Journal of Neural Transmission

, Volume 121, Issue 7, pp 725–738 | Cite as

Pre-treatment with new kynurenic acid amide dose-dependently prevents the nitroglycerine-induced neuronal activation and sensitization in cervical part of trigemino-cervical complex

  • Annamária Fejes-Szabó
  • Zsuzsanna Bohár
  • Enikő Vámos
  • Gábor Nagy-Grócz
  • Lilla Tar
  • Gábor Veres
  • Dénes Zádori
  • Márton Szentirmai
  • János Tajti
  • István Szatmári
  • Ferenc Fülöp
  • József Toldi
  • Árpád Párdutz
  • László Vécsei
Neurology and Preclinical Neurological Studies - Original Article

Abstract

The systemic administration of nitroglycerine induces attacks in migraineurs and is able to activate and sensitize the trigeminal system in animals involving glutamate and α7-nicotinic acetylcholine receptors, among others. Kynurenic acid is one of the endogenous glutamate receptor antagonists, and exerts inhibitory action on the α7-nicotinic acetylcholine receptors. Since kynurenic acid penetrates the blood–brain barrier poorly, therefore a newly synthesized kynurenic acid amide, N-(2-N-pyrrolidinylethyl)-4-oxo-1H-quinoline-2-carboxamide hydrochloride (KYNAa) was used with such a side-chain substitution to facilitate brain penetration in our study. We evaluated its modulatory effect on kynurenic acid concentration in the cervical part of trigemino-cervical complex (C1–C2) and in the model of nitroglycerine-induced trigeminal activation using male Sprague–Dawley rats. One hour after 1 mmol/kg bodyweight KYNAa administration, the kynurenic acid level increased significantly in C1–C2, which returned to the basal level at 300 min measured by high-performance liquid chromatography. KYNAa pre-treatment had dose-dependent, mitigating action on nitroglycerine-induced decrease in calcitonin gene-related peptide and increase in c-Fos, neuronal nitric oxide synthase and calmodulin-dependent protein kinase II alpha expression in the C1–C2. KYNAa also mitigated the behavioural changes after nitroglycerine. Thus, in this model KYNAa is able to modulate in a dose-dependent manner the changes in neurochemical markers of activation and sensitization of the trigeminal system directly and indirectly—via forming kynurenic acid, possibly acting on peripheral and central glutamate or α7-nicotinic acetylcholine receptors. These results suggest that application of kynurenic acid derivatives could be a useful therapeutic strategy in migraine headache in the future with a different mechanism of action.

Keywords

Cervical part of trigemino-cervical complex Kynurenic acid Nitroglycerine Trigeminal activation Trigeminal sensitization N-(2-N-pyrrolidinylethyl)-4-oxo-1H-quinoline-2-carboxamide hydrochloride 

References

  1. Begon S, Pickering G, Eschalier A, Mazur A, Rayssiguier Y, Dubray C (2001) Role of spinal NMDA receptors, protein kinase C and nitric oxide synthase in the hyperalgesia induced by magnesium deficiency in rats. Br J Pharmacol 134(6):1227–1236. doi:10.1038/sj.bjp.0704354 PubMedCentralPubMedCrossRefGoogle Scholar
  2. Birch PJ, Grossman CJ, Hayes AG (1988) Kynurenate and FG9041 have both competitive and non-competitive antagonist actions at excitatory amino acid receptors. Eur J Pharmacol 151(2):313–315 (pii:0014-2999(88)90814-X)PubMedCrossRefGoogle Scholar
