Advertisement

Journal of Neural Transmission

, Volume 121, Issue 9, pp 1117–1128 | Cite as

Altered peripheral BDNF mRNA expression and BDNF protein concentrations in blood of children and adolescents with autism spectrum disorder

  • Regina TaurinesEmail author
  • Monica Segura
  • Martin Schecklmann
  • Laura Albantakis
  • Edna Grünblatt
  • Susanne Walitza
  • Thomas Jans
  • Benjamin Lyttwin
  • Michael Haberhausen
  • Frank M. Theisen
  • Berthold Martin
  • Wolfgang Briegel
  • Johannes Thome
  • Christina Schwenck
  • Marcel Romanos
  • Manfred Gerlach
Psychiatry and Preclinical Psychiatric Studies - Original Article

Abstract

Findings from molecular genetic studies and analyses of postmortem and peripheral tissue led to the hypothesis that neurotrophins—as crucial moderators of neuroplasticity—impact on the pathophysiology of autism spectrum disorder (ASD). The study projects aimed to complement former results on the role of brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family with fundamental impact on brain development and function. The purpose of this work was to investigate peripheral BDNF mRNA expression and BDNF protein concentrations in ASD as potential surrogates for the effects observed in the central nervous system. In a BDNF protein quantification study, serum concentrations were analyzed using Enzyme-Linked Immunosorbent Assays in 24 male patients with ASD, all with an IQ > 70 (age 13.9 ± 3.0 years) and 20 age- and gender-matched healthy control subjects (age 14.4 ± 2.1 years; p = 0.522). In a further independent project, a BDNF mRNA expression analysis, mRNA levels from total blood were assessed by quantitative real-time polymerase chain reaction in a sample of 16 male ASD patients (age 10.8 ± 2.2), 15 age- and gender-matched healthy controls (age 12.1 ± 2.2) and 15 patients with attention deficit hyperactivity disorder as a clinical control group (age 11.8 ± 2.2; p = 0.207). In the protein quantification project, significantly decreased BDNF serum concentrations were found in ASD cases compared to healthy control children (t = −2.123, df = 42, p < 0.05). Analysis of covariance (ANCOVA) revealed this result in accordance with significant reductions in BDNF mRNA expression in ASD, observed in the mRNA expression study (F = 3.65; df = 2.43; p < 0.05); neither age nor IQ confounded the result, as indicated by ANCOVA (F = 3.961; df = 2.41; p < 0.05, η 2  = 0.162). Our study projects supported the notion that neurotrophins are involved in the pathophysiology of ASD. Further studies may eventually contribute to the identification of distinct peripheral mRNA expression and protein concentration patterns possibly supporting diagnostic and therapeutic processes.

Keywords

Autism spectrum disorder (ASD) Brain-derived neurotrophic factor (BDNF) ADHD Neurodevelopmental disorders Peripheral expression 

Notes

Acknowledgments

We wish to thank the patients and families who participated in this study, Miryame Hofmann and Thomas Elpel for their help with sample analyses as well as Dr. Alex C. Conner for his support with manuscript preparation.

Conflict of interest

J. T. has obtained financial support (e.g. lecture honoraria, grants for research projects and scientific meetings, advisory-board membership) from Actelion, AstraZeneca, Bristol-Meyers Squibb, Ever Neuro Pharma, Janssen-Cilag, Lilly, Lundbeck, Medice Arzneimittel Pütter, Merz Pharmaceuticals, Novartis Pharma, Pfizer Pharma, Roche, Servier, Shire. Some of these companies manufacture drugs used in the treatment of ADHD and ASD. S.W. has received lecture honoraria from Janssen Cilag, AstraZeneca and Eli Lilly in the last 5 years. Her work was partially supported in the last 5 years by the Swiss National Science Foundation (SNF), Deutsche Forschungsgemeinschaft, EU FP7, HSM Hochspezialisierte Medizin of the Kanton Zurich, Switzerland. All other authors have no competing interests.

