Journal of Neural Transmission

, Volume 120, Issue 12, pp 1709–1715 | Cite as

Association between Sirtuin 2 gene rs10410544 polymorphism and depression in Alzheimer’s disease in two independent European samples

  • Stefano Porcelli
  • Raffaele Salfi
  • Antonis Politis
  • Anna Rita Atti
  • Diego Albani
  • Armando Chierchia
  • Letizia Polito
  • Aikaterini Zisaki
  • Christina Piperi
  • Ioannis Liappas
  • Siegfried Alberti
  • Martina Balestri
  • Agnese Marsano
  • Evangelia Stamouli
  • Antonis Mailis
  • Gloria Biella
  • Gianluigi Forloni
  • Virginia Bernabei
  • Barbara Ferrari
  • Loredana Lia
  • George N. Papadimitriou
  • Diana De Ronchi
  • Alessandro Serretti
Neurology and Preclinical Neurological Studies - Original Article

Abstract

Among the several genes associated with late-onset Alzheimer’s disease (LOAD), recently, Sirtuin genes have roused a growing interest because of their involvement in metabolic homeostasis and in brain aging. Particularly SIRT2 gene has been associated with Alzheimer’s disease (AD) as well as with mood disorders. The aim of this study is to investigate the possible associations between Sirtuin 2 gene (SIRT2) rs10410544 polymorphism and AD as well as depression in AD. In addition, we performed some exploratory analyses to investigate possible associations between the rs10410544 genotype and clinical features. We investigated these associations in two independent samples: the first one was composed of 275 Greek inhabitants and 117 patients; the second sample counted 181 Italian people and 43 patients. All patients were affected by LOAD. We failed to find any association between rs10410544 genotype and AD in the two samples. On the other hand, we found an association between the single nucleotide polymorphism (SNP) and depressive symptomatology (in the total sample p = 0.002), which was modulated by the tumor necrosis factor (TNF) values. Particularly, TT genotype seems to be protective versus depression. Finally, in the exploratory analyses, we found that the TT genotype was associated with earlier AD onset and a longer duration of the illness. In conclusion, we confirmed the association between SIRT2 gene and mood disturbances, although in AD patients. Further, we provided evidence that the TT genotype may be protective versus depressive symptoms, allowing an easier and thus earlier diagnosis of AD. This awareness may lead to a more detailed approach to these patients concerning diagnosis and therapy.

Keywords

Alzheimer’s disease Depression SIRT2 gene Inflammatory cytokines 

Notes

Acknowledgments

The research at Istituto di Ricerche Famacologiche “Mario Negri” was supported by Fondazione Italo Monzino, Milan, Italy.

Conflict of interest

No conflict of interest is present for the authors.

Supplementary material

702_2013_1045_MOESM1_ESM.docx (37 kb)
Supplementary material 1 (DOCX 35 kb)

