Journal of Neural Transmission

, Volume 121, Issue 4, pp 451–455 | Cite as

Change in electrodermal activity after acute tryptophan depletion associated with aggression in young people with attention deficit hyperactivity disorder (ADHD)

  • G. G. von Polier
  • C. S. Biskup
  • W. F. Kötting
  • S. Bubenzer
  • K. Helmbold
  • A. Eisert
  • T. J. Gaber
  • F. D. Zepf
Psychiatry and Preclinical Psychiatric Studies - Short communication

Abstract

We investigated the impact of acute tryptophan depletion (ATD) and reduced brain serotonin synthesis on physiological arousal in 15 young people with ADHD participating in an aggression-inducing game. ATD was not associated with altered physiological arousal, as indexed by electrodermal activity (EDA). Baseline aggression was negatively correlated with the mean ATD effect on EDA. In accordance with the low arousal theory related to aggressive behavior, subjects with reduced physiological responsiveness/lower electrodermal reactivity to ATD tended to display elevated externalizing behavior.

Keywords

Serotonin ADHD Electrodermal activity Physiological arousal Aggression 

Notes

Conflict of interest

This study received funding from the excellence initiative of the German federal and state governments. In the past 5 years, F.D.Z. was the recipient of an unrestricted award donated by the American Psychiatric Association (APA), the American Psychiatric Institute for Research and Education (APIRE), and AstraZeneca (Young Minds in Psychiatry Award). He has also received research support from the German Federal Ministry for Economics and Technology, the German Society for Social Pediatrics and Adolescent Medicine, the Paul and Ursula Klein Foundation, the Dr. August Scheidel Foundation, the IZKF of RWTH Aachen University and a travel stipend donated by the GlaxoSmithKline Foundation. He is the recipient of an unrestricted educational grant, travel support and speaker honoraria from Shire Pharmaceuticals, Germany. He also receives editorial fees from Co-Action Publishing, Sweden. In addition, he has received support from the Raine Foundation for Medical Research (Raine Visiting Professorship). The outlined support and co-operations do not stand in conflict with this particular publication. The other authors have nothing to disclose.

