Scholar
  92. van Oosten BW, Barkhof F, Truyen L, Boringa JB, Bertelsmann FW, von Blomberg BM, Woody JN, Hartung HP, Polman CH (1996) Increased MRI activity and immune activation in two multiple sclerosis patients treated with the monoclonal anti-tumor necrosis factor antibody cA2. Neurology 47:1531–1534PubMedGoogle Scholar
  93. Vercellino M, Merola A, Piacentino C, Votta B, Capello E, Mancardi GL (2007) Altered glutamate reuptake in relapsing-remitting and secondary progressive multiple sclerosis cortex: correlation with microglia infiltration, demyelination, and neuronal and synaptic damage. J Neuropathol Exp Neurol 66:732–739PubMedGoogle Scholar
  94. Verkhratsky A (2010) Physiology of neuronal-glial networking. Neurochem Int 57:332–343PubMedGoogle Scholar
  95. Veto S, Acs P, Bauer J, Berente Z, Setalo G Jr, Borgulya G, Sumegi B, Komoly S, Gallyas F Jr, Illes Z (2010) Inhibiting poly(ADP-ribose) polymerase: a potential therapy against oligodendrocyte death. Brain 133(Pt 3):822–834PubMedPubMedCentralGoogle Scholar
  96. Virgili N, Mancera P, Wappenhans B, Sorrosal G, Biber K, Pugliese M, Espinosa-Parrilla JF (2013) KATP channel opener diazoxide prevents neurodegeneration: a new mechanism of action via antioxidative pathway activation. PLoS ONE 8(9):e75189PubMedPubMedCentralGoogle Scholar
  97. Walton NM, Sutter BM, Laywell ED, Levkoff LH, Kearns SM, Marshall GP 2nd, Scheffler B, Steindler DA (2006) Microglia instruct subventricular zone neurogenesis. Glia 54:815–825PubMedGoogle Scholar
  98. West AR, Tseng KY (2011) Nitric oxide-soluble guanylyl cyclase-cyclic GMP signaling in the striatum: new targets for the treatment of Parkinson’s disease? Front Syst Neurosci 5:1–55Google Scholar
  99. Willard SS, Koochekpour S (2013) Glutamate, glutamate receptors, and downstream signaling pathways. Int J Biol Sci 9(9):948–959PubMedPubMedCentralGoogle Scholar
  100. Witte ME, Bø L, Rodenburg RJ, Belien JA, Musters R, Hazes T, Wintjes LT, Smeitink JA, Geurts JJ, De Vries HE, van der Valk P, van Horssen J (2009) Enhanced number and activity of mitochondria in multiple sclerosis lesions. J Pathol 219(2):193–204PubMedGoogle Scholar
  101. Witte ME, Geurts JJG, de Vries HE, van der Valk P, van Horssen J (2010) Mitochondrial dysfunction: a potential link between neuroinflammation and neurodegeneration? Mitochondrion 10:411–418PubMedGoogle Scholar
  102. Witte ME, Nijland PG, Drexhage JAR, Gerritsen W, Geerts D, van het Hof B, de Reijerkerk A, Vries HE, van der Valk P, van Horssen J (2013) Reduced expression of PGC-1a partly underlies mitochondrial changes and correlates with neuronal loss in multiple sclerosis cortex. Acta Neuropathol 125:231–243PubMedGoogle Scholar
  103. Yacoubian TA, Slone SR, Harrington AJ, Hamamichi S, Schieltz JM, Caldwell KA (2010) Differential neuroprotective effects of 14-3-3 proteins in models of Parkinson’s disease. Cell Death Dis 1:e2PubMedPubMedCentralGoogle Scholar
  104. Yawata I, Takeuchi H, Doi Y, Liang J, Mizuno T, Suzumura A (2008) Macrophage-induced neurotoxicity is mediated by glutamate and attenuated by glutaminase inhibitors and gap junction inhibitors. Life Sci 82(21–22):1111–1116PubMedGoogle Scholar
  105. Ye L, Huang Y, Zhao L, Li Y, Sun L, Zhou Y, Qian G, Zheng JC (2013) IL-1β and TNF-α induce neurotoxicity through glutamate production: a potential role of glutaminase. J Neurochem 125:897–908PubMedPubMedCentralGoogle Scholar
  106. Zhao X, Bausano B, Pike BR, Newcomb-Fernandez JK, Wang KK, Shohami E, Ringger NC, DeFord SM, Anderson DK, Hayes RL (2001) TNF-alpha stimulates caspase-3 activation and apoptotic cell death in primary septo-hippocampal cultures. J Neurosci Res 64(2):121–131PubMedGoogle Scholar
  107. Zindler E, Zipp F (2010) Neuronal injury in chronic CNS inflammation. Best Pract Res Clin Anaesthesiol 24(4):551–562PubMedGoogle Scholar

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  • Ivana R. Stojanovic
    • 1
    Email author
  • Milos Kostic
    • 1
  • Srdjan Ljubisavljevic
    • 1
  1. 1.Faculty of MedicineUniversity of NisNisSerbia and Montenegro

Personalised recommendations