  3. Bredt DS, Hwang PM, Snyder SH (1990) Localization of nitric oxide synthase indicating a neural role for nitric oxide. Nature 347(6295):768–770. doi:10.1038/347768a0 PubMedCrossRefGoogle Scholar
  4. Burstein R, Yamamura H, Malick A, Strassman AM (1998) Chemical stimulation of the intracranial dura induces enhanced responses to facial stimulation in brain stem trigeminal neurons. J Neurophysiol 79(2):964–982PubMedGoogle Scholar
  5. Carpenedo R, Pittaluga A, Cozzi A, Attucci S, Galli A, Raiteri M, Moroni F (2001) Presynaptic kynurenate-sensitive receptors inhibit glutamate release. Eur J Neurosci 13(11):2141–2147 (pii: ejn1592)PubMedCrossRefGoogle Scholar
  6. Carstens E, Simons CT, Dessirier JM, Carstens MI, Jinks SL (2000) Role of neuronal nicotinic-acetylcholine receptors in the activation of neurons in trigeminal subnucleus caudalis by nicotine delivered to the oral mucosa. Exp Brain Res 132(3):375–383. doi:10.1007/s002210000351 PubMedCrossRefGoogle Scholar
  7. Chacur M, Matos RJ, Alves AS, Rodrigues AC, Gutierrez V, Cury Y, Britto LR (2010) Participation of neuronal nitric oxide synthase in experimental neuropathic pain induced by sciatic nerve transection. Braz J Med Biol Res 43(4):367–376. doi:10.1590/S0100-879X2010007500019 PubMedCrossRefGoogle Scholar
  8. Christiansen I, Thomsen LL, Daugaard D, Ulrich V, Olesen J (1999) Glyceryl trinitrate induces attacks of migraine without aura in sufferers of migraine with aura. Cephalalgia 19 (7):660–667. doi:10.1046/j.1468-2982.1999.019007660.x (discussion 626)Google Scholar
  9. Christoph T, Reissmuller E, Schiene K, Englberger W, Chizh BA (2005) Antiallodynic effects of NMDA glycine(B) antagonists in neuropathic pain: possible peripheral mechanisms. Brain Res 1048(1–2):218–227. doi:10.1016/j.brainres.2005.04.081 PubMedCrossRefGoogle Scholar
  10. D’Andrea G, Leon A (2010) Pathogenesis of migraine: from neurotransmitters to neuromodulators and beyond. Neurol Sci 31(Suppl 1):S1–S7. doi:10.1007/s10072-010-0267-8 PubMedCrossRefGoogle Scholar
  11. Davis AM, Inturrisi CE (2001) Attenuation of hyperalgesia by LY235959, a competitive N-methyl-D-aspartate receptor antagonist. Brain Res 894(1):150–153 (pii:S0006-8993(00)03325-4)PubMedCrossRefGoogle Scholar
  12. Demeter I, Nagy K, Gellert L, Vecsei L, Fulop F, Toldi J (2012) A novel kynurenic acid analog (SZR104) inhibits pentylenetetrazole-induced epileptiform seizures. An electrophysiological study: special issue related to kynurenine. J Neural Transm 119 (2):151–154. doi:10.1007/s00702-011-0755-x Google Scholar
  13. Denenberg VH (1969) Open-field bheavior in the rat: what does it mean? Ann N Y Acad Sci 159(3):852–859. doi:10.1111/j.1749-6632.1969.tb12983.x PubMedCrossRefGoogle Scholar
  14. Di Clemente L, Coppola G, Magis D, Gerardy PY, Fumal A, De Pasqua V, Di Piero V, Schoenen J (2009) Nitroglycerin sensitises in healthy subjects CNS structures involved in migraine pathophysiology: evidence from a study of nociceptive blink reflexes and visual evoked potentials. Pain 144(1–2):156–161. doi:10.1016/j.pain.2009.04.018 PubMedCrossRefGoogle Scholar
  15. Entrena A, Camacho ME, Carrion MD, Lopez-Cara LC, Velasco G, Leon J, Escames G, Acuna-Castroviejo D, Tapias V, Gallo MA, Vivo A, Espinosa A (2005) Kynurenamines as neural nitric oxide synthase inhibitors. J Med Chem 48(26):8174–8181. doi:10.1021/jm050740o PubMedCrossRefGoogle Scholar
