Journal of Neural Transmission

, Volume 120, Issue 7, pp 1039–1052 | Cite as

Amphiphysin I but not dynamin I nor synaptojanin mRNA expression increased after repeated methamphetamine administration in the rat cerebrum and cerebellum

  • Mitsuko Hamamura
  • Jiro Okouchi
  • Hidetoshi Ozawa
  • Yoshihiko Kimuro
  • Akiko Iwaki
  • Yasuyuki Fukumaki
Translational Neurosciences - Original Article

Abstract

Dopamine increases/decreases synaptic vesicle recycling and in schizophrenia the proteins/mRNA is decreased. We isolated cDNA clone, similar to amphiphysin 1 (vesicle protein) mRNA from the neocortex of rats injected repeatedly with methamphetamine using polymerase chain reaction (PCR) differential display. This clone is highly homologous to the 3′ region of the human amphiphysin gene. PCR extension study using a primer specific for the rat amphiphysin 1 gene and a primer located within the clone revealed that it is the 3′ UTR region of the rat amphiphysin 1 gene. Furthermore, in situ hybridization revealed that amphiphysin 1 mRNA is expressed in the cerebrum, medial thalamus, hippocampus and cerebellum. In the cerebellum, amphiphysin mRNA expression was confined to upper granule cell layer. Repeated methamphetamine administration increased amphiphysin I mRNA expression in both anterior part of the cerebrum, and the cerebellum. However, the repeated administration did not alter mRNA expression of the other vesicle proteins, synaptotagmin I, synapsin I, synaptojanin and dynamin I, we conclude that the repeated administration selectively increased amphiphysin 1 mRNA expression. Thus, amphiphysin 1 does not work as synaptic recycling, but it is suggested, as a part of pathogenesis of brain tissue injury (under Ca2+ and Mg2+ devoid environment) in repeated methamphetamine-injected states, the gene regulate actin-asssembly, learning, cell stress signaling and cell polarity.

