Journal of Neural Transmission

, Volume 121, Issue 2, pp 183–192 | Cite as

NRG3 gene is associated with the risk and age at onset of Alzheimer disease

  • Ke-Sheng Wang
  • Nuo Xu
  • Liang Wang
  • Lorenzo Aragon
  • Radu Ciubuc
  • Tania Bedard Arana
  • ChunXiang Mao
  • Leonora Petty
  • David Briones
  • Brenda Bin Su
  • Xingguang Luo
  • Cynthia Camarillo
  • Michael A. Escamilla
  • Chun Xu
Neurology and Preclinical Neurological Studies - Original Article

Abstract

The Neuregulin 3 (NRG3) gene at 10q22–q24 has been implicated in multiple psychiatric traits such as cognitive impairment. We therefore hypothesized that NRG3 gene polymorphisms may play a role in Alzheimer disease (AD). This present study explored the association of NRG3 with the age at onset (AAO) of AD and the risk of developing AD. Secondary data analysis of 257 single-nucleotide polymorphisms (SNPs) in NRG3 gene was performed in 806 Alzheimer’s disease patients and 782 controls using logistic regression and linear regression analyses. Eight SNPs were associated with the risk of AD (p < 0.05), while linear regression analysis showed 33 SNPs associated with the AAO of AD (p < 0.05). Two-SNP haplotype analyses based on UNPHASED revealed that the G–C haplotype from rs17685233 and rs17101017 was significantly associated with AD (p = 0.0031) and the A–G haplotype from rs504522 and rs474018 as well as the A–G haplotype from rs504522 and rs2483295 were more significantly associated with the AAO of AD (p = 6.72 × 10−5). Using an independent family-based sample, we found one SNP rs11192423 associated with AAO both in the case–control sample (p = 0.0155) and in the family sample (p = 0.0166). In addition, we observed nominally significant associations with AD and AAO for several flanking SNPs (p < 0.05). This is the first study demonstrating that genetic variants in the NRG3 gene play a role in AD. Our results also revealed that SNPs in the NRG3 genes were more strongly associated with AAO of AD.

Keywords

Alzheimer disease Age at onset NRG3 gene Single-nucleotide polymorphisms 

Notes

Acknowledgments

We acknowledge the NIH GWAS Data Repository, the Contributing Investigator(s) who contributed the phenotype data and DNA samples from his/her original study and the primary funding organization that supported the contributing study “Multi-Site Collaborative Study for Genotype–Phenotype Associations in Alzheimer’s disease and longitudinal follow-up of Genotype–Phenotype Associations in Alzheimer’s disease and Neuroimaging component of Genotype–Phenotype Associations in Alzheimer’s disease” and “National Institute on Aging—Late Onset Alzheimer’s Disease Family Study: Genome-Wide Association Study for Susceptibility Loci”. The genotypic and associated phenotypic data used in the study, “Multi-Site Collaborative Study for Genotype–Phenotype Associations in Alzheimer’s Disease (GenADA)” were provided by the GlaxoSmithKline, R&D Limited. The datasets used for analyses described in this manuscript were obtained from dbGaP at http://www.ncbi.nlm.nih.gov/gap through dbGaP accession number phs000219.v1.p1. Funding support for the “Genetic Consortium for Late Onset Alzheimer’s Disease” was provided through the Division of Neuroscience, NIA. The Genetic Consortium for Late Onset Alzheimer’s Disease includes a genome-wide association study funded as part of the Division of Neuroscience, NIA. Assistance with phenotype harmonization and genotype cleaning, as well as with general study coordination, was provided by Genetic Consortium for Late Onset Alzheimer’s Disease. The datasets used for analyses described in this manuscript were obtained from dbGaP at http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000168.v1.p1.