  16. Fang L, Wu J, Lin Q, Willis WD (2002) Calcium-calmodulin-dependent protein kinase II contributes to spinal cord central sensitization. J Neurosci 22(10):4196–4204 (pii: 2002634322/10/4196)PubMedGoogle Scholar
  17. Fukui S, Schwarcz R, Rapoport SI, Takada Y, Smith QR (1991) Blood-brain barrier transport of kynurenines: implications for brain synthesis and metabolism. J Neurochem 56(6):2007–2017. doi:10.1111/j.1471-4159.1991.tb03460.x PubMedCrossRefGoogle Scholar
  18. Fulop F, Szatmari I, Toldi J, Vecsei L (2012) Modifications on the carboxylic function of kynurenic acid. J Neural Transm 119(2):109–114. doi:10.1007/s00702-011-0721-7 PubMedCrossRefGoogle Scholar
  19. Fuvesi J, Rajda C, Bencsik K, Toldi J, Vecsei L (2012) The role of kynurenines in the pathomechanism of amyotrophic lateral sclerosis and multiple sclerosis: therapeutic implications. J Neural Transm 119(2):225–234. doi:10.1007/s00702-012-0765-3 PubMedCrossRefGoogle Scholar
  20. Garry MG, Walton LP, Davis MA (2000) Capsaicin-evoked release of immunoreactive calcitonin gene-related peptide from the spinal cord is mediated by nitric oxide but not by cyclic GMP. Brain Res 861(2):208–219 (pii: S0006-8993(99)02448-8)PubMedCrossRefGoogle Scholar
  21. Garthwaite J, Charles SL, Chess-Williams R (1988) Endothelium-derived relaxing factor release on activation of NMDA receptors suggests role as intercellular messenger in the brain. Nature 336(6197):385–388. doi:10.1038/336385a0 PubMedCrossRefGoogle Scholar
  22. Gellert L, Varga D, Ruszka M, Toldi J, Farkas T, Szatmari I, Fulop F, Vecsei L, Kis Z (2012) Behavioural studies with a newly developed neuroprotective KYNA-amide. J Neural Transm 119(2):165–172. doi:10.1007/s00702-011-0692-8 PubMedCrossRefGoogle Scholar
  23. Gray R, Rajan AS, Radcliffe KA, Yakehiro M, Dani JA (1996) Hippocampal synaptic transmission enhanced by low concentrations of nicotine. Nature 383(6602):713–716. doi:10.1038/383713a0 PubMedCrossRefGoogle Scholar
  24. Herve C, Beyne P, Jamault H, Delacoux E (1996) Determination of tryptophan and its kynurenine pathway metabolites in human serum by high-performance liquid chromatography with simultaneous ultraviolet and fluorimetric detection. J Chromatogr B Biomed Appl 675(1):157–161 (pii: 037843479500341X)PubMedCrossRefGoogle Scholar
  25. Just S, Arndt K, Doods H (2005) The role of CGRP and nicotinic receptors in centrally evoked facial blood flow changes. Neurosci Lett 381(1–2):120–124. doi:10.1016/j.neulet.2005.02.012 PubMedCrossRefGoogle Scholar
  26. Kessler M, Terramani T, Lynch G, Baudry M (1989) A glycine site associated with N-methyl-d-aspartic acid receptors: characterization and identification of a new class of antagonists. J Neurochem 52(4):1319–1328. doi:10.1111/j.1471-4159.1989.tb01881.x PubMedCrossRefGoogle Scholar
  27. Knyihar-Csillik E, Toldi J, Mihaly A, Krisztin-Peva B, Chadaide Z, Nemeth H, Fenyo R, Vecsei L (2007) Kynurenine in combination with probenecid mitigates the stimulation-induced increase of c-fos immunoreactivity of the rat caudal trigeminal nucleus in an experimental migraine model. J Neural Transm 114(4):417–421. doi:10.1007/s00702-006-0545-z PubMedCrossRefGoogle Scholar
  28. Knyihar-Csillik E, Mihaly A, Krisztin-Peva B, Robotka H, Szatmari I, Fulop F, Toldi J, Csillik B, Vecsei L (2008) The kynurenate analog SZR-72 prevents the nitroglycerol-induced increase of c-fos immunoreactivity in the rat caudal trigeminal nucleus: comparative studies of the effects of SZR-72 and kynurenic acid. Neurosci Res 61(4):429–432. doi:10.1016/j.neures.2008.04.009 PubMedCrossRefGoogle Scholar