References

  1. Achenbach TM, Edelbrock CS (1981) Behavioral problems and competencies reported by parents of normal and disturbed children aged four through sixteen. Monogr Soc Res Child Dev 46:1–82PubMedCrossRefGoogle Scholar
  2. Al-Ayadhi LY (2012) Relationship between sonic hedgehog protein, brain-derived neurotrophic factor and oxidative stress in autism spectrum disorders. Neurochem Res 37:394–400PubMedCentralPubMedCrossRefGoogle Scholar
  3. Allen M, Bird C, Feng W, Liu G, Li W, Perrone-Bizzozero NI, Feng Y (2013) HuD promotes BDNF expression in brain neurons via selective stabilization of the BDNF long 3’UTR mRNA. PLoS One 8:e55718PubMedCentralPubMedCrossRefGoogle Scholar
  4. Alleva E, Francia N (2009) Psychiatric vulnerability: suggestions from animal models and role of neurotrophins. Neurosci Biobehav Rev 33:525–536PubMedCrossRefGoogle Scholar
  5. Altar CA, Boylan CB, Fritsche M, Jackson C, Hyman C, Lindsay RM (1994) The neurotrophins NT-4/5 and BDNF augment serotonin, dopamine, and GABAergic systems during behaviorally effective infusions to the substantia nigra. Exp Neurol 130:31–40PubMedCrossRefGoogle Scholar
  6. Amaral DG, Schumann CM, Nordahl CW (2008) Neuroanatomy of autism. Trends Neurosci 31:137–145PubMedCrossRefGoogle Scholar
  7. Bachmann V, Klein C, Bodenmann S, Schäfer N, Berger W, Brugger P, Landolt HP (2012) The BDNF Val66Met polymorphism modulates sleep intensity: EEG frequency- and state-specificity. Sleep 35:335–344PubMedCentralPubMedGoogle Scholar
  8. Barendse EM, Hendriks MP, Jansen JF, Backes WH, Hofman PA, Thoonen G, Kessels RP, Aldenkamp AP (2013) Working memory deficits in high-functioning adolescents with autism spectrum disorders: neuropsychological and neuroimaging correlates. J Neurodev Disord 5:14PubMedCentralPubMedCrossRefGoogle Scholar
  9. Bekinschtein P, Cammarota M, Katche C, Slipczuk L, Rossato JI, Goldin A, Izquierdo I, Medina JH (2008) BDNF is essential to promote persistence of long-term memory storage. Proc Natl Acad Sci USA 105:2711–2716PubMedCentralPubMedCrossRefGoogle Scholar
  10. Boelte S, Poustka F (2006) FSK—Fragebogen zur Sozialen Kommunikation. Verlag Hans Huber, BernGoogle Scholar
  11. Boelte S, Rühl D, Schmoetzer G, Poustka F (2006) Diagnostisches Interview fuer Autismus—Revidiert. Verlag Hans Huber, BernGoogle Scholar
  12. Brambilla P, Hardan AY, Di Nemi SU, Caverzasi E, Soares JC, Perez J, Barale F (2004) The functional neuroanatomy of autism. Funct Neurol 19:9–17PubMedGoogle Scholar
  13. Braun A, Lommatzsch M, Mannsfeldt A, Neuhaus-Steinmetz U, Fischer A, Schnoy N, Lewin GR, Renz H (1999) Cellular sources of enhanced brain-derived neurotrophic factor production in a mouse model of allergic inflammation. Am J Respir Cell Mol Biol 21:537–546PubMedCrossRefGoogle Scholar
  14. Castellanos FX, Sonuga-Barke EJ, Milham MP, Tannock R (2006) Characterizing cognition in ADHD: beyond executive dysfunction. Trends Cogn Sci 10:117–123 ReviewPubMedCrossRefGoogle Scholar
  15. Cattell RB (1949) Culture free intelligence test, scale 1, handbook. Institute of Personality and Ability Testing Inc., ChampaignGoogle Scholar
  16. Cattell RB, Weiß RH, Osterland J (1997) Grundintelligenztest Skala 1, CFT 1, 5, revidierte edn. Hogrefe, GöttingenGoogle Scholar
  17. Chen B, Dowlatshahi D, MacQueen GM, Wang JF, Young LT (2001) Increased hippocampal BDNF immunoreactivity in subjects treated with antidepressant medication. Biol Psychiatry 50:260–265PubMedCrossRefGoogle Scholar