References

  1. Abe N, Uchida S, Otsuki K, Hobara T, Yamagata H, Higuchi F, Shibata T, Watanabe Y (2011) Altered sirtuin deacetylase gene expression in patients with a mood disorder. J Psychiatr Res 45(8):1106–1112. doi: 10.1016/j.jpsychires.2011.01.016 PubMedCrossRefGoogle Scholar
  2. Albani D, Polito L, Forloni G (2010) Sirtuins as novel targets for Alzheimer’s disease and other neurodegenerative disorders: experimental and genetic evidence. J Alzheimers Dis 19(1):11–26. doi: 10.3233/JAD-2010-1215 PubMedGoogle Scholar
  3. Alexopoulos GS, Abrams RC, Young RC, Shamoian CA (1988) Cornell scale for depression in dementia. Biol Psychiatry 23(3):271–284PubMedCrossRefGoogle Scholar
  4. American Psychiatric Association., American Psychiatric Association. Task Force on DSM-IV (2000) Diagnostic and statistical manual of mental disorders: DSM-IV-TR. 4th edn. American Psychiatric Association, WashingtonGoogle Scholar
  5. Avramopoulos D (2009) Genetics of Alzheimer’s disease: recent advances. Genome Med 1(3):34. doi: 10.1186/gm34 PubMedCrossRefGoogle Scholar
  6. Barca ML, Engedal K, Selbaek G (2010) A reliability and validity study of the Cornell scale among elderly inpatients, using various clinical criteria. Dement Geriatr Cogn Disord 29(5):438–447. doi: 10.1159/000313533 PubMedCrossRefGoogle Scholar
  7. Bufalino C, Hepgul N, Aguglia E, Pariante CM (2012) The role of immune genes in the association between depression and inflammation: a review of recent clinical studies. Brain Behav Immun doi: 10.1016/j.bbi.2012.04.009
  8. Cummings JL, Mega M, Gray K, Rosenberg-Thompson S, Carusi DA, Gornbein J (1994) The neuropsychiatric inventory: comprehensive assessment of psychopathology in dementia. Neurology 44(12):2308–2314PubMedCrossRefGoogle Scholar
  9. De Ronchi D, Berardi D, Menchetti M, Ferrari G, Serretti A, Dalmonte E, Fratiglioni L (2005) Occurrence of cognitive impairment and dementia after the age of 60: a population-based study from Northern Italy. Dement Geriatr Cogn Disord 19(2–3):97–105. doi: 10.1159/000082660 PubMedCrossRefGoogle Scholar
  10. Drago V, Babiloni C, Bartres-Faz D, Caroli A, Bosch B, Hensch T, Didic M, Klafki HW, Pievani M, Jovicich J, Venturi L, Spitzer P, Vecchio F, Schoenknecht P, Wiltfang J, Redolfi A, Forloni G, Blin O, Irving E, Davis C, Hardemark HG, Frisoni GB (2011) Disease tracking markers for Alzheimer’s disease at the prodromal (MCI) stage. J Alzheimers Dis 26(Suppl 3):159–199. doi: 10.3233/JAD-2011-0043 PubMedGoogle Scholar
  11. Ertekin-Taner N (2007) Genetics of Alzheimer’s disease: a centennial review. Neurol Clin 25(3):611–667. doi: 10.1016/j.ncl.2007.03.009 PubMedCrossRefGoogle Scholar
  12. Eyre H, Baune BT (2012) Neuroplastic changes in depression: a role for the immune system. Psychoneuroendocrinology 37(9):1397–1416. doi: 10.1016/j.psyneuen.2012.03.019 PubMedCrossRefGoogle Scholar
  13. Ferri CP, Prince M, Brayne C, Brodaty H, Fratiglioni L, Ganguli M, Hall K, Hasegawa K, Hendrie H, Huang Y, Jorm A, Mathers C, Menezes PR, Rimmer E, Scazufca M (2005) Global prevalence of dementia: a Delphi consensus study. Lancet 366(9503):2112–2117. doi: 10.1016/S0140-6736(05)67889-0 PubMedCrossRefGoogle Scholar
  14. Folstein MF, Folstein SE, McHugh PR (1975) “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12(3):189–198PubMedCrossRefGoogle Scholar
  15. Forlani C, Morri M, Ferrari B, Dalmonte E, Menchetti M, De Ronchi D, Atti AR (2013) Prevalence and gender differences in late-life depression: a population-based study. Am J Geriatr Psychiatry. doi: 10.1016/j.jagp.2012.08.015 PubMedGoogle Scholar
  16. Gatz M, Pedersen NL, Berg S, Johansson B, Johansson K, Mortimer JA, Posner SF, Viitanen M, Winblad B, Ahlbom A (1997) Heritability for Alzheimer’s disease: the study of dementia in Swedish twins. J Gerontol A Biol Sci Med Sci 52(2):M117–M125PubMedCrossRefGoogle Scholar
  17. Goate A, Chartier-Harlin MC, Mullan M, Brown J, Crawford F, Fidani L, Giuffra L, Haynes A, Irving N, James L et al (1991) Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature 349(6311):704–706. doi: 10.1038/349704a0 PubMedCrossRefGoogle Scholar
  18. Huppert FA, Brayne C, Gill C, Paykel ES, Beardsall L (1995) CAMCOG—a concise neuropsychological test to assist dementia diagnosis: socio-demographic determinants in an elderly population sample. Br J Clin Psychol 34(Pt 4):529–541PubMedCrossRefGoogle Scholar
  19. Kim HS, Vassilopoulos A, Wang RH, Lahusen T, Xiao Z, Xu X, Li C, Veenstra TD, Li B, Yu H, Ji J, Wang XW, Park SH, Cha YI, Gius D, Deng CX (2011) SIRT2 maintains genome integrity and suppresses tumorigenesis through regulating APC/C activity. Cancer Cell 20(4):487–499. doi: 10.1016/j.ccr.2011.09.004 PubMedCrossRefGoogle Scholar
  20. Levy-Lahad E, Wasco W, Poorkaj P, Romano DM, Oshima J, Pettingell WH, Yu CE, Jondro PD, Schmidt SD, Wang K et al (1995) Candidate gene for the chromosome 1 familial Alzheimer’s disease locus. Science 269(5226):973–977PubMedCrossRefGoogle Scholar