Supplementary material

702_2013_1091_MOESM1_ESM.xlsx (42 kb)
Supplementary material 1 (XLSX 42 kb)
702_2013_1091_MOESM2_ESM.xls (78 kb)
Supplementary material 2 (XLS 77 kb)
702_2013_1091_MOESM3_ESM.xls (36 kb)
Supplementary material 3 (XLS 36 kb)

References

  1. Alzheimer’s-Association, Thies W, Bleiler L (2011) Alzheimer’s disease facts and figures. Alzheimer’s Dement 7(2):208–244. doi:10.1016/j.jalz.2011.02.004
  2. Anton ES, Ghashghaei HT, Weber JL, McCann C, Fischer TM, Cheung ID, Lai C (2004) Receptor tyrosine kinase ErbB4 modulates neuroblast migration and placement in the adult forebrain. Nat Neurosci 7(12):1319–1328. doi:10.1038/nn1345 PubMedCrossRefGoogle Scholar
  3. Assimacopoulos S, Grove EA, Ragsdale CW (2003) Identification of a Pax6-dependent epidermal growth factor family signaling source at the lateral edge of the embryonic cerebral cortex. J Neurosci 23(16):6399–6403PubMedGoogle Scholar
  4. Avramopoulos D, Wang R, Valle D, Fallin MD, Bassett SS (2007) A novel gene derived from a segmental duplication shows perturbed expression in Alzheimer’s disease. Neurogenetics 8(2):111–120. doi:10.1007/s10048-007-0081-5 PubMedCrossRefGoogle Scholar
  5. Balciuniene J, Feng N, Iyadurai K, Hirsch B, Charnas L, Bill BR, Selleck SB (2007) Recurrent 10q22–q23 deletions: a genomic disorder on 10q associated with cognitive and behavioral abnormalities. Am J Hum Genet 80(5):938–947. doi:10.1086/513607 PubMedCentralPubMedCrossRefGoogle Scholar
  6. Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21(2):263–265. doi:10.1093/bioinformatics/bth457 PubMedCrossRefGoogle Scholar
  7. Carrasquillo MM, Zou F, Pankratz VS, Wilcox SL, Ma L, Walker LP, Graff-Radford NR (2009) Genetic variation in PCDH11X is associated with susceptibility to late-onset Alzheimer’s disease. Nat Genet 41(2):192–198. doi:10.1038/ng.305 PubMedCentralPubMedCrossRefGoogle Scholar
  8. Carteron C, Ferrer-Montiel A, Cabedo H (2006) Characterization of a neural-specific splicing form of the human neuregulin 3 gene involved in oligodendrocyte survival. J Cell Sci 119(Pt 5):898–909. doi:10.1242/jcs.02799 PubMedCrossRefGoogle Scholar
  9. Donix M, Small GW, Bookheimer SY (2012) Family history and APOE-4 genetic risk in Alzheimer’s disease. Neuropsychol Rev 22(3):298–309. doi:10.1007/s11065-012-9193-2 PubMedCentralPubMedCrossRefGoogle Scholar
  10. Dudbridge F (2008) Likelihood-based association analysis for nuclear families and unrelated subjects with missing genotype data. Hum Hered 66(2):87–98. doi:10.1159/000119108 PubMedCentralPubMedCrossRefGoogle Scholar
  11. Fallin MD, Lasseter VK, Wolyniec PS, McGrath JA, Nestadt G, Valle D, Pulver AE (2003) Genomewide linkage scan for schizophrenia susceptibility loci among Ashkenazi Jewish families shows evidence of linkage on chromosome 10q22. Am J Hum Genet 73(3):601–611. doi:10.1086/378158 PubMedCentralPubMedCrossRefGoogle Scholar
  12. Farrer LA, Cupples LA, Haines JL, Hyman B, Kukull WA, Mayeux R, van Duijn CM (1997) Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis. APOE and Alzheimer Disease Meta Analysis Consortium. JAMA 278(16):1349–1356PubMedCrossRefGoogle Scholar
  13. Filippini N, Rao A, Wetten S, Gibson RA, Borrie M, Guzman D, Matthews PM (2009) Anatomically-distinct genetic associations of APOE epsilon4 allele load with regional cortical atrophy in Alzheimer’s disease. Neuroimage 44(3):724–728. doi:10.1016/j.neuroimage.2008.10.003 PubMedCrossRefGoogle Scholar
  14. Gabriel SB, Schaffner SF, Nguyen H, Moore JM, Roy J, Blumenstiel B, Altshuler D (2002) The structure of haplotype blocks in the human genome. Science 296(5576):2225–2229. doi:10.1126/science.1069424 PubMedCrossRefGoogle Scholar
  15. Gatz M, Reynolds CA, Fratiglioni L, Johansson B, Mortimer JA, Berg S, Pedersen NL (2006) Role of genes and environments for explaining Alzheimer disease. Arch Gen Psychiatry 63(2):168–174. doi:10.1001/archpsyc.63.2.168 PubMedCrossRefGoogle Scholar
