Advertisement

Journal of Neural Transmission

, Volume 119, Issue 10, pp 1085–1096 | Cite as

Circadian entrainment and its role in depression: a mechanistic review

  • G. S. Lall
  • L. A. Atkinson
  • S. A. Corlett
  • P. J. Broadbridge
  • D. R. Bonsall
Biological Psychiatry - Review article

Abstract

The natural rotation of the earth generates an environmental day–night cycle that repeats every 24 h. This daily transition from dawn to dusk provides one of the most important time cues to which the majority of organisms synchronise their activity. Under these conditions, natural light, a photic stimulus, provides the principal entraining cue. In mammals, an endogenous circadian pacemaker located within the suprachiasmatic nucleus (SCN) of the hypothalamus acts as a coordinating centre to align physiological activity with the environmental light–dark cycle. However, the SCN also receives regulatory input from a number of behavioural, non-photic, cues such as physical activity, social interactions and feeding routines. The unique ability of the SCN to integrate both photic and non-photic cues allows it to generate a rhythm that is tailored to the individual and entrained to the environment. Here, we review the key neurotransmitter systems involved in both photic and non-photic transmission to the SCN and their interactions that assist in generating an entrained output rhythm. We also consider the impact on health of a desynchronised circadian system with a focus on depressive affective disorders and current therapies aimed at manipulating the relationship between photic and non-photic SCN regulators.

Keywords

Circadian Entrainment Depression Photic Non-photic SAD 

References

  1. Abrahamson EE, Moore RY (2001) Suprachiasmatic nucleus in the mouse: retinal innervation, intrinsic organization and efferent projections. Brain Res 916(1–2):172–191PubMedCrossRefGoogle Scholar
  2. Albers HE, Ferris CF (1984) Neuropeptide Y: role in light–dark cycle entrainment of hamster circadian rhythms. Neurosci Lett 50(1–3):163–168PubMedCrossRefGoogle Scholar
  3. Albus H, Vansteensel MJ, Michel S, Block GD, Meijer JH (2005) A GABAergic mechanism is necessary for coupling dissociable ventral and dorsal regional oscillators within the circadian clock. Curr Biol 15(10):886–893. doi: 10.1016/j.cub.2005.03.051 PubMedCrossRefGoogle Scholar
  4. Altimus CM, Guler AD, Alam NM, Arman AC, Prusky GT, Sampath AP, Hattar S (2010) Rod photoreceptors drive circadian photoentrainment across a wide range of light intensities. Nat Neurosci 13(9):1107–1112. doi: nn.261710.1038/nn.2617 PubMedCrossRefGoogle Scholar
  5. Avery DH, Wildschiodtz G, Rafaelsen OJ (1982) Nocturnal temperature in affective disorder. J Affect Disord 4(1):61–71PubMedCrossRefGoogle Scholar
  6. Benedetti F, Barbini B, Campori E, Fulgosi MC, Pontiggia A, Colombo C (2001) Sleep phase advance and lithium to sustain the antidepressant effect of total sleep deprivation in bipolar depression: new findings supporting the internal coincidence model? J Psychiatr Res 35(6):323–329PubMedCrossRefGoogle Scholar
  7. Benedetti F, Barbini B, Colombo C, Smeraldi E (2007) Chronotherapeutics in a psychiatric ward. Sleep Med Rev 11(6):509–522. doi: 10.1016/j.smrv.2007.06.004 PubMedCrossRefGoogle Scholar
  8. Bernstein L (2002) Epidemiology of endocrine-related risk factors for breast cancer. J Mammary Gland Biol Neoplasia 7(1):3–15PubMedCrossRefGoogle Scholar
  9. Berson DM (2003) Strange vision: ganglion cells as circadian photoreceptors. Trends Neurosci 26(6):314–320PubMedCrossRefGoogle Scholar
  10. Biello SM, Janik D, Mrosovsky N (1994) Neuropeptide Y and behaviorally induced phase shifts. Neuroscience 62(1):273–279PubMedCrossRefGoogle Scholar
  11. Bobrzynska KJ, Mrosovsky N (1998) Phase shifting by novelty-induced running: activity dose-response curves at different circadian times. J Comp Physiol A 182(2):251–258PubMedCrossRefGoogle Scholar
  12. Boivin DB (2000) Influence of sleep–wake and circadian rhythm disturbances in psychiatric disorders. J Psychiatry Neurosci 25(5):446–458PubMedGoogle Scholar
  13. Borjigin J, Zhang LS, Calinescu AA (2012) Circadian regulation of pineal gland rhythmicity. Mol Cell Endocrinol 349(1):13–19. doi: 10.1016/j.mce.2011.07.009 PubMedCrossRefGoogle Scholar