  18. Cheng L, Ge Q, Sun B, Yu P, Ke X, Lu Z (2009a) Polyacrylamide gel-based microarray: a novel method applied to the association study between the polymorphisms of BDNF gene and autism. J Biomed Nanotechnol 5:542–550PubMedCrossRefGoogle Scholar
  19. Cheng L, Ge Q, Xiao P, Sun B, Ke X, Bai Y, Lu Z (2009b) Association study between BDNF gene polymorphisms and autism by three-dimensional gel-based microarray. Int J Mol Sci 10:2487–2500PubMedCentralPubMedCrossRefGoogle Scholar
  20. Connolly AM, Chez M, Streif EM, Keeling RM, Golumbek PT, Kwon JM, Riviello JJ, Robinson RG, Neuman RJ, Deuel RMK (2006) Brain-derived neurotrophic factor and autoantibodies to neural antigens in sera of children with autistic spectrum disorders, Landau-Kleffner syndrome, and epilepsy. Biol Psychiatry 59:354–363PubMedCrossRefGoogle Scholar
  21. Corominas-Roso M, Ramos-Quiroga JA, Ribases M, Sanchez-Mora C, Palomar G, Valero S, Bosch R, Casas M (2013) Decreased serum levels of brain-derived neurotrophic factor in adults with attention-deficit hyperactivity disorder. Int J Neuropsychopharmacol 30:1–9Google Scholar
  22. Correia CT, Coutinho AM, Sequeira AF, Sousa IG, Lourenço Venda L, Almeida JP, Abreu RL, Lobo C, Miguel TS, Conroy J, Cochrane L, Gallagher L, Gill M, Ennis S, Oliveira GG, Vicente AM (2010) Increased BDNF levels and NTRK2 gene association suggest a disruption of BDNF/TrkB signaling in autism. Genes Brain Behav 9:841–848PubMedCrossRefGoogle Scholar
  23. Croen LA, Goines P, Braunschweig D, Yolken R, Yoshida CK, Grether JK, Fireman B, Kharrazi M, Hansen RL, van de Water J (2008) Brain-derived neurotrophic factor and autism: maternal and infant peripheral blood levels in the Early Markers for Autism (EMA) Study. Autism Res 1:130–137PubMedCentralPubMedCrossRefGoogle Scholar
  24. Döpfner M, Melchers P, Fegert J, Lehmkuhl G, Lehmkuhl U, Schmeck K, Steinhausen H, Poustka F (1994) Deutschsprachige Konsensus-Versionen der child behavior checklist (CBCL/4-18), der teacher report form (TRF), und der youth self-report form (YSR). Kindheit und Entwicklung 7:54–59Google Scholar
  25. Döpfner M, Görtz-Dorten A, Lehmkuhl G, Breuer D, Goletz H (2008) DISYPS II Diagnostik-System für psychische Störungen nach ICD-10 und DSM-IV für Kinder und Jugendliche II. Verlag Hans Huber, BernGoogle Scholar
  26. D’Sa C, Duman RS (2002) Antidepressants and neuroplasticity. Bipolar Disord 4:183–194PubMedCrossRefGoogle Scholar
  27. Dwivedi Y (2009) Brain-derived neurotrophic factor: role in depression and suicide. Neuropsychiatr Dis Treat 5:433–449PubMedCentralPubMedCrossRefGoogle Scholar
  28. Egan MF, Kojima M, Callicott JH, Goldberg TE, Kolachana BS, Bertolino A, Zaitsev E, Gold B, Goldman D, Dean M, Lu B, Weinberger DR (2003) The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell 112:257–269PubMedCrossRefGoogle Scholar
  29. Elfving B, Plougmann PH, Wegener G (2010) Detection of brain-derived neurotrophic factor (BDNF) in rat blood and brain preparations using ELISA: pitfalls and solutions. J Neurosci Methods 187:73–77PubMedCrossRefGoogle Scholar
  30. Freitag CM (2012) Autistische Störungen—State-of-the-Art und neuere Entwicklungen (Autistic disorders—the state of the art and recent findings: epidemiology, aetiology, diagnostic criteria, and therapeutic interventions). Z Kinder Jugendpsychiatr Psychother 40:139–148 Quiz 148–149PubMedCrossRefGoogle Scholar