  21. Li G, Aryan M, Silverman JM, Haroutunian V, Perl DP, Birstein S, Lantz M, Marin DB, Mohs RC, Davis KL (1997) The validity of the family history method for identifying Alzheimer disease. Arch Neurol 54(5):634–640PubMedCrossRefGoogle Scholar
  22. Mungas D, Reed BR, Ellis WG, Jagust WJ (2001) The effects of age on rate of progression of Alzheimer disease and dementia with associated cerebrovascular disease. Arch Neurol 58(8):1243–1247PubMedCrossRefGoogle Scholar
  23. Olgiati P, Politis A, Malitas P, Albani D, Dusi S, Polito L, De Mauro S, Zisaki A, Piperi C, Stamouli E, Mailis A, Batelli S, Forloni G, De Ronchi D, Kalofoutis A, Liappas I, Serretti A (2010) APOE epsilon-4 allele and cytokine production in Alzheimer’s disease. Int J Geriatr Psychiatry 25(4):338–344. doi: 10.1002/gps.2344 PubMedCrossRefGoogle Scholar
  24. Olgiati P, Politis AM, Papadimitriou GN, De Ronchi D, Serretti A (2011) Genetics of late-onset Alzheimer’s disease: update from the alzgene database and analysis of shared pathways. Int J Alzheimers Dis 2011:832379. doi: 10.4061/2011/832379 PubMedGoogle Scholar
  25. Olgiati P, Politis A, Albani D, Rodilossi S, Polito L, Ateri E, Zisaki A, Piperi C, Liappas I, Stamouli E, Mailis A, Atti AR, Ferrari B, Morini V, Moretti F, Biella G, Forloni G, Papadimitriou GN, Ronchi DD, Kalofoutis A, Serretti A (2012) Association of SORL1 alleles with late-onset Alzheimer’s disease. findings from the GIGAS_LOAD study and mega-analysis. Curr Alzheimer Res 9(4):491–499PubMedCrossRefGoogle Scholar
  26. Politis A, Olgiati P, Malitas P, Albani D, Signorini A, Polito L, De Mauro S, Zisaki A, Piperi C, Stamouli E, Mailis A, Batelli S, Forloni G, De Ronchi D, Kalofoutis A, Liappas I, Serretti A (2010) Vitamin B12 levels in Alzheimer’s disease: association with clinical features and cytokine production. J Alzheimers Dis 19(2):481–488. doi: 10.3233/JAD-2010-1252 PubMedGoogle Scholar
  27. Polito L, Kehoe PG, Davin A, Benussi L, Ghidoni R, Binetti G, Quadri P, Lucca U, Tettamanti M, Clerici F, Bagnoli S, Galimberti D, Nacmias B, Sorbi S, Guaita A, Scarpini E, Mariani C, Forloni G, Albani D (2012) The SIRT2 polymorphism rs10410544 and risk of Alzheimer’s disease in two Caucasian case-control cohorts. Alzheimers Dement doi: 10.1016/j.jalz.2012.02.003
  28. Reitz C, Brayne C, Mayeux R (2011) Epidemiology of Alzheimer disease. Nature Rev Neurol 7(3):137–152. doi: 10.1038/nrneurol.2011.2 CrossRefGoogle Scholar
  29. Roth M, Tym E, Mountjoy CQ, Huppert FA, Hendrie H, Verma S, Goddard R (1986) CAMDEX. A standardised instrument for the diagnosis of mental disorder in the elderly with special reference to the early detection of dementia. Br J Psychiatry 149:698–709PubMedCrossRefGoogle Scholar
  30. Rothgiesser KM, Erener S, Waibel S, Luscher B, Hottiger MO (2010) SIRT2 regulates NF-kappaB dependent gene expression through deacetylation of p65 Lys310. J Cell Sci 123(Pt 24):4251–4258. doi: 10.1242/jcs.073783 PubMedCrossRefGoogle Scholar
  31. Rubio-Perez JM, Morillas-Ruiz JM (2012) A review: inflammatory process in Alzheimer’s disease, role of cytokines. Sci World J 2012:756357. doi: 10.1100/2012/756357 CrossRefGoogle Scholar
  32. Serretti A, Olgiati P, De Ronchi D (2007) Genetics of Alzheimer’s disease. A rapidly evolving field. J Alzheimers Dis 12(1):73–92PubMedGoogle Scholar
  33. Serretti A, Olgiati P, Politis A, Malitas P, Albani D, Dusi S, Polito L, De Mauro S, Zisaki A, Piperi C, Liappas I, Stamouli E, Mailis A, Atti AR, Morri M, Ujkaj M, Batelli S, Forloni G, Soldatos CR, Papadimitriou GN, De Ronchi D, Kalofoutis A (2009) Lack of association between interleukin-1 alpha rs1800587 polymorphism and Alzheimer’s disease in two independent European samples. J Alzheimers Dis 16(1):181–187. doi: 10.3233/JAD-2009-0946 PubMedGoogle Scholar
  34. Sherrington R, Rogaev EI, Liang Y, Rogaeva EA, Levesque G, Ikeda M, Chi H, Lin C, Li G, Holman K, Tsuda T, Mar L, Foncin JF, Bruni AC, Montesi MP, Sorbi S, Rainero I, Pinessi L, Nee L, Chumakov I, Pollen D, Brookes A, Sanseau P, Polinsky RJ, Wasco W, Da Silva HA, Haines JL, Perkicak-Vance MA, Tanzi RE, Roses AD, Fraser PE, Rommens JM, St George-Hyslop PH (1995) Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature 375(6534):754–760. doi: 10.1038/375754a0 PubMedCrossRefGoogle Scholar
  35. Silverman JM, Li G, Schear S, Wang ZX, Sotolongo C, Somary K, Mohs RC (1992) A cross-cultural family history study of primary progressive dementia in relatives of nondemented elderly Chinese, Italians, Jews and Puerto Ricans. Acta Psychiatr Scand 85(3):211–217PubMedCrossRefGoogle Scholar
  36. Wang C, Zollner S, Rosenberg NA (2012) A quantitative comparison of the similarity between genes and geography in worldwide human populations. PLoS Genet 8(8):e1002886. doi: 10.1371/journal.pgen.1002886 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2013

