Journal of Neural Transmission

, Volume 120, Issue 1, pp 103–111 | Cite as

Induced pluripotent stem cells as tools for disease modelling and drug discovery in Alzheimer’s disease

  • Lezanne Ooi
  • Kuldip Sidhu
  • Anne Poljak
  • Greg Sutherland
  • Michael D. O’Connor
  • Perminder Sachdev
  • Gerald MünchEmail author
Dementias - Review article


Alzheimer’s disease (AD) is a progressive neurodegenerative brain disorder that leads to a progressive decline in a person’s memory and ability to communicate and carry out daily activities. The brain pathology in AD is characterized by extensive neuronal loss, particularly of cholinergic neurons, intracellular neurofibrillary tangles composed of the tau protein (NFTs) and extracellular deposition of plaques composed of β-amyloid (Aβ), a cleavage product of the amyloid precursor protein (APP). These two insoluble protein aggregates are accompanied by a chronic inflammatory response and extensive oxidative damage. Whereas dys-regulation of APP expression or processing appears to be important for the familial, early-onset form of AD, controversy exists between the “Baptists” (in favour of Aβ) and the “Tauists” (in favour of tau) as to which of these two protein dysfunctions occur at the earliest stages or are the most important contributors to the disease process in sporadic AD. However, more and more “non-amyloid” and “non-tau” causes have been proposed, including, glycation, inflammation, oxidative stress and dys-regulation of the cell cycle. However, to get an insight into the ultimate cause of AD, and to prove that any drug target is valuable in AD, disease-relevant models giving insight into the pathogenic processes in AD are urgently needed. In the absence of a good animal model for sporadic AD, we propose in this review that induced pluripotent stem cells, derived from dermal fibroblasts of AD patients, and differentiated into cholinergic neurons, might be a promising novel tool for disease modelling and drug discovery for the sporadic form of AD.


Stem cells Cell culture model Alzheimer’s disease Drug discovery 



We thank Peter Riederer for his brilliant scientific ideas and valuable mentorship in his long and distinguished scientific career. We gratefully acknowledge the grant support of the National Health and Medical Research Council (Grant IDs: 436797, 606543, 1046227) and Alzheimer’s Australia.