  31. Freitag CM, Staal W, Klauck SM, Duketis E, Waltes R (2010) Genetics of autistic disorders: review and clinical implications. Eur Child Adolesc Psychiatry 19:169–178PubMedCentralPubMedCrossRefGoogle Scholar
  32. Fujimura H, Altar CA, Chen R, Nakamura T, Nakahashi T, Kambayashi J, Sun B, Tandon NN (2002) Brain-derived neurotrophic factor is stored in human platelets and released by agonist stimulation. Thromb Haemost 87:728–734PubMedGoogle Scholar
  33. Fumagalli F, Molteni R, Roceri M, Bedogni F, Santero R, Fossati C, Gennarelli M, Racagni G, Riva MA (2003) Effect of antipsychotic drugs on brain-derived neurotrophic factor expression under reduced N-methyl-d-aspartate receptor activity. J Neurosci Res 72:622–628PubMedCrossRefGoogle Scholar
  34. Gadow KD, Roohi J, DeVincent CJ, Kirsch S, Hatchwell E (2009) Association of COMT (Val158Met) and BDNF (Val66Met) gene polymorphisms with anxiety, ADHD and tics in children with autism spectrum disorder. J Autism Dev Disord 39:1542–1551PubMedCrossRefGoogle Scholar
  35. Geier DA, Geier MR (2006) A clinical and laboratory evaluation of methionine cycle-transsulfuration and androgen pathway markers in children with autistic disorders. Horm Res 66:182–188PubMedCrossRefGoogle Scholar
  36. Geier DA, Geier MR (2007) A prospective assessment of androgen levels in patients with autistic spectrum disorders: biochemical underpinnings and suggested therapies. Neuro Endocrinol Lett 28:565–573PubMedGoogle Scholar
  37. Gielen A, Khademi M, Muhallab S, Olsson T, Piehl F (2003) Increased brain-derived neurotrophic factor expression in white blood cells of relapsing-remitting multiple sclerosis patients. Scand J Immunol 57:493–497PubMedCrossRefGoogle Scholar
  38. Hammonds MD, Shim SS (2009) Effects of 4-week treatment with lithium and olanzapine on levels of brain-derived neurotrophic factor, B-cell CLL/lymphoma 2 and phosphorylated cyclic adenosine monophosphate response element-binding protein in the sub-regions of the hippocampus. Basic Clin Pharmacol Toxicol 105:113–119PubMedCrossRefGoogle Scholar
  39. Hashimoto K, Iwata Y, Nakamura K, Tsujii M, Tsuchiya KJ, Sekine Y, Suzuki K, Minabe Y, Takei N, Iyo M, Mori N (2006) Reduced serum levels of brain-derived neurotrophic factor in adult male patients with autism. Prog Neuropsychopharmacol Biol Psychiatry 30:1529–1531PubMedCrossRefGoogle Scholar
  40. Hill EL (2004) Executive dysfunction in autism. Trends Cogn Sci 8:26–32 ReviewPubMedCrossRefGoogle Scholar
  41. Hill RA, Wu YWC, Kwek P, van den Buuse M (2012) Modulatory effects of sex steroid hormones on brain-derived neurotrophic factor-tyrosine kinase B expression during adolescent development in C57Bl/6 mice. J Neuroendocrinol 24:774–788PubMedCrossRefGoogle Scholar
  42. Hünnerkopf R, Strobel A, Gutknecht L, Brocke B, Lesch KP (2007) Interaction between BDNF Val66Met and dopamine transporter gene variation influences anxiety-related traits. Neuropsychopharmacology 32:2552–2560PubMedCrossRefGoogle Scholar
  43. Ito W, Chehab M, Thakur S, Li J, Morozov A (2011) BDNF-restricted knockout mice as an animal model for aggression. Genes Brain Behav 10:365–374PubMedCentralPubMedCrossRefGoogle Scholar
  44. Iughetti L, Casarosa E, Predieri B, Patianna V, Luisi S (2011) Plasma brain-derived neurotrophic factor concentrations in children and adolescents. Neuropeptides 45:205–211PubMedCrossRefGoogle Scholar