Keywords

In situ hybridization 3′ UTR PCR differential display Dynamin I Synaptotagmin I 

Abbreviations

RT-PCR

Reverse transcription-polymerase chain reaction

UTR

Untranslated region

GAPDH

Glycereraldehyde-3-phosphate-dehydrogenase

References

  1. Al Maire, Schiltz M, Stura EA, Pinon-Lataillade G, Couprie J, Moutiez M, Gondry M, Angulo JF, Zinn- Justin S (2006) A tandem ofSH3-like Domains participates in RNA Binding in KIN17, a human Protein activated in response to genotoxics. J Mol Biol 364:764–776CrossRefGoogle Scholar
  2. Andreasen NC, O’Leary DS, Cizardlo T, Arndt S, Rezai K, Ponto LL, Watkins GL, Hichwa RD (1996) Schizophrenia and cognitive dysmetria: a positron-emission tomography study of dysfunctional prefrontal-thalamic-cerebellar circuitry. Proc Natl Acad Sci USA 93:9985–9990PubMedCrossRefGoogle Scholar
  3. Asada M, Ebihara S, Numachi Y, Okazaki T, Yamanda S, Ikeda K, Yasuda H, Sora I, Arai H (2008) Reduced tumor growth in a mouse model of schizophrenia, lacking the dopamine transporter. Int J Cancer 123(3):511–518PubMedCrossRefGoogle Scholar
  4. Babity JM, Armstrong JN, Plumier JC, Currie RW, Robertson HA (1997) A novel seizure-induced synaptotagmin gene identified by differential display. Proc Natl Acad Sci USA 94:2638–2641PubMedCrossRefGoogle Scholar
  5. Bauerfeind R, Takei K, De Camilli P (1997) Amphiphysin I is associated with coated endocytotic intermediates and undergoes stimulation-dependent dephosphorylation in nerve terminals. J Biol Chem 272:30984–30992PubMedCrossRefGoogle Scholar
  6. Bazner H, Hennerici MG (2010) Syphilis in German-speaking composer-examination results are confidential. Front Neurol Neurosci 27:61–83PubMedCrossRefGoogle Scholar
  7. Bowen-Pidgeon D, Innamorati G, Sadeghi HM, Birnbaumer M (2001) Arrestin effects on internalization of vasopressin receptors. Mol Pharmacol 59(6):1395–1401PubMedGoogle Scholar
  8. Breier A, Su TP, Saunders R, Carson RE, Kolachana BS, de Bartoloeis A, Weinberger DR, Weusenfeld N, Malhotra AK, Eckelman WC, Pickar D (1997) Schizophrenia is associated with elevated amphetamine-induced synaptic dopamine concentration: evidence for a novel positron emission tomography method. Proc Natl Acad Sci USA 94:2569–2574PubMedCrossRefGoogle Scholar
  9. Ceccaldi PE, Grohovaz F, Benfenati F, Chieregatti E, Greengard P, Valtorta F (1995) Dephosphorylated synapsin I anchors synaptic vesicles to actin cytoskelton: an analysis by videomicroscopy. J Cell Biol 128:905–912PubMedCrossRefGoogle Scholar
  10. Coon H, Byerley W, Holik J, Hoff M, Myles-Worseley M, Lannfelt L, Sokoloff P, Schwartz JC, Waldo M, Freedman R, Plaetke R (1993) Linkage analysis of schizophrenia with five dopamine receptor genes in nine pedigrees. Am J Genet 52:327–334Google Scholar
  11. David C, Solimena M, De Camilli P (1994) Autoimmunity in stiff-man syndrome with breast cancer is targeted to the C-terminal region of human amphiphysin, a protein similar to the yeast proteins, Rvs167 and Rvs161. FEBS Lett 351:73–79PubMedCrossRefGoogle Scholar
  12. David C, McPherson PS, Mundigal O, De Camilli P (1996) A role of amphiphysin in synaptic vesicle endocytosis suggested by its binding to dynamin in nerve terminals. Proc Natl Acad Sci USA 93:331–335PubMedCrossRefGoogle Scholar
  13. De Camilli P, Thomas A, Cofiell R, Folli F, Lichte B, Piccolo G, Meinck HM, Austoni M, Fassetta G, Bottazzo G, Bates D, Cartlidge N, Solimena M, Kilimann MW (1993) The synaptic vesicle-associated protein amphiphysin is the 128-kD autoantigen of Stiff-Man syndrome with breast cancer. J Exp Med 178:2219–2223PubMedCrossRefGoogle Scholar
  14. Dergai M, Skrypkina I, Dergai O, Tsyba L, Novokhatska O, Filonenko V, Drobot L, Rynditch A (2011) Identification and characterization of a novel mammalian isoform of the endocytic adaptor ITSN1. Gene 485(2):120–129PubMedCrossRefGoogle Scholar