  14. Brewer JM, Yannielli PC, Harrington ME (2002) Neuropeptide Y differentially suppresses per1 and per2 mRNA induced by light in the suprachiasmatic nuclei of the golden hamster. J Biol Rhythms 17(1):28–39PubMedCrossRefGoogle Scholar
  15. Bunney JN, Potkin SG (2008) Circadian abnormalities, molecular clock genes and chronobiological treatments in depression. Br Med Bull 86:23–32. doi: 10.1093/bmb/ldn019 PubMedCrossRefGoogle Scholar
  16. Butler MP, Silver R (2011) Divergent photic thresholds in the non-image-forming visual system: entrainment, masking and pupillary light reflex. Proc Biol Sci 278(1706):745–750. doi: 10.1098/rspb.2010.1509 PubMedCrossRefGoogle Scholar
  17. Buxton OM, Lee CW, L’Hermite-Baleriaux M, Turek FW, Van Cauter E (2003) Exercise elicits phase shifts and acute alterations of melatonin that vary with circadian phase. Am J Physiol Regul Integr Comp Physiol 284(3):R714–R724. doi: 10.1152/ajpregu.00355.2002 PubMedGoogle Scholar
  18. Cagampang FR, Piggins HD, Sheward WJ, Harmar AJ, Coen CW (1998a) Circadian changes in PACAP type 1 (PAC1) receptor mRNA in the rat suprachiasmatic and supraoptic nuclei. Brain Res 813(1):218–222PubMedCrossRefGoogle Scholar
  19. Cagampang FR, Sheward WJ, Harmar AJ, Piggins HD, Coen CW (1998b) Circadian changes in the expression of vasoactive intestinal peptide 2 receptor mRNA in the rat suprachiasmatic nuclei. Brain Res Mol Brain Res 54(1):108–112PubMedCrossRefGoogle Scholar
  20. Cassem EH (1995) Depressive disorders in the medically ill. An overview. Psychosomatics 36(2):S2–S10PubMedCrossRefGoogle Scholar
  21. Chalder M, Wiles NJ, Campbell J, Hollinghurst SP, Haase AM, Taylor AH, Fox KR, Costelloe C, Searle A, Baxter H, Winder R, Wright C, Turner KM, Calnan M, Lawlor DA, Peters TJ, Sharp DJ, Montgomery AA, Lewis G (2012) Facilitated physical activity as a treatment for depressed adults: randomised controlled trial. BMJ 344:e2758. doi: 10.1136/bmj.e2758
  22. Challet E, Malan A, Pevet P (1996) Daily hypocaloric feeding entrains circadian rhythms of wheel-running and body temperature in rats kept in constant darkness. Neurosci Lett 211(1):1–4PubMedCrossRefGoogle Scholar
  23. Chen G, van den Pol AN (1998) Coexpression of multiple metabotropic glutamate receptors in axon terminals of single suprachiasmatic nucleus neurons. J Neurophysiol 80(4):1932–1938PubMedGoogle Scholar
  24. Claustrat B, Chazot G, Brun J, Jordan D, Sassolas G (1984) A chronobiological study of melatonin and cortisol secretion in depressed subjects: plasma melatonin, a biochemical marker in major depression. Biol Psychiatry 19(8):1215–1228PubMedGoogle Scholar
  25. Clery-Melin ML, Schmidt L, Lafargue G, Baup N, Fossati P, Pessiglione M (2011) Why don’t you try harder? An investigation of effort production in major depression. PLoS One 6(8):e23178. doi: 10.1371/journal.pone.0023178 PubMedCrossRefGoogle Scholar
  26. Colwell CS, Menaker M (1992) NMDA as well as non-NMDA receptor antagonists can prevent the phase-shifting effects of light on the circadian system of the golden hamster. J Biol Rhythms 7(2):125–136PubMedCrossRefGoogle Scholar
  27. Colwell CS, Ralph MR, Menaker M (1990) Do NMDA receptors mediate the effects of light on circadian behavior? Brain Res 523(1):117–120PubMedCrossRefGoogle Scholar
  28. Cutler DJ, Haraura M, Reed HE, Shen S, Sheward WJ, Morrison CF, Marston HM, Harmar AJ, Piggins HD (2003) The mouse VPAC2 receptor confers suprachiasmatic nuclei cellular rhythmicity and responsiveness to vasoactive intestinal polypeptide in vitro. Eur J Neurosci 17(2):197–204PubMedCrossRefGoogle Scholar
  29. Czeisler CA, Kronauer RE, Allan JS, Duffy JF, Jewett ME, Brown EN, Ronda JM (1989) Bright light induction of strong (type 0) resetting of the human circadian pacemaker. Science 244(4910):1328–1333PubMedCrossRefGoogle Scholar
  30. Czeisler CA, Duffy JF, Shanahan TL, Brown EN, Mitchell JF, Rimmer DW, Ronda JM, Silva EJ, Allan JS, Emens JS, Dijk DJ, Kronauer RE (1999) Stability, precision, and near-24-hour period of the human circadian pacemaker. Science 284(5423):2177–2181PubMedCrossRefGoogle Scholar
  31. Dallaspezia S, Benedetti F, Colombo C, Barbini B, Fulgosi MC, Gavinelli C, Smeraldi E (2012) Optimized light therapy for non-seasonal major depressive disorder: effects of timing and season. J Affect Disord 138(3):337–342. doi: 10.1016/j.jad.2012.01.019 PubMedCrossRefGoogle Scholar