  45. Karege F, Schwald M, Cisse M (2002) Postnatal developmental profile of brain-derived neurotrophic factor in rat brain and platelets. Neurosci Lett 328:261–264PubMedCrossRefGoogle Scholar
  46. Karege F, Bondolfi G, Gervasoni N, Schwald M, Aubry J, Bertschy G (2005) Low brain-derived neurotrophic factor (BDNF) levels in serum of depressed patients probably results from lowered platelet BDNF release unrelated to platelet reactivity. Biol Psychiatry 57:1068–1072PubMedCrossRefGoogle Scholar
  47. Katoh-Semba R, Wakako R, Komori T, Shigemi H, Miyazaki N, Ito H, Kumagai T, Tsuzuki M, Shigemi K, Yoshida F, Nakayama A (2007) Age-related changes in BDNF protein levels in human serum: differences between autism cases and normal controls. Int J Dev Neurosci 25:367–372PubMedCrossRefGoogle Scholar
  48. Kaufman AS, Kaufman NL (2004) Kaufman assessment battery for children, 2nd edn. Pearson Inc., BloomingtonGoogle Scholar
  49. Kernie SG, Liebl DJ, Parada LF (2000) BDNF regulates eating behavior and locomotor activity in mice. EMBO J 19:1290–1300PubMedCentralPubMedCrossRefGoogle Scholar
  50. Kerschensteiner M, Gallmeier E, Behrens L, Leal VV, Misgeld T, Klinkert WE, Kolbeck R, Hoppe E, Oropeza-Wekerle RL, Bartke I, Stadelmann C, Lassmann H, Wekerle H, Hohlfeld R (1999) Activated human T cells, B cells, and monocytes produce brain-derived neurotrophic factor in vitro and in inflammatory brain lesions: a neuroprotective role of inflammation? J Exp Med 189:865–870PubMedCentralPubMedCrossRefGoogle Scholar
  51. Klein AB, Williamson R, Santini MA, Clemmensen C, Ettrup A, Rios M, Knudsen GM, Aznar S (2011) Blood BDNF concentrations reflect brain-tissue BDNF levels across species. Int J Neuropsychopharmacol 14:347–353PubMedCrossRefGoogle Scholar
  52. Kotagal S, Broomall E (2012) Sleep in children with autism spectrum disorder. Pediatr Neurol 47:242–251 ReviewPubMedCrossRefGoogle Scholar
  53. Lai MC, Lombardo MV, Baron-Cohen S (2013) Autism. Lancet. pii: S0140–6736(13)61539–1. doi: 10.1016/S0140-6736(13)61539-1
  54. Lecendreux M, Cortese S (2007) Sleep problems associated with ADHD: a review of current therapeutic options and recommendations for the future. Expert Rev Neurother 7:1799–1806 ReviewPubMedCrossRefGoogle Scholar
  55. Lommatzsch M, Zingler D, Schuhbaeck K, Schloetcke K, Zingler C, Schuff-Werner P, Virchow JC (2005) The impact of age, weight and gender on BDNF levels in human platelets and plasma. Neurobiol Aging 26:115–123PubMedCrossRefGoogle Scholar
  56. Lord C, Rutter M, Goode S, Heemsbergen J, Jordan H, Mawhood L, Schopler E (1989) Autism diagnostic observation schedule: a standardized observation of communicative and social behavior. J Autism Dev Disord 19:185–212PubMedCrossRefGoogle Scholar
  57. Lord C, Rutter M, Le Couteur A (1994) Autism diagnostic interview-revised: a revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. J Autism Dev Disord 24:659–685PubMedCrossRefGoogle Scholar
  58. Mansour M, Mohamed A, Azam H, Henedy M (2010) Brain derived neurotrophic factor in autism. Current Psychiatry 17:23–29Google Scholar
  59. Martinowich K, Manji H, Lu B (2007) New insights into BDNF function in depression and anxiety. Nat Neurosci 10:1089–1093PubMedCrossRefGoogle Scholar