  15. Diener HC, Dichgans J (1992) Pathophysiology of cerebellar ataxia. Mov Disord 7:95–109PubMedCrossRefGoogle Scholar
  16. Dinkel K, Meinck HM, Jury KM, Karges W, Richter W (1998) Inhibition of gamma-aminobutyric acid synthesis by glutamic acid autoantibodies in stiff-man syndrome. Ann Neurol 44:194–201PubMedCrossRefGoogle Scholar
  17. Dropcho EJ (1996) Antiamphiphysin antibodies with small-cell lung carcinomyelitis. Ann Neurol 39:659–667PubMedCrossRefGoogle Scholar
  18. Durand CM, Perroy J, Loll F, Perrais D, Fagni L, Bourgeron T, Montcouquiol M, Sans N (2012) SHANK3 mutations identified in autism lead to modification of dendritic spine morphology via an actin-dependent mechanism. Mol Psychiatry 17(1):71–84PubMedCrossRefGoogle Scholar
  19. Dyck AB, Beyaert MGR, Ferro MA, Mishra RK (2011) Medial prefrontal cortical synapsin II knock-down induces behavioral abnormalities in the rat: examining synapsin II in the pathophysiology of schizophrenia. Schizophr Res 130(1–3):250–259PubMedCrossRefGoogle Scholar
  20. Eilat D, Zlotnick AY, Fischel R (1986) Evaluation of cross-reaction between ant-DNA and anti-cardiolipin antibodies in SLE and experimental animals. Clin Ex Immunol 65:269–278Google Scholar
  21. Feyman RP, Leighten R (1985) “Surely you’re joking, Mr. Feyman” adventure of curious character. W. W. Norten & Company, New YorkGoogle Scholar
  22. Floyd S, Butler MH, Cremona O, David C, Freyberg Z, Zhang X, Solimena M, Tokunaga A, Ishizu H, Tsutsui K, De Camilli P (1998) Expression of amphiphysin I, an autoantigen of paraneoplastic neurological syndromes, in breast cancer. Mol Med 4:29–39PubMedGoogle Scholar
  23. Frank E, Landgraf R (2008) The vasopressin system—from antidiuresis to psychopathology. Eur J Pharmocol 583:226–243CrossRefGoogle Scholar
  24. Giometto B, Miotto D, Faresin F, Argentiero V, Scaravili T, Tavolato B (1996) Anti-gabanergic neuron autoantibodies in a patient with stiff-man syndrome and ataxia. J Neurol Sci 143:57–59PubMedCrossRefGoogle Scholar
  25. Gottesman II, Bertelsen A (1989) Confirming unexpressed genotypes for schizophrenia. Risks in the offspring of Fisher’s Danish identical and fraternal discordant twins. Arch Gen Psychiatry 46:867–872PubMedCrossRefGoogle Scholar
  26. Gottesman II, Schields J (1982) Schizophrenia: the epigenetic puzzle. Cambridge University Press, CambridgeGoogle Scholar
  27. Hamamura M, Leng G, Emson PC, Kiyama H (1991) Electrical activation and c-fos mRNA expression in rat neurosecretory neurones after systemic administration of cholecystokinin. J Physiol 444:51–63PubMedGoogle Scholar
  28. Hamamura M, Ozawa H, Kimuro Y, Okouchi J, Higasa K, Iwaki A, Fukumaki Y (1999) Differential decreases in c-fos and aldolase C mRNA expression in the rat cerebellum after repeated administration of methamphetamine. Mol Brain Res 64:119–131PubMedCrossRefGoogle Scholar
  29. Hamamura M, Hirata H, Sawada K, Shuto T, Shimazoe T, Terada Y, Fukumki Y (2008) Reversal of expression pattern of Aldolase C mRNA in Purkinje cells and Ube 1x mRNA in Golgi cells by a dopamine D1 receptor agonist injections in the methamphetamine sensitized-rat cerebellum. J Neural Transm 115:959–971. doi:10.1007/s00702-008-0032-9 PubMedCrossRefGoogle Scholar
  30. Hayashida T, Pamela EC, Jones PA, Sasaki H (1997) Imprinted genes are up-regulated by growth arrest in embryonic fibroblasts. J Biochem 122:901–903PubMedCrossRefGoogle Scholar
  31. Hollander DH (1982) Etiogenesis of European cystic fibrosis polymorphismmmmmm: heterozygote advantage against venereal syphilis. Med Hypotheses 8:191–197PubMedCrossRefGoogle Scholar
  32. Imaoka K, Kanai Y (1992) Novel monoclonal antibodies to double stranded DNA that requires Ca2+ or Mg2+ for their binding. Immunol Lett 34:31–36PubMedCrossRefGoogle Scholar