  29. Kristensen JD, Post C, Gordh TJ, Svensson BA (1993) Spinal cord morphology and antinociception after chronic intrathecal administration of excitatory amino acid antagonists in the rat. Pain 54(3):309–316 (pii: 0304-3959(93)90030-S)PubMedCrossRefGoogle Scholar
  30. Latremoliere A, Woolf CJ (2009) Central sensitization: a generator of pain hypersensitivity by central neural plasticity. J Pain 10(9):895–926. doi:10.1016/j.jpain.2009.06.012 PubMedCentralPubMedCrossRefGoogle Scholar
  31. Liu L, Chang GQ, Jiao YQ, Simon SA (1998) Neuronal nicotinic acetylcholine receptors in rat trigeminal ganglia. Brain Res 809(2):238–245 (pii: S0006-8993(98)00862-2)PubMedCrossRefGoogle Scholar
  32. Markovics A, Kormos V, Gaszner B, Lashgarara A, Szoke E, Sandor K, Szabadfi K, Tuka B, Tajti J, Szolcsanyi J, Pinter E, Hashimoto H, Kun J, Reglodi D, Helyes Z (2012) Pituitary adenylate cyclase-activating polypeptide plays a key role in nitroglycerol-induced trigeminovascular activation in mice. Neurobiol Dis 45(1):633–644. doi:10.1016/j.nbd.2011.10.010 PubMedCrossRefGoogle Scholar
  33. Marosi M, Nagy D, Farkas T, Kis Z, Rozsa E, Robotka H, Fulop F, Vecsei L, Toldi J (2010) A novel kynurenic acid analogue: a comparison with kynurenic acid. An in vitro electrophysiological study. J Neural Transm 117(2):183–188. doi:10.1007/s00702-009-0346-2 PubMedCrossRefGoogle Scholar
  34. McGehee DS, Heath MJ, Gelber S, Devay P, Role LW (1995) Nicotine enhancement of fast excitatory synaptic transmission in CNS by presynaptic receptors. Science 269(5231):1692–1696. doi:10.1126/science.7569895 PubMedCrossRefGoogle Scholar
  35. Mecs L, Tuboly G, Nagy E, Benedek G, Horvath G (2009) The peripheral antinociceptive effects of endomorphin-1 and kynurenic acid in the rat inflamed joint model. Anesth Analg 109(4):1297–1304. doi:10.1213/ane.0b013e3181b21c5e PubMedCrossRefGoogle Scholar
  36. Mitsikostas DD, Sanchez del Rio M, Waeber C, Moskowitz MA, Cutrer FM (1998) The NMDA receptor antagonist MK-801 reduces capsaicin-induced c-fos expression within rat trigeminal nucleus caudalis. Pain 76(1–2):239–248 (pii: S0304-3959(98)00051-7)PubMedCrossRefGoogle Scholar
  37. Mitsikostas DD, Sanchez del Rio M, Waeber C, Huang Z, Cutrer FM, Moskowitz MA (1999) Non-NMDA glutamate receptors modulate capsaicin induced c-fos expression within trigeminal nucleus caudalis. Br J Pharmacol 127(3):623–630. doi:10.1038/sj.bjp.0702584 PubMedCentralPubMedCrossRefGoogle Scholar
  38. Moskowitz MA (2008) Defining a pathway to discovery from bench to bedside: the trigeminovascular system and sensitization. Headache 48(5):688–690. doi:10.1111/j.1526-4610.2008.01110.x PubMedCrossRefGoogle Scholar
  39. Nasstrom J, Karlsson U, Post C (1992) Antinociceptive actions of different classes of excitatory amino acid receptor antagonists in mice. Eur J Pharmacol 212(1):21–29 (pii: 0014-2999(92)90067-E)PubMedCrossRefGoogle Scholar
  40. Nemeth H, Toldi J, Vecsei L (2006) Kynurenines, Parkinson’s disease and other neurodegenerative disorders: preclinical and clinical studies. J Neural Transm Suppl 70:285–304. doi:10.1007/978-3-211-45295-0_45 PubMedCrossRefGoogle Scholar