  60. Matson JL, Nebel-Schwalm MS (2007) Comorbid psychopathology with autism spectrum disorder in children: an overview. Res Dev Disabil 28:341–352 ReviewPubMedCrossRefGoogle Scholar
  61. Melchers P, Preuß U (2009) Kaufmann assessment battery for children, 8, Unveränderte edn. Pearson Assessment, Frankfurt/MainGoogle Scholar
  62. Meredith GE, Callen S, Scheuer DA (2002) Brain-derived neurotrophic factor expression is increased in the rat amygdala, piriform cortex and hypothalamus following repeated amphetamine administration. Brain Res 949:218–227PubMedCrossRefGoogle Scholar
  63. Miyazaki K, Narita N, Sakuta R, Miyahara T, Naruse H, Okado N, Narita M (2004) Serum neurotrophin concentrations in autism and mental retardation: a pilot study. Brain Dev 26:292–295PubMedCrossRefGoogle Scholar
  64. Nelson KB, Grether JK, Croen LA, Dambrosia JM, Dickens BF, Jelliffe LL, Hansen RL, Phillips TM (2001) Neuropeptides and neurotrophins in neonatal blood of children with autism or mental retardation. Ann Neurol 49:597–606PubMedCrossRefGoogle Scholar
  65. Nishimura K, Nakamura K, Anitha A, Yamada K, Tsujii M, Iwayama Y, Hattori E, Toyota T, Takei N, Miyachi T, Iwata Y, Suzuki K, Matsuzaki H, Kawai M, Sekine Y, Tsuchiya K, Sugihara G, Suda S, Ouchi Y, Sugiyama T, Yoshikawa T, Mori N (2007) Genetic analyses of the brain-derived neurotrophic factor (BDNF) gene in autism. Biochem Biophys Res Commun 356:200–206PubMedCrossRefGoogle Scholar
  66. Noterdaeme MA, Wriedt E (2010) Begleitsymptomatik bei tief greifenden Entwicklungsstörungen (Comorbidity in autism spectrum disorders—I. Mental retardation and psychiatric comorbidity). Z Kinder Jugendpsychiatr Psychother 38:257–266PubMedCrossRefGoogle Scholar
  67. Pan W, Banks WA, Fasold MB, Bluth J, Kastin AJ (1998) Transport of brain-derived neurotrophic factor across the blood-brain barrier. Neuropharmacology 37:1553–1561PubMedCrossRefGoogle Scholar
  68. Pandey GN, Dwivedi Y, Rizavi HS, Ren X, Zhang H, Pavuluri MN (2010) Brain-derived neurotrophic factor gene and protein expression in pediatric and adult depressed subjects. Prog Neuropsychopharmacol Biol Psychiatry 34:645–651PubMedCrossRefGoogle Scholar
  69. Pardon M (2010) Role of neurotrophic factors in behavioral processes: implications for the treatment of psychiatric and neurodegenerative disorders. Vitam Horm 82:185–200PubMedCrossRefGoogle Scholar
  70. Park SW, Lee JG, Ha EK, Choi SM, Cho HY, Seo MK, Kim YH (2009) Differential effects of aripiprazole and haloperidol on BDNF-mediated signal changes in SH-SY5Y cells. Eur Neuropsychopharmacol 19:356–362PubMedCrossRefGoogle Scholar
  71. Petermann F, Petermann U (2007) Hamburg Wechsel Intelligenz Test für Kinder, IV: HAWIK-IV, 3. ergänzte edn. Verlag Hans Huber, BernGoogle Scholar
  72. Polleux F, Lauder JM (2004) Toward a developmental neurobiology of autism. Ment Retard Dev Disabil Res Rev 10:303–317PubMedCrossRefGoogle Scholar
  73. Poo MM (2001) Neurotrophins as synaptic modulators. Nat Rev Neurosci 2:24–32PubMedCrossRefGoogle Scholar
  74. Richter-Schmidinger T, Alexopoulos P, Horn M, Maus S, Reichel M, Rhein C, Lewczuk P, Sidiropoulos C, Kneib T, Perneczky R, Doerfler A, Kornhuber J (2011) Influence of brain-derived neurotrophic-factor and apolipoprotein E genetic variants on hippocampal volume and memory performance in healthy young adults. J Neural Transm 118:249–257PubMedCrossRefGoogle Scholar