References

  1. Achenbach TM (1991) Child Behavior Checklist––Deutsche Version. Hogrefe, GöttingenGoogle Scholar
  2. Benedek M, Kaernbach C (2010) A continuous measure of phasic electrodermal activity. J Neurosci Methods 190(1):80–91PubMedCentralPubMedCrossRefGoogle Scholar
  3. Biskup CS, Sanchez CL, Arrant A, Van Swearingen AE, Kuhn C, Zepf FD (2012) Effects of acute tryptophan depletion on brain serotonin function and concentrations of dopamine and norepinephrine in C57BL/6J and BALB/cJ mice. PLoS One 7(5):e35916PubMedCentralPubMedCrossRefGoogle Scholar
  4. Bortolato M, Pivac N, Muck Seler D, Nikolac Perkovic M, Pessia M, Di Giovanni G (2013) The role of the serotonergic system at the interface of aggression and suicide. Neuroscience 236:160–185PubMedCrossRefPubMedCentralGoogle Scholar
  5. Buckholtz JW, Callicott JH, Kolachana B, Hariri AR, Goldberg TE, Genderson M, Egan MF, Mattay VS, Weinberger DR, Meyer-Lindenberg A (2008) Genetic variation in MAOA modulates ventromedial prefrontal circuitry mediating individual differences in human personality. Mol Psychiatry 13(3):313–324PubMedCrossRefGoogle Scholar
  6. Crockett M (2013) Serotonin and aversive processing in social and nonsocial contexts. Transl Dev Psychiatry 1:18679. doi: 10.3402/tdp.v1i0.18679 Google Scholar
  7. Dingerkus VL, Gaber TJ, Helmbold K, Bubenzer S, Eisert A, Sanchez CL, Zepf FD (2012) Acute tryptophan depletion in accordance with body weight: influx of amino acids across the blood-brain barrier. J Neural Transm 119(9):1037–1045PubMedCentralPubMedCrossRefGoogle Scholar
  8. Gaber TJ (2013) Effects of acute tryptophan depletion Moja-De on behavioral inhibition in healthy adults. Transl Dev Psychiatry 2013(1):18676. doi: 10.3402/tdp.v1i0.18676 Google Scholar
  9. Helmbold K, Bubenzer S, Dahmen B, Eisert A, Gaber TJ, Habel U, Konrad K, Herpertz-Dahlmann, Zepf FD (2013) Influence of acute tryptophan depletion on verbal declarative episodic memory in young adult females. Amino Acids (in press)Google Scholar
  10. Hubbard JA, Smithmyer CM, Ramsden SR, Parker EH, Flanagan KD, Dearing KF, Relyea N, Simons RF (2002) Observational, physiological, and self-report measures of children’s anger: relations to reactive versus proactive aggression. Child Dev 73(4):1101–1118PubMedCrossRefGoogle Scholar
  11. Kötting WF, Bubenzer S, Helmbold K, Eisert A, Gaber TJ, Zepf FD (2013) Effects of tryptophan depletion on reactive aggression and aggressive decision-making in young people with ADHD. Acta Psychiatr Scand 128(2):114–123PubMedCrossRefGoogle Scholar
  12. Kramer UM, Riba J, Richter S, Munte TF (2011) An fMRI study on the role of serotonin in reactive aggression. PLoS One 6(11):e27668PubMedCentralPubMedCrossRefGoogle Scholar
  13. Kuhn C (2013) Serotonin in adolescence: role in behavioral inhibition. Transl Dev Psychiatry 1:18845. doi: 10.3402/tdp.v1i0.18845 Google Scholar
  14. Meyer-Lindenberg A, Buckholtz JW, Kolachana B, RH A, Pezawas L, Blasi G, Wabnitz A, Honea R, Verchinski B, Callicott JH, Egan M, Mattay V, Weinberger DR (2006) Neural mechanisms of genetic risk for impulsivity and violence in humans. Proc Natl Acad Sci 103(16):6269–6274PubMedCentralPubMedCrossRefGoogle Scholar
  15. Moja EA, Stoff DM, Gessa GL, Castoldi D, Assereto R, Tofanetti O (1988) Decrease in plasma tryptophan after tryptophan-free amino acid mixtures in man. Life Sci 42(16):1551–1556PubMedCrossRefGoogle Scholar
  16. Moja EA, Cipolla P, Castoldi D, Tofanetti O (1989) Dose-response decrease in plasma tryptophan and in brain tryptophan and serotonin after tryptophan-free amino acid mixtures in rats. Life Sci 44(14):971–976PubMedCrossRefGoogle Scholar
  17. Nishizawa S, Benkelfat C, Young SN, Leyton M, Mzengeza M, De Montigny C, Blier P, Diksic M (1997) Differences between males and females in rates of serotonin synthesis in human brain. Proc Natl Acad Sci USA 94:5308–5313PubMedCentralPubMedCrossRefGoogle Scholar