  32. de Vries MJ, Treep JA, de Pauw ES, Meijer JH (1994) The effects of electrical stimulation of the optic nerves and anterior optic chiasm on the circadian activity rhythm of the Syrian hamster: involvement of excitatory amino acids. Brain Res 642(1–2):206–212PubMedCrossRefGoogle Scholar
  33. Ding JM, Chen D, Weber ET, Faiman LE, Rea MA, Gillette MU (1994) Resetting the biological clock: mediation of nocturnal circadian shifts by glutamate and NO. Science 266(5191):1713–1717PubMedCrossRefGoogle Scholar
  34. Doyne EJ, Ossip-Klein DJ, Bowman ED, Osborn KM, McDougall-Wilson IB, Neimeyer RA (1987) Running versus weight lifting in the treatment of depression. J Consult Clin Psychol 55(5):748–754PubMedCrossRefGoogle Scholar
  35. Duncan MJ, Jennes L, Jefferson JB, Brownfield MS (2000) Localization of serotonin(5A) receptors in discrete regions of the circadian timing system in the Syrian hamster. Brain Res 869(1–2):178–185PubMedCrossRefGoogle Scholar
  36. Ecker JL, Dumitrescu ON, Wong KY, Alam NM, Chen SK, LeGates T, Renna JM, Prusky GT, Berson DM, Hattar S (2010) Melanopsin-expressing retinal ganglion-cell photoreceptors: cellular diversity and role in pattern vision. Neuron 67(1):49–60. doi: 10.1016/j.neuron.2010.05.023 PubMedCrossRefGoogle Scholar
  37. Ehlen JC, Grossman GH, Glass JD (2001) In vivo resetting of the hamster circadian clock by 5-HT7 receptors in the suprachiasmatic nucleus. J Neurosci 21(14):5351–5357PubMedGoogle Scholar
  38. Emens J, Lewy A, Kinzie JM, Arntz D, Rough J (2009) Circadian misalignment in major depressive disorder. Psychiatry Res 168(3):259–261. doi: 10.1016/j.psychres.2009.04.009 PubMedCrossRefGoogle Scholar
  39. Enezi J, Revell V, Brown T, Wynne J, Schlangen L, Lucas R (2011) A “melanopic” spectral efficiency function predicts the sensitivity of melanopsin photoreceptors to polychromatic lights. J Biol Rhythms 26(4):314–323. doi: 10.1177/0748730411409719 PubMedCrossRefGoogle Scholar
  40. Even C, Schroder CM, Friedman S, Rouillon F (2008) Efficacy of light therapy in nonseasonal depression: a systematic review. J Affect Disord 108(1–2):11–23. doi: 10.1016/j.jad.2007.09.008 PubMedCrossRefGoogle Scholar
  41. Foster RG (1998) Shedding light on the biological clock. Neuron 20(5):829–832PubMedCrossRefGoogle Scholar
  42. Francois-Bellan AM, Kachidian P, Dusticier G, Tonon MC, Vaudry H, Bosler O (1990) GABA neurons in the rat suprachiasmatic nucleus: involvement in chemospecific synaptic circuitry and evidence for GAD-peptide colocalization. J Neurocytol 19(6):937–947PubMedCrossRefGoogle Scholar
  43. Gannon RL, Millan MJ (2011) Positive and negative modulation of circadian activity rhythms by mGluR5 and mGluR2/3 metabotropic glutamate receptors. Neuropharmacology 60(2–3):209–215. doi: 10.1016/j.neuropharm.2010.08.022 PubMedCrossRefGoogle Scholar
  44. Gannon RL, Rea MA (1994) In situ hybridization of antisense mRNA oligonucleotides for AMPA, NMDA and metabotropic glutamate receptor subtypes in the rat suprachiasmatic nucleus at different phases of the circadian cycle. Brain Res Mol Brain Res 23(4):338–344PubMedCrossRefGoogle Scholar
  45. Gardani M, Biello SM (2008) The effects of photic and nonphotic stimuli in the 5-HT7 receptor knockout mouse. Neuroscience 152(1):245–253. doi: 10.1016/j.neuroscience.2007.10.028 PubMedCrossRefGoogle Scholar
  46. Glass JD, Grossman GH, Farnbauch L, DiNardo L (2003) Midbrain raphe modulation of nonphotic circadian clock resetting and 5-HT release in the mammalian suprachiasmatic nucleus. J Neurosci 23(20):7451–7460PubMedGoogle Scholar
  47. Glass JD, Guinn J, Kaur G, Francl JM (2010) On the intrinsic regulation of neuropeptide Y release in the mammalian suprachiasmatic nucleus circadian clock. Eur J Neurosci 31(6):1117–1126. doi: 10.1111/j.1460-9568.2010.07139.x PubMedCrossRefGoogle Scholar
  48. Gooley JJ, Rajaratnam SM, Brainard GC, Kronauer RE, Czeisler CA, Lockley SW (2010) Spectral responses of the human circadian system depend on the irradiance and duration of exposure to light. Sci Transl Med 2(31):31ra33. doi: 10.1126/scitranslmed.3000741
  49. Gorwood P (2010) Restoring circadian rhythms: a new way to successfully manage depression. J Psychopharmacol 24(2 Suppl):15–19. doi: 10.1177/1359786810372981 PubMedCrossRefGoogle Scholar
  50. Guler AD, Ecker JL, Lall GS, Haq S, Altimus CM, Liao HW, Barnard AR, Cahill H, Badea TC, Zhao H, Hankins MW, Berson DM, Lucas RJ, Yau KW, Hattar S (2008) Melanopsin cells are the principal conduits for rod–cone input to non-image-forming vision. Nature 453(7191):102–105. doi: 10.1038/nature06829 PubMedCrossRefGoogle Scholar