  16. Harrison PJ, Tunbridge EM (2008) Catechol-O-methyltransferase (COMT): a gene contributing to sex differences in brain function, and to sexual dimorphism in the predisposition to psychiatric disorders. Neuropsychopharmacology 33(13):3037–3045. doi:10.1038/sj.npp.1301543 PubMedCrossRefGoogle Scholar
  17. Heinzen EL, Need AC, Hayden KM, Chiba-Falek O, Roses AD, Strittmatter WJ, Goldstein DB (2010) Genome-wide scan of copy number variation in late-onset Alzheimer’s disease. J Alzheimers Dis 19(1):69–77. doi:10.3233/JAD-2010-1212 PubMedCentralPubMedGoogle Scholar
  18. Hollingworth P, Harold D, Jones L, Owen MJ, Williams J (2011) Alzheimer’s disease genetics: current knowledge and future challenges. Int J Geriatr Psychiatry 26(8):793–802. doi:10.1002/gps.2628 PubMedCrossRefGoogle Scholar
  19. Hollingworth P, Sweet R, Sims R, Harold D, Russo G, Abraham R, Williams J (2012) Genome-wide association study of Alzheimer’s disease with psychotic symptoms. Mol Psychiatry 17(12):1316–1327. doi:10.1038/mp.2011.125 PubMedCentralPubMedCrossRefGoogle Scholar
  20. Ivleva EI, Morris DW, Moates AF, Suppes T, Thaker GK, Tamminga CA (2010) Genetics and intermediate phenotypes of the schizophrenia—bipolar disorder boundary. Neurosci Biobehav Rev 34(6):897–921. doi:10.1016/j.neubiorev.2009.11.022 PubMedCrossRefGoogle Scholar
  21. Kao WT, Wang Y, Kleinman JE, Lipska BK, Hyde TM, Weinberger DR, Law AJ (2010) Common genetic variation in Neuregulin 3 (NRG3) influences risk for schizophrenia and impacts NRG3 expression in human brain. Proc Natl Acad Sci USA 107(35):15619–15624. doi:10.1073/pnas.1005410107 PubMedCrossRefGoogle Scholar
  22. Lambert JC, Amouyel P (2011) Genetics of Alzheimer’s disease: new evidences for an old hypothesis? Curr Opin Genet Dev 21(3):295–301. doi:10.1016/j.gde.2011.02.002 PubMedCrossRefGoogle Scholar
  23. Lee JH, Cheng R, Graff-Radford N, Foroud T, Mayeux R (2008) Analyses of the National Institute on Aging Late-Onset Alzheimer’s Disease Family Study: implication of additional loci. Arch Neurol 65(11):1518–1526. doi:10.1001/archneur.65.11.1518 PubMedCentralPubMedCrossRefGoogle Scholar
  24. Li H, Wetten S, Li L, St Jean PL, Upmanyu R, Surh L, Roses AD (2008) Candidate single-nucleotide polymorphisms from a genomewide association study of Alzheimer disease. Arch Neurol 65(1):45–53. doi:10.1001/archneurol.2007.3 PubMedCrossRefGoogle Scholar
  25. Liu F, Arias-Vasquez A, Sleegers K, Aulchenko YS, Kayser M, Sanchez-Juan P, van Duijn CM (2007) A genomewide screen for late-onset Alzheimer disease in a genetically isolated Dutch population. Am J Hum Genet 81(1):17–31. doi:10.1086/518720 PubMedCentralPubMedCrossRefGoogle Scholar
  26. Lupski JR, Reid JG, Gonzaga-Jauregui C, Rio Deiros D, Chen DC, Nazareth L, Gibbs RA (2010) Whole-genome sequencing in a patient with Charcot-Marie-Tooth neuropathy. N Engl J Med 362(13):1181–1191. doi:10.1056/NEJMoa0908094 PubMedCrossRefGoogle Scholar
  27. Lutz MW, Crenshaw DG, Saunders AM, Roses AD (2010) Genetic variation at a single locus and age of onset for Alzheimer’s disease. Alzheimer’s Dement J Alzheimer’s Assoc 6(2):125–131. doi:10.1016/j.jalz.2010.01.011 CrossRefGoogle Scholar
  28. Marchini J, Cardon LR, Phillips MS, Donnelly P (2004) The effects of human population structure on large genetic association studies. Nat Genet 36(5):512–517. doi:10.1038/ng1337 PubMedCrossRefGoogle Scholar
  29. Meier S, Strohmaier J, Breuer R, Mattheisen M, Degenhardt F, Mühleisen TW, Schulze TG, Nöthen MM, Cichon S, Rietschel M, Wüst S (2013) Neuregulin 3 is associated with attention deficits in schizophrenia and bipolar disorder. Int J Neuropsychopharmacol 16(3):549–556. doi:10.1017/S1461145712000697 Google Scholar