  41. Nicolodi M, Sicuteri F (1995) Exploration of NMDA receptors in migraine: therapeutic and theoretic implications. Int J Clin Pharmacol Res 15(5–6):181–189PubMedGoogle Scholar
  42. Ohshiro H, Tonai-Kachi H, Ichikawa K (2008) GPR35 is a functional receptor in rat dorsal root ganglion neurons. Biochem Biophys Res Commun 365(2):344–348. doi:10.1016/j.bbrc.2007.10.197 PubMedCrossRefGoogle Scholar
  43. Oshinsky ML, Luo J (2006) Neurochemistry of trigeminal activation in an animal model of migraine. Headache 46(Suppl 1):S39–S44. doi:10.1111/j.1526-4610.2006.00489.x PubMedCrossRefGoogle Scholar
  44. Pardutz A, Krizbai I, Multon S, Vecsei L, Schoenen J (2000) Systemic nitroglycerin increases nNOS levels in rat trigeminal nucleus caudalis. NeuroReport 11(14):3071–3075. doi:10.1097/00001756-200009280-00008 PubMedCrossRefGoogle Scholar
  45. Pardutz A, Multon S, Malgrange B, Parducz A, Vecsei L, Schoenen J (2002) Effect of systemic nitroglycerin on CGRP and 5-HT afferents to rat caudal spinal trigeminal nucleus and its modulation by estrogen. Eur J Neurosci 15(11):1803–1809 (pii: 2031)PubMedCrossRefGoogle Scholar
  46. Pardutz A, Hoyk Z, Varga H, Vecsei L, Schoenen J (2007) Oestrogen-modulated increase of calmodulin-dependent protein kinase II (CamKII) in rat spinal trigeminal nucleus after systemic nitroglycerin. Cephalalgia 27(1):46–53. doi:10.1111/j.1468-2982.2006.01244.x PubMedCrossRefGoogle Scholar
  47. Pardutz A, Fejes A, Bohar Z, Tar L, Toldi J, Vecsei L (2012) Kynurenines and headache. J Neural Transm 119(2):285–296. doi:10.1007/s00702-011-0665-y PubMedCrossRefGoogle Scholar
  48. Pereira EF, Hilmas C, Santos MD, Alkondon M, Maelicke A, Albuquerque EX (2002) Unconventional ligands and modulators of nicotinic receptors. J Neurobiol 53(4):479–500. doi:10.1002/neu.10146 PubMedCrossRefGoogle Scholar
  49. Quartu M, Serra MP, Ambu R, Lai ML, Del Fiacco M (2002) AMPA-type glutamate receptor subunits 2/3 in the human trigeminal sensory ganglion and subnucleus caudalis from prenatal ages to adulthood. Mech Ageing Dev 123(5):463–471 (pii: S004763740100358X)PubMedCrossRefGoogle Scholar
  50. Sicuteri F, Del Bene E, Poggioni M, Bonazzi A (1987) Unmasking latent dysnociception in healthy subjects. Headache 27(4):180–185. doi:10.1111/j.1526-4610.1987.hed2704180.x PubMedCrossRefGoogle Scholar
  51. Storer RJ, Goadsby PJ (1999) Trigeminovascular nociceptive transmission involves N-methyl-D-aspartate and non-N-methyl-D-aspartate glutamate receptors. Neuroscience 90(4):1371–1376 (pii: S0306-4522(98)00536-3)PubMedCrossRefGoogle Scholar
  52. Strassman AM, Mineta Y, Vos BP (1994) Distribution of fos-like immunoreactivity in the medullary and upper cervical dorsal horn produced by stimulation of dural blood vessels in the rat. J Neurosci 14(6):3725–3735 (pii: 0270-6474/94/143725-l1$05.00/O)PubMedGoogle Scholar
  53. Svendsen F, Tjolsen A, Hole K (1998) AMPA and NMDA receptor-dependent spinal LTP after nociceptive tetanic stimulation. NeuroReport 9(6):1185–1190. doi:10.1097/00001756-199804200-00041 PubMedCrossRefGoogle Scholar
  54. Tallaksen-Greene SJ, Young AB, Penney JB, Beitz AJ (1992) Excitatory amino acid binding sites in the trigeminal principal sensory and spinal trigeminal nuclei of the rat. Neurosci Lett 141(1):79–83 (pii: 0304-3940(92)90339-9)PubMedCrossRefGoogle Scholar
  55. Tassorelli C, Joseph SA (1995) Systemic nitroglycerin induces Fos immunoreactivity in brainstem and forebrain structures of the rat. Brain Res 682(1–2):167–181 (pii: 0006-8993(95)00348-T)PubMedCrossRefGoogle Scholar