  51. Haak LL (1999) Metabotropic glutamate receptor modulation of glutamate responses in the suprachiasmatic nucleus. J Neurophysiol 81(3):1308–1317PubMedGoogle Scholar
  52. Haak LL, Albers HE, Mintz EM (2006) Modulation of photic response by the metabotropic glutamate receptor agonist t-ACPD. Brain Res Bull 71(1–3):97–100. doi: 10.1016/j.brainresbull.2006.08.006 PubMedCrossRefGoogle Scholar
  53. Hannibal J, Ding JM, Chen D, Fahrenkrug J, Larsen PJ, Gillette MU, Mikkelsen JD (1997) Pituitary adenylate cyclase-activating peptide (PACAP) in the retinohypothalamic tract: a potential daytime regulator of the biological clock. J Neurosci 17(7):2637–2644PubMedGoogle Scholar
  54. Harmar AJ, Marston HM, Shen S, Spratt C, West KM, Sheward WJ, Morrison CF, Dorin JR, Piggins HD, Reubi JC, Kelly JS, Maywood ES, Hastings MH (2002) The VPAC(2) receptor is essential for circadian function in the mouse suprachiasmatic nuclei. Cell 109(4):497–508PubMedCrossRefGoogle Scholar
  55. Harrington ME, Hoque S, Hall A, Golombek D, Biello S (1999) Pituitary adenylate cyclase activating peptide phase shifts circadian rhythms in a manner similar to light. J Neurosci 19(15):6637–6642PubMedGoogle Scholar
  56. Harrington M, Molyneux P, Soscia S, Prabakar C, McKinley-Brewer J, Lall G (2007) Behavioral and neurochemical sources of variability of circadian period and phase: studies of circadian rhythms of npy−/− mice. Am J Physiol Regul Integr Comp Physiol 292(3):R1306–R1314. doi: 10.1152/ajpregu.00383.2006 PubMedCrossRefGoogle Scholar
  57. Hattar S, Liao HW, Takao M, Berson DM, Yau KW (2002) Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science 295(5557):1065–1070. doi: 10.1126/science.1069609 PubMedCrossRefGoogle Scholar
  58. Hattar S, Lucas RJ, Mrosovsky N, Thompson S, Douglas RH, Hankins MW, Lem J, Biel M, Hofmann F, Foster RG, Yau KW (2003) Melanopsin and rod–cone photoreceptive systems account for all major accessory visual functions in mice. Nature 424(6944):76–81. doi: 10.1038/nature01761 PubMedCrossRefGoogle Scholar
  59. Hattar S, Kumar M, Park A, Tong P, Tung J, Yau KW, Berson DM (2006) Central projections of melanopsin-expressing retinal ganglion cells in the mouse. J Comp Neurol 497(3):326–349. doi: 10.1002/cne.20970 PubMedCrossRefGoogle Scholar
  60. Huhman KL, Gillespie CF, Marvel CL, Albers HE (1996) Neuropeptide Y phase shifts circadian rhythms in vivo via a Y2 receptor. Neuroreport 7(7):1249–1252PubMedCrossRefGoogle Scholar
  61. Hunot VM, Horne R, Leese MN, Churchill RC (2007) A cohort study of adherence to antidepressants in primary care: the influence of antidepressant concerns and treatment preferences. Prim Care Companion J Clin Psychiatry 9(2):91–99PubMedCrossRefGoogle Scholar
  62. Janik D, Mrosovsky N (1994) Intergeniculate leaflet lesions and behaviorally-induced shifts of circadian rhythms. Brain Res 651(1–2):174–182PubMedCrossRefGoogle Scholar
  63. Kennaway DJ, Rowe SA, Ferguson SA (1996) Serotonin agonists mimic the phase shifting effects of light on the melatonin rhythm in rats. Brain Res 737(1–2):301–307PubMedCrossRefGoogle Scholar
  64. Kessler RC, Nelson CB, McGonagle KA, Liu J, Swartz M, Blazer DG (1996) Comorbidity of DSM-III-R major depressive disorder in the general population: results from the US National Comorbidity Survey. Br J Psychiatry Suppl 30:17–30PubMedGoogle Scholar
  65. Kim HJ, Harrington ME (2008) Neuropeptide Y-deficient mice show altered circadian response to simulated natural photoperiod. Brain Res 1246:96–100. doi: 10.1016/j.brainres.2008.09.040 PubMedCrossRefGoogle Scholar
  66. Kupfer DJ (1976) REM latency: a psychobiologic marker for primary depressive disease. Biol Psychiatry 11(2):159–174PubMedGoogle Scholar
  67. Lall GS, Biello SM (2002) Attenuation of phase shifts to light by activity or neuropeptide Y: a time course study. Brain Res 957(1):109–116PubMedCrossRefGoogle Scholar
  68. Lall GS, Biello SM (2003) Attenuation of circadian light induced phase advances and delays by neuropeptide Y and a neuropeptide Y Y1/Y5 receptor agonist. Neuroscience 119(2):611–618PubMedCrossRefGoogle Scholar