  30. Morar B, Dragovic M, Waters FA, Chandler D, Kalaydjieva L, Jablensky A (2011) Neuregulin 3 (NRG3) as a susceptibility gene in a schizophrenia subtype with florid delusions and relatively spared cognition. Mol Psychiatry 16(8):860–866. doi:10.1038/mp.2010.70 PubMedCrossRefGoogle Scholar
  31. Piacentini S, Polimanti R, Squitti R, Mariani S, Migliore S, Vernieri F, Fuciarelli M (2012) GSTO1*E155del polymorphism associated with increased risk for late-onset Alzheimer’s disease: association hypothesis for an uncommon genetic variant. Neurosci Lett 506(2):203–207. doi:10.1016/j.neulet.2011.11.005 PubMedCrossRefGoogle Scholar
  32. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Sham PC (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81(3):559–575. doi:10.1086/519795 PubMedCentralPubMedCrossRefGoogle Scholar
  33. Reisberg H, Ferris SH, Sclan SG (1993) Empirical evaluation of the global deterioration scale for staging Alzheimer’s disease. Am J Psychiatry 150(4):680–682PubMedGoogle Scholar
  34. Reitz C, Cheng R, Schupf N, Lee JH, Mehta PD, Rogaeva E, Mayeux R (2012) Association between variants in IDE-KIF11-HHEX and plasma amyloid beta levels. Neurobiol Aging 33(1):199 e113–199 e197. doi:10.1016/j.neurobiolaging.2010.07.005 Google Scholar
  35. Rogers BS, Lippa CF (2012) A clinical approach to early-onset inheritable dementia. Am J Alzheimers Dis Other Demen 27(3):154–161. doi:10.1177/1533317512444000 PubMedCrossRefGoogle Scholar
  36. Schmechel DE, Saunders AM, Strittmatter WJ, Crain BJ, Hulette CM, Joo SH, Roses AD (1993) Increased amyloid beta-peptide deposition in cerebral cortex as a consequence of apolipoprotein E genotype in late-onset Alzheimer disease. Proc Natl Acad Sci USA 90(20):9649–9653PubMedCrossRefGoogle Scholar
  37. Siepel A, Bejerano G, Pedersen JS, Hinrichs AS, Hou M, Rosenbloom K, Haussler D (2005) Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res 15(8):1034–1050. doi:10.1101/gr.3715005 PubMedCrossRefGoogle Scholar
  38. Strittmatter WJ, Saunders AM, Schmechel D, Pericak-Vance M, Enghild J, Salvesen GS, Roses AD (1993) Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc Natl Acad Sci USA 90(5):1977–1981PubMedCrossRefGoogle Scholar
  39. Sweet RA, Nimgaonkar VL, Devlin B, Lopez OL, DeKosky ST (2002) Increased familial risk of the psychotic phenotype of Alzheimer disease. Neurology 58(6):907–911PubMedCrossRefGoogle Scholar
  40. Sweet RA, Bennett DA, Graff-Radford NR, Mayeux R, National Institute on Aging Late-Onset Alzheimer’s Disease Family Study, Group (2010) Assessment and familial aggregation of psychosis in Alzheimer’s disease from the National Institute on Aging Late Onset Alzheimer’s Disease Family Study. Brain 133(Pt 4):1155–1162. doi:10.1093/brain/awq001 PubMedCrossRefGoogle Scholar
  41. Thompson PM, Mega MS, Woods RP, Zoumalan CI, Lindshield CJ, Blanton RE, Toga AW (2001) Cortical change in Alzheimer’s disease detected with a disease-specific population-based brain atlas. Cereb Cortex 11(1):1–16PubMedCrossRefGoogle Scholar
  42. Twine NA, Janitz K, Wilkins MR, Janitz M (2011) Whole transcriptome sequencing reveals gene expression and splicing differences in brain regions affected by Alzheimer’s disease. PLoS One 6(1):e16266. doi:10.1371/journal.pone.0016266 PubMedCentralPubMedCrossRefGoogle Scholar
  43. Uhlhaas PJ, Singer W (2006) Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology. Neuron 52(1):155–168. doi:10.1016/j.neuron.2006.09.020 PubMedCrossRefGoogle Scholar
  44. Wu L, Rosa-Neto P, Hsiung GY, Sadovnick AD, Masellis M, Black SE, Gauthier S (2012) Early-onset familial Alzheimer’s disease (EOFAD). Can J Neurol Sci 39(4):436–445PubMedGoogle Scholar
  45. Zhang D, Sliwkowski MX, Mark M, Frantz G, Akita R, Sun Y, Godowski PJ (1997) Neuregulin-3 (NRG3): a novel neural tissue-enriched protein that binds and activates ErbB4. Proc Natl Acad Sci USA 94(18):9562–9567PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2013