  75. Rohlf H, Jucksch V, Gawrilow C, Huss M, Hein J, Lehmkuhl U, Salbach-Andrae H (2012) Set shifting and working memory in adults with attention-deficit/hyperactivity disorder. J Neural Transm 119:95–106PubMedCrossRefGoogle Scholar
  76. Rommelse NNJ, Franke B, Geurts HM, Hartman CA, Buitelaar JK (2010) Shared heritability of attention-deficit/hyperactivity disorder and autism spectrum disorder. Eur Child Adolesc Psychiatry 19:281–295PubMedCentralPubMedCrossRefGoogle Scholar
  77. Ruehl D, Boelte S, Feineis-Matthews S, Poustka F (2004) ADOS—Diagnostische Beobachtungsskala fuer Autistische Stoerungen. Verlag Hans Huber, BernGoogle Scholar
  78. Ruta L, Ingudomnukul E, Taylor K, Chakrabarti B, Baron-Cohen S (2011) Increased serum androstenedione in adults with autism spectrum conditions. Psychoneuroendocrinology 36:1154–1163PubMedCrossRefGoogle Scholar
  79. Rutter M, Bailey AC (2003) Social communication questionnaire (SCQ). Western Psychological Services, Los AngelesGoogle Scholar
  80. Scassellati C, Zanardini R, Tiberti A, Pezzani M, Valenti V, Effedri P, Filippini E, Conte S, Ottolini A, Gennarelli M, Bocchio-Chiavetto L (2013) Serum brain-derived neurotrophic factor (BDNF) levels in attention deficit-hyperactivity disorder (ADHD). Eur Child Adolesc Psychiatry [Epub ahead of print]Google Scholar
  81. Schmitz C, Rezaie P (2008) The neuropathology of autism: where do we stand? Neuropathol Appl Neurobiol 34:4–11PubMedGoogle Scholar
  82. Schwarz E, Guest PC, Rahmoune H, Wang L, Levin Y, Ingudomnukul E, Ruta L, Kent L, Spain M, Baron-Cohen S, Bahn S (2011) Sex-specific serum biomarker patterns in adults with Asperger’s syndrome. Mol Psychiatry 16:1213–1220PubMedCrossRefGoogle Scholar
  83. Sen S, Duman R, Sanacora G (2008) Serum brain-derived neurotrophic factor, depression, and antidepressant medications: meta-analyses and implications. Biol Psychiatry 64:527–532PubMedCentralPubMedCrossRefGoogle Scholar
  84. Shim SH, Hwangbo Y, Kwon YJ, Jeong HY, Lee BH, Lee HJ, Kim YK (2008) Increased levels of plasma brain-derived neurotrophic factor (BDNF) in children with attention deficit-hyperactivity disorder (ADHD). Prog Neuropsychopharmacol Biol Psychiatry 32:1824–1828PubMedCrossRefGoogle Scholar
  85. Shimizu E, Hashimoto K, Okamura N, Koike K, Komatsu N, Kumakiri C, Nakazato M, Watanabe H, Shinoda N, Okada S, Iyo M (2003) Alterations of serum levels of brain-derived neurotrophic factor (BDNF) in depressed patients with or without antidepressants. Biol Psychiatry 54:70–75PubMedCrossRefGoogle Scholar
  86. Siuciak JA, Boylan C, Fritsche M, Altar CA, Lindsay RM (1996) BDNF increases monoaminergic activity in rat brain following intracerebroventricular or intraparenchymal administration. Brain Res 710:11–20PubMedCrossRefGoogle Scholar
  87. Takagishi H, Takahashi T, Yamagishi T, Shinada M, Inukai K, Tanida S, Mifune N, Horita Y, Hashimoto H, Yang Y, Kameda T (2010) Salivary testosterone levels and autism-spectrum quotient in adults. Neuro Endocrinol Lett 31:837–841PubMedGoogle Scholar
  88. Taurines R, Schmitt J, Renner T, Conner AC, Warnke A, Romanos M (2010) Developmental comorbidity in attention-deficit/hyperactivity disorder. Atten Defic Hyperact Disord 2:267–289PubMedCrossRefGoogle Scholar
  89. Taurines R, Schwenck C, Westerwald E, Sachse M, Siniatchkin M et al (2012) ADHD and autism: differential diagnosis or overlapping traits? A selective review. Atten Defic Hyperact Disord 4:115–139PubMedCrossRefGoogle Scholar