  69. Lall GS, Revell VL, Momiji H, Al Enezi J, Altimus CM, Guler AD, Aguilar C, Cameron MA, Allender S, Hankins MW, Lucas RJ (2010) Distinct contributions of rod, cone, and melanopsin photoreceptors to encoding irradiance. Neuron 66(3):417–428. doi: 10.1016/j.neuron.2010.04.037 PubMedCrossRefGoogle Scholar
  70. Lam RW, Gorman CP, Michalon M, Steiner M, Levitt AJ, Corral MR, Watson GD, Morehouse RL, Tam W, Joffe RT (1995) Multicenter, placebo-controlled study of fluoxetine in seasonal affective disorder. Am J Psychiatry 152(12):1765–1770PubMedGoogle Scholar
  71. Lam RW, Bowering TA, Tam EM, Grewal A, Yatham LN, Shiah IS, Zis AP (2000) Effects of rapid tryptophan depletion in patients with seasonal affective disorder in natural summer remission. Psychol Med 30(1):79–87PubMedCrossRefGoogle Scholar
  72. Lambert GW, Reid C, Kaye DM, Jennings GL, Esler MD (2002) Effect of sunlight and season on serotonin turnover in the brain. Lancet 360(9348):1840–1842PubMedCrossRefGoogle Scholar
  73. Lax P, Zamora S, Madrid JA (1999) Food-entrained feeding and locomotor circadian rhythms in rats under different lighting conditions. Chronobiol Int 16(3):281–291PubMedCrossRefGoogle Scholar
  74. Lee HS, Billings HJ, Lehman MN (2003) The suprachiasmatic nucleus: a clock of multiple components. J Biol Rhythms 18(6):435–449. doi: 10.1177/0748730403259106 PubMedCrossRefGoogle Scholar
  75. Leppamaki S, Partonen T, Lonnqvist J (2002) Bright-light exposure combined with physical exercise elevates mood. J Affect Disord 72(2):139–144PubMedCrossRefGoogle Scholar
  76. Lewy AJ, Sack RL (1989) The dim light melatonin onset as a marker for circadian phase position. Chronobiol Int 6(1):93–102PubMedCrossRefGoogle Scholar
  77. Lewy AJ, Wehr TA, Goodwin FK, Newsome DA, Markey SP (1980) Light suppresses melatonin secretion in humans. Science 210(4475):1267–1269PubMedCrossRefGoogle Scholar
  78. Lewy AJ, Cutler NL, Sack RL (1999) The endogenous melatonin profile as a marker for circadian phase position. J Biol Rhythms 14(3):227–236PubMedCrossRefGoogle Scholar
  79. Liou SY, Shibata S, Iwasaki K, Ueki S (1986) Optic nerve stimulation-induced increase of release of 3H-glutamate and 3H-aspartate but not 3H-GABA from the suprachiasmatic nucleus in slices of rat hypothalamus. Brain Res Bull 16(4):527–531PubMedCrossRefGoogle Scholar
  80. Liu C, Reppert SM (2000) GABA synchronizes clock cells within the suprachiasmatic circadian clock. Neuron 25(1):123–128PubMedCrossRefGoogle Scholar
  81. Lucas RJ, Foster RG (1999) Neither functional rod photoreceptors nor rod or cone outer segments are required for the photic inhibition of pineal melatonin. Endocrinology 140(4):1520–1524PubMedCrossRefGoogle Scholar
  82. Lucas RJ, Douglas RH, Foster RG (2001) Characterization of an ocular photopigment capable of driving pupillary constriction in mice. Nat Neurosci 4(6):621–626. doi: 10.1038/88443 PubMedCrossRefGoogle Scholar
  83. Lucas RJ, Hattar S, Takao M, Berson DM, Foster RG, Yau KW (2003) Diminished pupillary light reflex at high irradiances in melanopsin-knockout mice. Science 299(5604):245–247. doi: 10.1126/science.1077293 PubMedCrossRefGoogle Scholar
  84. Magnusson A, Kristbjarnarson H (1991) Treatment of seasonal affective disorder with high-intensity light. A phototherapy study with an Icelandic group of patients. J Affect Disord 21(2):141–147PubMedCrossRefGoogle Scholar
  85. Martinsen EW, Hoffart A, Solberg O (1989) Comparing aerobic with nonaerobic forms of exercise in the treatment of clinical depression: a randomized trial. Compr Psychiatry 30(4):324–331PubMedCrossRefGoogle Scholar
  86. McGrath RE, Buckwald B, Resnick EV (1990) The effect of l-tryptophan on seasonal affective disorder. J Clin Psychiatry 51(4):162–163PubMedGoogle Scholar
  87. Mead GE, Morley W, Campbell P, Greig CA, McMurdo M, Lawlor DA (2009) Exercise for depression. Cochrane Database Syst Rev (3):CD004366. doi: 10.1002/14651858.CD004366.pub4
  88. Meesters Y, Dekker V, Schlangen LJ, Bos EH, Ruiter MJ (2011) Low-intensity blue-enriched white light (750 lux) and standard bright light (10,000 lux) are equally effective in treating SAD. A randomized controlled study. BMC Psychiatry 11:17. doi: 10.1186/1471-244X-11-17 PubMedCrossRefGoogle Scholar
  89. Meeusen R, De Meirleir K (1995) Exercise and brain neurotransmission. Sports Med 20(3):160–188PubMedCrossRefGoogle Scholar
  90. Michel S, Itri J, Colwell CS (2002) Excitatory mechanisms in the suprachiasmatic nucleus: the role of AMPA/KA glutamate receptors. J Neurophysiol 88(2):817–828PubMedGoogle Scholar