Authors and Affiliations

  • Ke-Sheng Wang
    • 1
  • Nuo Xu
    • 1
  • Liang Wang
    • 1
  • Lorenzo Aragon
    • 2
  • Radu Ciubuc
    • 2
  • Tania Bedard Arana
    • 3
  • ChunXiang Mao
    • 4
  • Leonora Petty
    • 3
  • David Briones
    • 3
  • Brenda Bin Su
    • 5
  • Xingguang Luo
    • 6
  • Cynthia Camarillo
    • 3
  • Michael A. Escamilla
    • 3
  • Chun Xu
    • 3
  1. 1.Department of Biostatistics and EpidemiologyCollege of Public Health, East Tennessee State UniversityJohnson CityUSA
  2. 2.Department of Family MedicineTexas Tech University Health Sciences Center, Paul L. Foster School of MedicineEl PasoUSA
  3. 3.Department of Psychiatry and Neurology and the Center of Excellence in NeuroscienceTexas Tech University Health Sciences Center, Paul L. Foster School of MedicineEl PasoUSA
  4. 4.University of TorontoTorontoCanada
  5. 5.College of Bioinformatics Science and Technology, Harbin Medical UniversityHarbinThe People’s Republic of China
  6. 6.Department of PsychiatryYale University School of MedicineNew HavenUSA

Personalised recommendations