  33. Iwaki A, Nagano T, Nakagawa M, Iwaki T, Fukumaki Y (1997) Identification and characterization of the gene encoding a new member of the α-crystalline/small hsp family, closely linked to the αB-crystallin gene is a head-to-head manner. Genomics 45:386–394PubMedCrossRefGoogle Scholar
  34. Iwata S, Hewlett GHK, Genegy ME (1997) Amphetamine increases the phosphorylation of neuromodulin and synapsin I in rat striatal synaptosomes. Synapse 26:281–291PubMedCrossRefGoogle Scholar
  35. Javitt DC (1987) Negative schizophrenic symptomatology and the PCP (phencyclidine) model of schizophrenia. Hillside J Clin Psychiatry 9:12–35PubMedGoogle Scholar
  36. Ji Y, Yang F, Papaleo F, Wang HX, Gao WJ, Weinberger DR, Lu B (2009) Role of dysbindin in dopamine receptor trafficking and cortical GABA function. Proc Natl Acad Sci 106(46):19593–19598PubMedCrossRefGoogle Scholar
  37. Kachinsky AM, Froehner SC, Milgram SL (1999) PDZ-containing scaffold related to the dystrophin complex at the basolateral membrane of epithelial cells. J Cell Biol 145(2):391–402PubMedCrossRefGoogle Scholar
  38. Kanai Y, Kubota T (1989) A novel trait of naturally occurring ani-DNA anti-bodies: dissociation from immune complexes in neutral 0.3–0.5 M NaCl. Immunol Lett 22(4):293–299PubMedCrossRefGoogle Scholar
  39. Karayiorgou M, Gogos JA (1997) A turning point in schizophrenia genetics. Neuron 19:967–979PubMedCrossRefGoogle Scholar
  40. Karlsgodt KH, Robleto K, Trantham-Davidson H, Jairl C, Canno TD (2011) Reduced dysbindin expression mediates N-methyl-d-aspartate receptor hypofunction and impaired working memory performance. Biol Psychiatry 69(1):28–34PubMedCrossRefGoogle Scholar
  41. Li C, Ullrich B, Zhang JZ, Anderson RG, Brose N, Sudhof TC (1995) Ca2+ -dependent and -independent activities of neural and non-neural synaptotagmins. Nature 375:594–599PubMedCrossRefGoogle Scholar
  42. Liang P, Pardee AB (1992) Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 257:967–971PubMedCrossRefGoogle Scholar
  43. Lichte B, Veh RW, Meyer HE, Kilimann MW (1992) Amphiphysin, a novel protein associated with synaptic vesicles. EMBO J 11(7):2521–2530PubMedGoogle Scholar
  44. Liu JP (1997) Protein phosphorylation events in exocytosis and endocytosis. Clin Exp Pharm Physiol 24:611–618CrossRefGoogle Scholar
  45. Lou X, Fan F, Messa M, Raimondi A, Wu Y, Looger LL, Ferguson M, Camilli PD (2012) Reduce release probability prevents vesicle depletion and transmission failure at dynamin mutant synapses. http://www.pnas.org/cgi/doi/10.1073/pnas.1121626109
  46. Marks B, McMahon HT (1998) Calcium triggers calcineurin-dependent synaptic vesicle, recycling in mammalian nerve terminals. Current Biol 8:740–749CrossRefGoogle Scholar
  47. Marqueze B, Boudier JA, Mizuta M, Inagaki N, Seino S, Seager M (1995) Cellular localization of synaptotagmin I, II, and III mRNAs in the central nervous system and pituitary and adrenal glands of the rat. J Neurosci 15:4906–4917PubMedGoogle Scholar
  48. Martin-Du Pan RC (2012) Oxytocin: the hormone of love, trust and social bond. Clinical use in autism and social phobia. Revue Medicale Suisse 8(333):627–630PubMedGoogle Scholar
  49. McMahon HT, Wigge D, Smith C (1997) Clathrin interacts specifically with amphiphysin and is displaced by dynamin. FEBS Lett 423(2):319–332Google Scholar
  50. McCaffery CA, DeGennaro LJ (1986) Determination and analysis of the primary structure of the nerve terminal specific phosphoprotein, synapsin I. EMBO J 5:3167–3173PubMedGoogle Scholar
  51. McPherson PS, Gracia EP, Slepnev VI, David C, Zhang X, Grabs D, Sossin WS, Bauerfeind R, Nemoto Y, De Camilli P (1996) A presynaptic inositol-5-phosphatase. Nature 379:353–357PubMedCrossRefGoogle Scholar
  52. Melloni RH Jr, Hemmendinger LM, Hamos JE, DeGennaro LJ (1993) Synapsin I gene expression in the adult rat brain with comparative analysis of mRNA and protein in the hippocampus. J Comp Neurol 327:507–520PubMedCrossRefGoogle Scholar