  91. Michel S, Itri J, Han JH, Gniotczynski K, Colwell CS (2006) Regulation of glutamatergic signalling by PACAP in the mammalian suprachiasmatic nucleus. BMC Neurosci 7:15. doi: 10.1186/1471-2202-7-15 PubMedCrossRefGoogle Scholar
  92. Mikkelsen JD, Larsen PJ, Mick G, Vrang N, Ebling FJ, Maywood ES, Hastings MH, Moller M (1995) Gating of retinal inputs through the suprachiasmatic nucleus: role of excitatory neurotransmission. Neurochem Int 27(3):263–272PubMedCrossRefGoogle Scholar
  93. Miller AL (2005) Epidemiology, etiology, and natural treatment of seasonal affective disorder. Altern Med Rev 10(1):5–13PubMedGoogle Scholar
  94. Minors DS, Waterhouse JM, Wirz-Justice A (1991) A human phase-response curve to light. Neurosci Lett 133(1):36–40PubMedCrossRefGoogle Scholar
  95. Mintz EM, Marvel CL, Gillespie CF, Price KM, Albers HE (1999) Activation of NMDA receptors in the suprachiasmatic nucleus produces light-like phase shifts of the circadian clock in vivo. J Neurosci 19(12):5124–5130PubMedGoogle Scholar
  96. Mizoro Y, Yamaguchi Y, Kitazawa R, Yamada H, Matsuo M, Fustin JM, Doi M, Okamura H (2010) Activation of AMPA receptors in the suprachiasmatic nucleus phase-shifts the mouse circadian clock in vivo and in vitro. PLoS One 5(6):e10951. doi: 10.1371/journal.pone.0010951 PubMedCrossRefGoogle Scholar
  97. Moore RY, Speh JC (1993) GABA is the principal neurotransmitter of the circadian system. Neurosci Lett 150(1):112–116PubMedCrossRefGoogle Scholar
  98. Moscovitch A, Blashko CA, Eagles JM, Darcourt G, Thompson C, Kasper S, Lane RM (2004) A placebo-controlled study of sertraline in the treatment of outpatients with seasonal affective disorder. Psychopharmacology (Berl) 171(4):390–397. doi: 10.1007/s00213-003-1594-8 CrossRefGoogle Scholar
  99. Moyer RW, Kennaway DJ (1999) Immunohistochemical localization of serotonin receptors in the rat suprachiasmatic nucleus. Neurosci Lett 271(3):147–150PubMedCrossRefGoogle Scholar
  100. Mrosovsky N (1988) Phase response curves for social entrainment. J Comp Physiol A 162(1):35–46PubMedCrossRefGoogle Scholar
  101. National Collaborating Centre for Mental Health (Great Britain), National Institute for Health and Clinical Excellence (Great Britain), Royal College of Psychiatrists, British Psychological Society (2010) Depression: the treatment and management of depression in adults. National clinical practice guideline, vol 90. British Psychological Society and the Royal College of Psychiatrists, LondonGoogle Scholar
  102. Neumaier JF, Sexton TJ, Yracheta J, Diaz AM, Brownfield M (2001) Localization of 5-HT(7) receptors in rat brain by immunocytochemistry, in situ hybridization, and agonist stimulated cFos expression. J Chem Neuroanat 21(1):63–73PubMedCrossRefGoogle Scholar
  103. Neumeister A, Praschak-Rieder N, Hesselmann B, Vitouch O, Rauh M, Barocka A, Kasper S (1998a) Effects of tryptophan depletion in fully remitted patients with seasonal affective disorder during summer. Psychol Med 28(2):257–264PubMedCrossRefGoogle Scholar
  104. Neumeister A, Praschak-Rieder N, Hesselmann B, Vitouch O, Rauh M, Barocka A, Tauscher J, Kasper S (1998b) Effects of tryptophan depletion in drug-free depressed patients who responded to total sleep deprivation. Arch Gen Psychiatry 55(2):167–172PubMedCrossRefGoogle Scholar
  105. Neumeister A, Turner EH, Matthews JR, Postolache TT, Barnett RL, Rauh M, Vetticad RG, Kasper S, Rosenthal NE (1998c) Effects of tryptophan depletion vs catecholamine depletion in patients with seasonal affective disorder in remission with light therapy. Arch Gen Psychiatry 55(6):524–530PubMedCrossRefGoogle Scholar
  106. Neumeister A, Konstantinidis A, Praschak-Rieder N, Willeit M, Hilger E, Stastny J, Kasper S (2001) Monoaminergic function in the pathogenesis of seasonal affective disorder. Int J Neuropsychopharmacol 4(4):409–420. doi: 10.1017/S1461145701002644 PubMedCrossRefGoogle Scholar
  107. Olfson M, Marcus SC, Tedeschi M, Wan GJ (2006) Continuity of antidepressant treatment for adults with depression in the United States. Am J Psychiatry 163(1):101–108. doi: 10.1176/appi.ajp.163.1.101 PubMedCrossRefGoogle Scholar
  108. Partonen T, Leppamaki S, Hurme J, Lonnqvist J (1998) Randomized trial of physical exercise alone or combined with bright light on mood and health-related quality of life. Psychol Med 28(6):1359–1364PubMedCrossRefGoogle Scholar