  90. Terracciano A, Tanaka T, Sutin AR, Deiana B, Balaci L, Sanna S, Olla N, Maschio A, Uda M, Ferrucci L, Schlessinger D, Costa PT (2010) BDNF Val66Met is associated with introversion and interacts with 5-HTTLPR to influence neuroticism. Neuropsychopharmacology 35:1083–1089PubMedCentralPubMedCrossRefGoogle Scholar
  91. Tewes U, Rossmann P, Schallberger U (1999) Hamburg-Wechsler-Intelligenztest für Kinder (HAWIK-III). Verlag Hans Huber, BernGoogle Scholar
  92. Tsai S, Hong C, Liou Y (2008) Brain-derived neurotrophic factor and antidepressant action: another piece of evidence from pharmacogenetics. Pharmacogenomics 9:1353–1358PubMedCrossRefGoogle Scholar
  93. Wechsler D (1949) Wechsler intelligence scale for children. The Psychological Corporation, New YorkGoogle Scholar
  94. Weiß R (1998) Grundintelligenztest Skala 2 (CFT 20) mit Wortschatztest (WS) und Zahlenfolgentest (ZF). Handanweisung, 4. überarbeitete edn. Hogrefe, GöttingenGoogle Scholar
  95. Williams NM, Zaharieva I, Martin A, Langley K, Mantripragada K et al (2010) Rare chromosomal deletions and duplications in attention-deficit hyperactivity disorder: a genome-wide analysis. Lancet 376:1401–1408PubMedCentralPubMedCrossRefGoogle Scholar
  96. Wong J, Hyde TM, Cassano HL, Deep-Soboslay A, Kleinman JE, Weickert CS (2010) Promoter specific alterations of brain-derived neurotrophic factor mRNA in schizophrenia. Neuroscience 169:1071–1084PubMedCentralPubMedCrossRefGoogle Scholar
  97. Roche Diagnostics CIM Study No: RD000669. LeipzigGoogle Scholar
  98. Yamada K, Mizuno M, Nabeshima T (2002) Role for brain-derived neurotrophic factor in learning and memory. Life Sci 70:735–744PubMedCrossRefGoogle Scholar
  99. Zheng F, Zhou X, Moon C, Wang H (2012) Regulation of brain-derived neurotrophic factor expression in neurons. Int J Physiol Pathophysiol Pharmacol 4:188–200PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  • Regina Taurines
    • 1
    Email author
  • Monica Segura
    • 2
  • Martin Schecklmann
    • 3
  • Laura Albantakis
    • 1
  • Edna Grünblatt
    • 4
  • Susanne Walitza
    • 4
  • Thomas Jans
    • 1
  • Benjamin Lyttwin
    • 1
  • Michael Haberhausen
    • 5
  • Frank M. Theisen
    • 6
  • Berthold Martin
    • 1
  • Wolfgang Briegel
    • 7
  • Johannes Thome
    • 8
    • 9
  • Christina Schwenck
    • 10
  • Marcel Romanos
    • 1
  • Manfred Gerlach
    • 1
  1. 1.Department of Child and Adolescent Psychiatry, Psychosomatics and PsychotherapyUniversity of WuerzburgWuerzburgGermany
  2. 2.Faculty of Medicine and Health SciencesUniversitat Internacional de CatalunyaBarcelonaSpain
  3. 3.Department of Psychiatry and PsychotherapyUniversity of RegensburgRegensburgGermany
  4. 4.Department of Child and Adolescent PsychiatryUniversity of ZurichZurichSwitzerland
  5. 5.Department of Child and Adolescent Psychiatry and PsychotherapyPhilipps-University MarburgMarburgGermany
  6. 6.Department of Child and Adolescent PsychiatryHerz-Jesu-KrankenhausFuldaGermany
  7. 7.Department of Child and Adolescent Psychiatry and PsychotherapyLeopoldina HospitalSchweinfurtGermany
  8. 8.Department of Psychiatry and PsychotherapyUniversity of RostockRostockGermany
  9. 9.College of Medicine, Swansea UniversitySwanseaUK
  10. 10.Department of Child and Adolescent Psychiatry, Psychosomatics and PsychotherapyGoethe-UniversityFrankfurt/MGermany

Personalised recommendations