Authors and Affiliations

  • Stefano Porcelli
    • 1
  • Raffaele Salfi
    • 1
  • Antonis Politis
    • 2
  • Anna Rita Atti
    • 1
  • Diego Albani
    • 3
  • Armando Chierchia
    • 3
  • Letizia Polito
    • 6
  • Aikaterini Zisaki
    • 4
  • Christina Piperi
    • 5
  • Ioannis Liappas
    • 2
  • Siegfried Alberti
    • 1
  • Martina Balestri
    • 1
  • Agnese Marsano
    • 1
  • Evangelia Stamouli
    • 2
  • Antonis Mailis
    • 2
  • Gloria Biella
    • 3
  • Gianluigi Forloni
    • 3
  • Virginia Bernabei
    • 1
  • Barbara Ferrari
    • 1
  • Loredana Lia
    • 1
  • George N. Papadimitriou
    • 2
  • Diana De Ronchi
    • 1
  • Alessandro Serretti
    • 1
  1. 1.Department of Biomedical and NeuroMotor SciencesUniversity of BolognaBolognaItaly
  2. 2.Department of PsychiatryUniversity of Athens Medical School, Eginition HospitalAthensGreece
  3. 3.Department of NeuroscienceIstituto di Ricerche Farmacologiche “Mario Negri”MilanItaly
  4. 4.Laboratory of PharmacologyUniversity of Athens Medical SchoolAthensGreece
  5. 5.Laboratory of Biological ChemistryUniversity of Athens Medical SchoolAthensGreece
  6. 6.Golgi Cenci FoundationMilanItaly

Personalised recommendations