  109. Paykel ES (1983) The classification of depression. Br J Clin Pharmacol 15(Suppl 2):155S–159SPubMedCrossRefGoogle Scholar
  110. Peirson SN, Halford S, Foster RG (2009) The evolution of irradiance detection: melanopsin and the non-visual opsins. Philos Trans R Soc Lond B Biol Sci 364(1531):2849–2865. doi: 10.1098/rstb.2009.0050 PubMedCrossRefGoogle Scholar
  111. Pickard GE, Weber ET, Scott PA, Riberdy AF, Rea MA (1996) 5HT1B receptor agonists inhibit light-induced phase shifts of behavioral circadian rhythms and expression of the immediate-early gene c-fos in the suprachiasmatic nucleus. J Neurosci 16(24):8208–8220PubMedGoogle Scholar
  112. Piggins HD, Antle MC, Rusak B (1995) Neuropeptides phase shift the mammalian circadian pacemaker. J Neurosci 15(8):5612–5622PubMedGoogle Scholar
  113. Pittendrigh CS, Daan S (1976) A functional analysis of circadian pacemakers in nocturnal rodents. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 106(3):291–331CrossRefGoogle Scholar
  114. Prosser RA (2001) Glutamate blocks serotonergic phase advances of the mammalian circadian pacemaker through AMPA and NMDA receptors. J Neurosci 21(19):7815–7822PubMedGoogle Scholar
  115. Prosser RA, Miller JD, Heller HC (1990) A serotonin agonist phase-shifts the circadian clock in the suprachiasmatic nuclei in vitro. Brain Res 534(1–2):336–339PubMedCrossRefGoogle Scholar
  116. Ralph MR, Lehman MN (1991) Transplantation: a new tool in the analysis of the mammalian hypothalamic circadian pacemaker. Trends Neurosci 14(8):362–366PubMedCrossRefGoogle Scholar
  117. Reebs SG, Mrosovsky N (1989) Effects of induced wheel running on the circadian activity rhythms of Syrian hamsters: entrainment and phase response curve. J Biol Rhythms 4(1):39–48PubMedCrossRefGoogle Scholar
  118. Reed HE, Meyer-Spasche A, Cutler DJ, Coen CW, Piggins HD (2001) Vasoactive intestinal polypeptide (VIP) phase-shifts the rat suprachiasmatic nucleus clock in vitro. Eur J Neurosci 13(4):839–843PubMedCrossRefGoogle Scholar
  119. Rollag MD, Berson DM, Provencio I (2003) Melanopsin, ganglion-cell photoreceptors, and mammalian photoentrainment. J Biol Rhythms 18(3):227–234PubMedCrossRefGoogle Scholar
  120. Romijn HJ, van Uum JF, Emmering J, Goncharuk V, Buijs RM (1999) Colocalization of VIP with AVP in neurons of the human paraventricular, supraoptic and suprachiasmatic nucleus. Brain Res 832(1–2):47–53PubMedCrossRefGoogle Scholar
  121. Rosenthal NE, Sack DA, Gillin JC, Lewy AJ, Goodwin FK, Davenport Y, Mueller PS, Newsome DA, Wehr TA (1984) Seasonal affective disorder. A description of the syndrome and preliminary findings with light therapy. Arch Gen Psychiatry 41(1):72–80PubMedCrossRefGoogle Scholar
  122. Sawada N, Uchida H, Suzuki T, Watanabe K, Kikuchi T, Handa T, Kashima H (2009) Persistence and compliance to antidepressant treatment in patients with depression: a chart review. BMC Psychiatry 9:38. doi: 10.1186/1471-244X-9-38 PubMedCrossRefGoogle Scholar
  123. Shibata S, Tominaga K, Hamada T, Watanabe S (1992) Excitatory effect of N-methyl-d-aspartate and kainate receptor on the 2-deoxyglucose uptake in the rat suprachiasmatic nucleus in vitro. Neurosci Lett 139(1):83–86PubMedCrossRefGoogle Scholar
  124. Singh NA, Clements KM, Fiatarone MA (1997) A randomized controlled trial of the effect of exercise on sleep. Sleep 20(2):95–101PubMedGoogle Scholar
  125. Soleimani L, Lapidus KA, Iosifescu DV (2011) Diagnosis and treatment of major depressive disorder. Neurol Clin 29 (1):177–193, ix. doi: 10.1016/j.ncl.2010.10.010 Google Scholar
  126. Sollars PJ, Kimble DP, Pickard GE (1995) Restoration of circadian behavior by anterior hypothalamic heterografts. J Neurosci 15(3 Pt 2):2109–2122PubMedGoogle Scholar
  127. Soscia SJ, Harrington ME (2004) Neuropeptide Y attenuates NMDA-induced phase shifts in the SCN of NPY Y1 receptor knockout mice in vitro. Brain Res 1023(1):148–153. doi: 10.1016/j.brainres.2004.07.037 PubMedCrossRefGoogle Scholar
  128. Soscia SJ, Harrington ME (2005) Neuropeptide Y does not reset the circadian clock in NPY Y2−/− mice. Neurosci Lett 373(3):175–178. doi: 10.1016/j.neulet.2004.08.081 PubMedCrossRefGoogle Scholar
  129. Strohle A (2009) Physical activity, exercise, depression and anxiety disorders. J Neural Transm 116(6):777–784. doi: 10.1007/s00702-008-0092-x PubMedCrossRefGoogle Scholar