  56. Tassorelli C, Joseph SA, Nappi G (1997) Neurochemical mechanisms of nitroglycerin-induced neuronal activation in rat brain: a pharmacological investigation. Neuropharmacology 36(10):1417–1424 (pii: S0028390897001226)PubMedCrossRefGoogle Scholar
  57. Vamos E, Pardutz A, Varga H, Bohar Z, Tajti J, Fulop F, Toldi J, Vecsei L (2009) L-kynurenine combined with probenecid and the novel synthetic kynurenic acid derivative attenuate nitroglycerin-induced nNOS in the rat caudal trigeminal nucleus. Neuropharmacology 57(4):425–429. doi:10.1016/j.neuropharm.2009.06.033 PubMedCrossRefGoogle Scholar
  58. Vamos E, Fejes A, Koch J, Tajti J, Fulop F, Toldi J, Pardutz A, Vecsei L (2010) Kynurenate derivative attenuates the nitroglycerin-induced CamKIIalpha and CGRP expression changes. Headache 50(5):834–843. doi:10.1111/j.1526-4610.2009.01574.xHED1574 PubMedCrossRefGoogle Scholar
  59. Vecsei L, Szalardy L, Fulop F, Toldi J (2013) Kynurenines in the CNS: recent advances and new questions. Nat Rev Drug Discov 12(1):64–82. doi:10.1038/nrd3793nrd3793 PubMedCrossRefGoogle Scholar
  60. Wang XM, Mokha SS (1996) Opioids modulate N-methyl-d-aspartic acid (NMDA)-evoked responses of trigeminothalamic neurons. J Neurophysiol 76(3):2093–2096PubMedGoogle Scholar
  61. Wang J, Simonavicius N, Wu X, Swaminath G, Reagan J, Tian H, Ling L (2006) Kynurenic acid as a ligand for orphan G protein-coupled receptor GPR35. J Biol Chem 281(31):22021–22028. doi:10.1074/jbc.M603503200 PubMedCrossRefGoogle Scholar
  62. Watanabe M, Mishina M, Inoue Y (1994) Distinct gene expression of the N-methyl-D-aspartate receptor channel subunit in peripheral neurons of the mouse sensory ganglia and adrenal gland. Neurosci Lett 165(1–2):183–186. doi:10.1016/0304-3940(94)90740-4 PubMedCrossRefGoogle Scholar
  63. Zadori D, Nyiri G, Szonyi A, Szatmari I, Fulop F, Toldi J, Freund TF, Vecsei L, Klivenyi P (2011) Neuroprotective effects of a novel kynurenic acid analogue in a transgenic mouse model of Huntington’s disease. J Neural Transm 118(6):865–875. doi:10.1007/s00702-010-0573-6 PubMedCrossRefGoogle Scholar
  64. Zhang RX, Mi ZP, Qiao JT (1994) Changes of spinal substance P, calcitonin gene-related peptide, somatostatin, Met-enkephalin and neurotensin in rats in response to formalin-induced pain. Regul Pept 51(1):25–32. doi:10.1016/0167-0115(94)90131-7 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  • Annamária Fejes-Szabó
    • 1
  • Zsuzsanna Bohár
    • 1
    • 2
  • Enikő Vámos
    • 1
  • Gábor Nagy-Grócz
    • 1
  • Lilla Tar
    • 1
  • Gábor Veres
    • 1
  • Dénes Zádori
    • 1
  • Márton Szentirmai
    • 1
  • János Tajti
    • 1
  • István Szatmári
    • 3
  • Ferenc Fülöp
    • 3
  • József Toldi
    • 4
  • Árpád Párdutz
    • 1
  • László Vécsei
    • 1
    • 2
  1. 1.Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical CentreUniversity of SzegedSzegedHungary
  2. 2.Neuroscience Research Group of the Hungarian Academy of Sciences and University of SzegedSzegedHungary
  3. 3.Institute of Pharmaceutical Chemistry and Stereochemistry Research Group of the Hungarian Academy of SciencesUniversity of SzegedSzegedHungary
  4. 4.Department of Physiology, Anatomy and NeuroscienceUniversity of SzegedSzegedHungary

Personalised recommendations