  53. Micheva KD, Kay BK, McPherson PS (1997) Synaptojanin forms two separate complexes in the nerve terminal. Interactions with endophilin and amphiphysin. J Bio Chem 272:27239–27245CrossRefGoogle Scholar
  54. Morimoto K, Sato K, Sato S, Yamada N, Hayabara T (1998) Time-dependent changes in rat hippocampal synapsin I mRNA expression during long-term potentiation. Brain Res 783:57–62PubMedCrossRefGoogle Scholar
  55. Mundigle O, Ocha GC, David C, Slepnev VI, Kananov A, De Camilli P (1998) Amphiphysin I antisense oligonucleotides inhibit neurite outgrowth in cultured hippocampal neurons. J Neurosci 18:93–103Google Scholar
  56. Muramoto O, Kanazawa I, Ando K (1981) Neurotransmitter abnormality in Rolling mouse Nagoya, an ataxic mutant mouse. Brain Res 215:295–304PubMedCrossRefGoogle Scholar
  57. Murphy BA, Fakira KA, Song Z, Beuve A, Routh VH (2009) AMP-activated protein kinase and nitric oxicide regulate the glucose sensitivity of ventromedial hypothalamus glucose-inhibited neurons. Am J Physiol Cell Physiol 297(3):C750–C758PubMedCrossRefGoogle Scholar
  58. Nakata T, Iwamoto A, Noda Y, Takemura R, Yoshikawa H, Hirokawa N (1991) Predominant and developmentally regulated expression of dynamin in neurons. Neuron 7:461–469PubMedCrossRefGoogle Scholar
  59. Neuvonen M, Kazlauska A, Martikainen M, Hinkkanen A, Ahola T, Saksela K (2012) SH3 domain-mediated recruitment of host cell amphiphysins by alphavirus nsP3 promotes viral RNA replication. http://www.plospathogens.org/article/info:doi/10.137152Fjournal.ppat.1002383
  60. Nielsen EB, Lyon M, Ellison G (1983) Apparent hallucination in monkeys during around-the-clock amphetamine for seven to fourteen days. Possible relevance to amphetamine psychosis. J Nerv Mental Dis 171:222–233CrossRefGoogle Scholar
  61. Obar RA, Collins CA, Hammerback JA, Shpetner HS, Vallee RB (1990) Molecular cloning of the microtuble-associated mechanochemical enzyme dynamin reveals homology with a new family of GTP-binding proteins. Nature 347:256–261PubMedCrossRefGoogle Scholar
  62. O’Brien GM, Baughman RP, Broderick JP, Arnold L, Lower EE (1994) Paranoid psychosis due to neurosarcoidosis. Sarcoidosi 11(1):34–36Google Scholar
  63. Palfrey HC, Artalejo CR (1998) Vesicle recycling revisited: rapid endocytosis may be the first step. Neuroscience 83:969–989PubMedCrossRefGoogle Scholar
  64. Persico AM, Wang ZW, Black DW, Andreasen NC, Uhl GR, Crowe RR (1995) Exclusion of close linkage of the dopamine transporter gene with schizophrenia spectrum disorders. Am J Psychiatry 152:134–136PubMedGoogle Scholar
  65. Pittock SJ, Thomas MD, Kryzer TJ, Lennon VA (2004) Paraneoplastic antibodies coexist and predict cancer, not neurological syndrome. Ann Neurol 567:715–719CrossRefGoogle Scholar
  66. Prendergast GC, Muller AJ, Ramalingam A, Chang MY (2009) BAR the door: cancer suppression by amphiphysin-like genes. Biochem Biophys Acta 1975(1):25–36Google Scholar
  67. Randak C, Auerswald EA, Assfalg-Machleidt I, Reenstra WW, Machleidt W (1999) Inhibition of ATPase, GTPase and adenylate kinase activities of the second nucleotide-binding fold of the cystic fibrosis transmembrane conductance regulator by genistein. Biochem J 340(Pt 1):227–235PubMedCrossRefGoogle Scholar
  68. Ren G, Vajjhala P, Lee JS, Winsor B, Munn AL (2006) The Bar domain proteins: molding membranes in fission, fusion, and phagy. Micobiol Mol Biol Rev 70(1):37–120CrossRefGoogle Scholar
  69. Robinson TE, Becker JB (1986) Enduring changes in brain and behavior produced by chronic amphetamine administration: a review and evaluation of animal models of amphetamine psychosis. Brain Res Rev 11:157–198CrossRefGoogle Scholar
  70. Sacks O (2012) Hallucinations. Picador, LondonGoogle Scholar