  130. Terman M, Jiuan SuT (2010) Circadian rhythm phase advance with dawn simulation treatment for winter depression. J Biol Rhythms 25(4):297–301. doi: 10.1177/0748730410374000 PubMedCrossRefGoogle Scholar
  131. Terman M, Terman JS (2005) Light therapy for seasonal and nonseasonal depression: efficacy, protocol, safety, and side effects. CNS Spectr 10 (8):647–63 (quiz 672)Google Scholar
  132. Terman M, Terman JS, Quitkin FM, McGrath PJ, Stewart JW, Rafferty B (1989) Light therapy for seasonal affective disorder. A review of efficacy. Neuropsychopharmacology 2(1):1–22PubMedCrossRefGoogle Scholar
  133. Terman JS, Terman M, Schlager D, Rafferty B, Rosofsky M, Link MJ, Gallin PF, Quitkin FM (1990) Efficacy of brief, intense light exposure for treatment of winter depression. Psychopharmacol Bull 26(1):3–11PubMedGoogle Scholar
  134. Tominaga K, Shibata S, Ueki S, Watanabe S (1992) Effects of 5-HT1A receptor agonists on the circadian rhythm of wheel-running activity in hamsters. Eur J Pharmacol 214(1):79–84PubMedCrossRefGoogle Scholar
  135. Tunnainen A, Kripke DF, Endo T (2005) Light therapy for non-seasonal depression. Cochrane Database Systems Review 2 (CD004050)Google Scholar
  136. Usdin TB, Bonner TI, Mezey E (1994) Two receptors for vasoactive intestinal polypeptide with similar specificity and complementary distributions. Endocrinology 135(6):2662–2680PubMedCrossRefGoogle Scholar
  137. van den Pol AN (1986) Gamma-aminobutyrate, gastrin releasing peptide, serotonin, somatostatin, and vasopressin: ultrastructural immunocytochemical localization in presynaptic axons in the suprachiasmatic nucleus. Neuroscience 17(3):643–659PubMedCrossRefGoogle Scholar
  138. van Geffen EC, Gardarsdottir H, van Hulten R, van Dijk L, Egberts AC, Heerdink ER (2009) Initiation of antidepressant therapy: do patients follow the GP’s prescription? Br J Gen Pract 59(559):81–87. doi: 10.3399/bjgp09X395067 PubMedCrossRefGoogle Scholar
  139. Vanecek J (1998) Cellular mechanisms of melatonin action. Physiol Rev 78(3):687–721PubMedGoogle Scholar
  140. Varcoe TJ, Kennaway DJ (2008) Activation of 5-HT2C receptors acutely induces Per1 gene expression in the rat SCN in vitro. Brain Res 1209:19–28. doi: 10.1016/j.brainres.2008.02.091 PubMedCrossRefGoogle Scholar
  141. Voderholzer U, Valerius G, Schaerer L, Riemann D, Giedke H, Schwarzler F, Berger M, Wiegand M (2003) Is the antidepressive effect of sleep deprivation stabilized by a three day phase advance of the sleep period? A pilot study. Eur Arch Psychiatry Clin Neurosci 253(2):68–72. doi: 10.1007/s00406-003-0408-7 PubMedGoogle Scholar
  142. Wehr TA, Wirz-Justice A, Goodwin FK, Duncan W, Gillin JC (1979) Phase advance of the circadian sleep-wake cycle as an antidepressant. Science 206(4419):710–713PubMedCrossRefGoogle Scholar
  143. Wehr TA, Muscettola G, Goodwin FK (1980) Urinary 3-methoxy-4-hydroxyphenylglycol circadian rhythm. Early timing (phase-advance) in manic-depressives compared with normal subjects. Arch Gen Psychiatry 37(3):257–263PubMedCrossRefGoogle Scholar
  144. Weitzman ED, Kripke DF, Goldmacher D, McGregor P, Nogeire C (1970) Acute reversal of the sleep–waking cycle in man. Effect on sleep stage patterns. Arch Neurol 22(6):483–489PubMedCrossRefGoogle Scholar
  145. Wirz-Justice A (2009) From the basic neuroscience of circadian clock function to light therapy for depression: on the emergence of chronotherapeutics. J Affect Disord 116(3):159–160. doi: 10.1016/j.jad.2009.04.024 PubMedCrossRefGoogle Scholar
  146. Wirz-Justice A, Graw P, Krauchi K, Sarrafzadeh A, English J, Arendt J, Sand L (1996) ‘Natural’ light treatment of seasonal affective disorder. J Affect Disord 37(2–3):109–120PubMedCrossRefGoogle Scholar
  147. Wirz-Justice A, Benedetti F, Terman M (2009) Chronotherapeutics for affective disorders: a clinician’s manual for light and wake therapy. Karger, BaselGoogle Scholar
  148. Yannielli PC, Brewer JM, Harrington ME (2004) Blockade of the NPY Y5 receptor potentiates circadian responses to light: complementary in vivo and in vitro studies. Eur J Neurosci 19(4):891–897PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • G. S. Lall
    • 1
  • L. A. Atkinson
    • 1
  • S. A. Corlett
    • 1
  • P. J. Broadbridge
    • 1
  • D. R. Bonsall
    • 1
  1. 1.Medway School of PharmacyUniversity of KentChathamUK

Personalised recommendations