  18. Pelham WE, Milich R, Cummings EM, Murphy DA, Schaughency EA, Greiner AR (1991) Effects of background anger, provocation, and methylphenidate on emotional arousal and aggressive responding in attention-deficit hyperactivity disordered boys with and without concurrent aggressiveness. J Abnorm Child Psychol 19(4):407–426PubMedCrossRefGoogle Scholar
  19. Raine A (2002) Biosocial studies of antisocial and violent behavior in children and adults: a review. J Abnorm Child Psychol 30(4):311–326PubMedCrossRefGoogle Scholar
  20. Sánchez CL, Van Swearingen AED, Arrant AED, Kuhn CM, Zepf FD (2013) Dietary manipulation of serotonergic and dopaminergic function in C57BL/6J mice with amino acid depletion mixtures. J Neural Transmission (in press)Google Scholar
  21. Scarpa A, Haden SC, Tanaka A (2010) Being hot-tempered: autonomic, emotional, and behavioral distinctions between childhood reactive and proactive aggression. Biol Psychol 84(3):488–496PubMedCrossRefGoogle Scholar
  22. Schmeck K, Poustka F, Dopfner M, Pluck J, Berner W, Lehmkuhl G, Fegert JM, Lenz K, Huss M, Lehmkuhl U (2001) Discriminant validity of the child behaviour checklist CBCL-4/18 in German samples. Eur Child Adolesc Psychiatry 10(4):240–247PubMedCrossRefGoogle Scholar
  23. Stadler C, Zepf FD, Demisch L, Schmitt M, Landgraf M, Poustka F (2007) Influence of rapid tryptophan depletion on laboratory-provoked aggression in children with ADHD. Neuropsychobiology 56(2–3):104–110PubMedCrossRefGoogle Scholar
  24. Waschbusch DA (2002) A meta-analytic examination of comorbid hyperactive-impulsive-attention problems and conduct problems. Psychol Bull 128(1):118–150PubMedCrossRefGoogle Scholar
  25. Wilson LC, Scarpa A (2011) The link between sensation seeking and aggression: a meta-analytic review. Aggress Behav 37(1):81–90PubMedCrossRefGoogle Scholar
  26. Zepf FD (2013) The use of acute tryptophan depletion in children and adolescents. Transl Dev Psychiatry 1:18393. doi: 10.3402/tdp.v1i0.18393 Google Scholar
  27. Zepf FD, Stadler C, Demisch L, Schmitt M, Landgraf M, Poustka F (2008) Serotonergic functioning and trait-impulsivity in attention-deficit/hyperactivity-disordered boys (ADHD): influence of rapid tryptophan depletion. Hum Psychopharmacol 23(1):43–51PubMedCrossRefGoogle Scholar
  28. Zepf FD, Holtmann M, Stadler C, Wockel L, Poustka F (2009) Reduced serotonergic functioning changes heart rate in ADHD. J Neural Transm 116(1):105–108PubMedCrossRefGoogle Scholar
  29. Zhang S, Hu S, Chao HH, Ide JS, Luo X, Farr OM, Li CS (2013) Ventromedial prefrontal cortex and the regulation of physiological arousal. Soc Cogn Affect Neurosci. doi: 10.1093/scan/nst064 Google Scholar
  30. Zimmermann M, Grabemann M, Mette C, Abdel-Hamid M, Uekermann J, Kraemer M, Wiltfang J, Kis B, Zepf FD (2012) The effects of acute tryptophan depletion on reactive aggression in adults with attention-deficit/hyperactivity disorder (ADHD) and healthy controls. PLoS One 7(3):e32023PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2013

Authors and Affiliations

  • G. G. von Polier
    • 1
    • 2
  • C. S. Biskup
    • 1
    • 3
  • W. F. Kötting
    • 1
    • 3
  • S. Bubenzer
    • 1
    • 3
  • K. Helmbold
    • 1
    • 3
  • A. Eisert
    • 4
  • T. J. Gaber
    • 1
    • 3
  • F. D. Zepf
    • 1
    • 3
    • 5
  1. 1.Translational Neuroscience in Psychiatry and Neurology, Clinic for Child and Adolescent Psychiatry, Psychosomatics and PsychotherapyRWTH Aachen UniversityAachenGermany
  2. 2.Child Neuropsychology Section, Clinic for Child and Adolescent Psychiatry, Psychosomatics and PsychotherapyRWTH Aachen UniversityAachenGermany
  3. 3.JARA Translational Brain MedicineAachen, JülichGermany
  4. 4.Department of PharmacyRWTH Aachen UniversityAachenGermany
  5. 5.Jülich Research CenterInstitute for Neuroscience and MedicineJülichGermany

Personalised recommendations