  71. Shibasaki M, Mizuno K, Kurokawa K, Suzuki T, Ohkuma S (2001) Role of actin depolymerizing factor in the development of methamphetamine-induced place preference in mice. Eur J Pharmacol 671(1–3):70–78Google Scholar
  72. Shupliakov O, Low P, Grabs D, Gad H, Chen H, David C, Takei K, De Camilli P, Brodin L (1997) Synaptic vesicle endocytosis impaired by disruption of dynamin-SH3 domain interactions. Science 276:259–263PubMedCrossRefGoogle Scholar
  73. Slepnev VI, Ochoa GC, Butler MH, Grabs D, De Camilli P (1998) Role of phosphorylation in regulation of the assembly of endocytotic coat. Science 281:821–882PubMedCrossRefGoogle Scholar
  74. Stefani G, Onofri F, Valtorta F, Vaccaro P, Greengard P, Benfenati F (1997) Kinetic analysis of the phosphorylation-dependent interactions of synapsin I with rat brain synaptic vesicles. J Physiol 504:501–515PubMedCrossRefGoogle Scholar
  75. Sudhof TC (1995) The synaptic vesicle cycle: a cascade of protein–protein interactions. Nature 375:645–653PubMedCrossRefGoogle Scholar
  76. Takeuchi A, Tatsumi S, Sarai N, Terashima K, Matsuoka S, Noma A (2006) Ionic mechanisms of cardiac cell swelling induced by blocking Na+/K+ pump as revealed by experiments and simulation. J Gen Physiol 128(5):495–507PubMedCrossRefGoogle Scholar
  77. Tcherepanov AA, Sokolov BP (1997) Age-related abnormalities in expression of mRNAs encoding synapsin 1A, synapsin 1B, and synaptophysin in the temporal cortex of schizophrenics. J Neurosci Res 49:639–644PubMedCrossRefGoogle Scholar
  78. Tocco G, Bi X, Vician L, Lim IK, Herschman H, Baudry M (1996) Two synaptotagmin genes, Syt1 and Syt4, are differentially regulated in adult brain and during postnatal development following kainic acid-induced seizures. Mol Brain Res 40:229–239PubMedCrossRefGoogle Scholar
  79. Velho TA, Lovell P, Mello CV (2007) Enriched expression and developmental regulation of the middle-weight neurofilament (NF-M) gene in song control nuclei of the zebra finch. J Comp Neurol 500(3):477–497PubMedCrossRefGoogle Scholar
  80. Wang XB, Uhl GR (1998) Subtracted differential display: genes with amphetamine-altered expression patterns include calcineurin. Mol Brain Res 53:344–347PubMedCrossRefGoogle Scholar
  81. Watson JB, Margulies JE (1993) Differential cDNA screening strategies to identify novel stage-specific proteins in the developing mammalian brain. Dev Neurosci 15:77–86PubMedCrossRefGoogle Scholar
  82. Wigge P, Kohler K, Vallis Y, Doyle CA, Owen D, Hunt SP, McMahon HT (1997) Amphiphysin heterodimers: potential role in clathrin-mediated endocytosis. Mol Biol Cell 8:2003–2015PubMedGoogle Scholar
  83. Yamada H, Padillia-Parra S, Park SJ, Itoh T, Chaineau M, Coppey-Moisan IMM, Tramier M, Galli T, Takei K (2009) Dynamic interaction of amphiphysin with N-WASP regulate actin assembly. J Biol Chem 284(49):34244–34256PubMedCrossRefGoogle Scholar
  84. Yamamoto R, Li X, Winter S, Francke U, Kilimann MW (1995) Primary structure of human amphiphysin, the dominant autoantigen of paraneoplastic stiff-man syndrome, and mapping of its gene(AMPH) to chromosome 7p13-p14. Hum Mol Genet 4:265–268PubMedCrossRefGoogle Scholar
  85. Yoshida Y, Takei K (2005) Stimulation of dynamin GTPase activity by amphiphysin. Methods Enzymol 404:528–537PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2012

Authors and Affiliations

  • Mitsuko Hamamura
    • 1
    • 2
  • Jiro Okouchi
    • 1
  • Hidetoshi Ozawa
    • 1
  • Yoshihiko Kimuro
    • 3
  • Akiko Iwaki
    • 1
  • Yasuyuki Fukumaki
    • 1
  1. 1.Division of Disease Genes, Institute of Genetic InformationKyushu UniversityHigashi-kuJapan
  2. 2.Graduate School of Dental Sciences, Department of Fixed ProstheticsKyushu UniversityHigashi-kuJapan
  3. 3.Institute of Systems and Information Technologies/KYUSHUSawara-kuJapan

Personalised recommendations