  1. Aalten P, Verhey FR, Boziki M, Brugnolo A, Bullock R, Byrne EJ, Camus V, Caputo M et al (2008) Consistency of neuropsychiatric syndromes across dementias: results from the European Alzheimer Disease Consortium. Part II. Dement Geriatr Cogn Disord 25:1–8PubMedCrossRefGoogle Scholar
  2. Adlard PA, Bica L, White AR, Nurjono M, Filiz G, Crouch PJ, Donnelly PS, Cappai R et al (2011) Metal ionophore treatment restores dendritic spine density and synaptic protein levels in a mouse model of Alzheimer’s disease. PLoS ONE 6:17669CrossRefGoogle Scholar
  3. Arendt T (2009) Synaptic degeneration in Alzheimer’s disease. Acta Neuropathol 118:167–179PubMedCrossRefGoogle Scholar
  4. Arendt T, Bruckner MK, Mosch B, Losche A (2010) Selective cell death of hyperploid neurons in Alzheimer’s disease. Am J Pathol 177:15–20PubMedCrossRefGoogle Scholar
  5. Bareggi SR, Cornelli U (2012) Clioquinol: review of its mechanisms of action and clinical uses in neurodegenerative disorders. CNS Neurosci Ther 18:41–46PubMedCrossRefGoogle Scholar
  6. Bissonnette CJ, Lyass L, Bhattacharyya BJ, Belmadani A, Miller RJ, Kessler JA (2011) The controlled generation of functional basal forebrain cholinergic neurons from human embryonic stem cells. Stem Cells 29:802–811PubMedCrossRefGoogle Scholar
  7. Bock C, Kiskinis E, Verstappen G, Gu H, Boulting G, Smith ZD, Ziller M, Croft GF et al (2011) Reference maps of human ES and iPS cell variation enable high-throughput characterization of pluripotent cell lines. Cell 144:439–452PubMedCrossRefGoogle Scholar
  8. Borchelt DR, Thinakaran G, Eckman CB, Lee MK, Davenport F, Ratovitsky T, Prada CM, Kim G et al (1996) Familial Alzheimer’s disease-linked presenilin 1 variants elevate Aβ1-42/1-40 ratio in vitro and in vivo. Neuron 17:1005–1013PubMedCrossRefGoogle Scholar
  9. Braak H, Del Tredici K (2004) Alzheimer’s disease: intraneuronal alterations precede insoluble amyloid-beta formation. Neurobiol Aging 25:713–718 (discussion 743–716)PubMedCrossRefGoogle Scholar
  10. Braak H, Thal DR, Ghebremedhin E, Del Tredici K (2011) Stages of the pathologic process in Alzheimer disease: age categories from 1 to 100 years. J Neuropathol Exp Neurol 70:960–969PubMedCrossRefGoogle Scholar
  11. Bush AI (2002) Metal complexing agents as therapies for Alzheimer’s disease. Neurobiol Aging 23:1031–1038PubMedCrossRefGoogle Scholar
  12. Butterfield DA, Griffin S, Münch G, Pasinetti GM (2002) Amyloid beta-peptide and amyloid pathology are central to the oxidative stress and inflammatory cascades under which Alzheimer’s disease brain exists. J Alzheimers Dis 4:193–201PubMedGoogle Scholar
  13. Castellani RJ, Smith MA (2011) Compounding artefacts with uncertainty, and an amyloid cascade hypothesis that is ‘too big to fail’. J Pathol 224:147–152PubMedCrossRefGoogle Scholar
  14. Chan EM, Ratanasirintrawoot S, Park IH, Manos PD, Loh YH, Huo H, Miller JD, Hartung O et al (2009) Live cell imaging distinguishes bona fide human iPS cells from partially reprogrammed cells. Nat Biotechnol 27:1033–1037PubMedCrossRefGoogle Scholar
  15. Chen F, Wollmer MA, Hoerndli F, Münch G, Kuhla B, Rogaev EI, Tsolaki M, Papassotiropoulos A et al (2004) Role for glyoxalase I in Alzheimer’s disease. Proc Natl Acad Sci USA 101:7687–7692PubMedCrossRefGoogle Scholar
  16. Chung HC, Lin RC, Logan GJ, Alexander IE, Sachdev PS, Sidhu KS (2012) Human induced pluripotent stem cells derived under feeder-free conditions display unique cell cycle and DNA replication gene profiles. Stem Cells Dev 21:206–216PubMedCrossRefGoogle Scholar
  17. Czirr E, Weggen S (2006) Gamma-secretase modulation with Aβ42-lowering nonsteroidal anti-inflammatory drugs and derived compounds. Neuro-degenerative Dis 3:298–304Google Scholar
  18. Dasilva KA, Aubert I, McLaurin J (2006) Vaccine development for Alzheimer’s disease. Curr Pharm Des 12:4283–4293PubMedCrossRefGoogle Scholar
  19. Ebben JD, Zorniak M, Clark PA, Kuo JS (2011) Introduction to induced pluripotent stem cells: advancing the potential for personalized medicine. World Neurosurg 76:270–275PubMedCrossRefGoogle Scholar
  20. Faux NG, Ritchie CW, Gunn A, Rembach A, Tsatsanis A, Bedo J, Harrison J, Lannfelt L et al (2010) PBT2 rapidly improves cognition in Alzheimer’s disease: additional phase II analyses. J Alzheimers Dis 20:509–516PubMedGoogle Scholar
  21. Feng Q, Lu SJ, Klimanskaya I, Gomes I, Kim D, Chung Y, Honig GR, Kim KS et al (2010) Hemangioblastic derivatives from human induced pluripotent stem cells exhibit limited expansion and early senescence. Stem Cells 28:704–712PubMedCrossRefGoogle Scholar
  22. Fuller S, Steele M, Munch G (2010) Activated astroglia during chronic inflammation in Alzheimer’s disease—do they neglect their neurosupportive roles? Mutat Res 690:40–49PubMedCrossRefGoogle Scholar
  23. Goedert M, Jakes R, Spillantini MG, Crowther RA, Cohen P, Vanmechelen E, Probst A, Gotz J et al (1995a) Tau protein in Alzheimer’s disease. Biochem Soc Trans 23:80–85PubMedGoogle Scholar
  24. Goedert M, Spillantini MG, Jakes R, Crowther RA, Vanmechelen E, Probst A, Gotz J, Burki K et al (1995b) Molecular dissection of the paired helical filament. Neurobiol Aging 16:325–334PubMedCrossRefGoogle Scholar
  25. Golde TE, Schneider LS, Koo EH (2011) Anti-Aβ therapeutics in Alzheimer’s disease: the need for a paradigm shift. Neuron 69:203–213PubMedCrossRefGoogle Scholar
  26. Gotz J, Lim YA, Ke YD, Eckert A, Ittner LM (2010) Dissecting toxicity of tau and beta-amyloid. Neurodegener Dis 7:10–12PubMedCrossRefGoogle Scholar
  27. Grskovic M, Javaherian A, Strulovici B, Daley GQ (2011) Induced pluripotent stem cells—opportunities for disease modelling and drug discovery. Nat Rev Drug Discov 10:915–929PubMedGoogle Scholar
  28. Hayden EC (2011) Stem cells: the growing pains of pluripotency. Nature 473:272–274PubMedCrossRefGoogle Scholar
  29. Holmquist L, Stuchbury G, Berbaum K, Muscat S, Young S, Hager K, Engel J, Münch G (2007) Lipoic acid as a novel treatment for Alzheimer’s disease and related dementias. Pharmacol Ther 113:154–164PubMedCrossRefGoogle Scholar
  30. Hu BY, Weick JP, Yu J, Ma LX, Zhang XQ, Thomson JA, Zhang SC (2010) Neural differentiation of human induced pluripotent stem cells follows developmental principles but with variable potency. Proc Natl Acad Sci USA 107:4335–4340PubMedCrossRefGoogle Scholar
  31. Huber A, Stuchbury G, Burkle A, Burnell J, Münch G (2006) Neuroprotective therapies for Alzheimer’s disease. Curr Pharm Des 12:705–717PubMedCrossRefGoogle Scholar
  32. Imbimbo BP, Giardina GA (2011) γ-secretase inhibitors and modulators for the treatment of Alzheimer’s disease: disappointments and hopes. Curr Top Med Chem 11:1555–1570PubMedCrossRefGoogle Scholar
  33. Israel MA, Yuan SH, Bardy C, Reyna SM, Mu Y, Herrera C, Hefferan MP, Van Gorp S et al (2012) Probing sporadic and familial Alzheimer’s disease using induced pluripotent stem cells. Nature 482:216–220PubMedGoogle Scholar
  34. Iwatsubo T, Odaka A, Suzuki N, Mizusawa H, Nukina N, Ihara Y (1994) Visualization of A beta 42(43) and A beta 40 in senile plaques with end-specific Aβ monoclonals: evidence that an initially deposited species is A beta 42(43). Neuron 13:45–53PubMedCrossRefGoogle Scholar
  35. Jung YW, Hysolli E, Kim KY, Tanaka Y, Park IH (2012) Human induced pluripotent stem cells and neurodegenerative disease: prospects for novel therapies. Curr Opin Neurol 25:125–130PubMedCrossRefGoogle Scholar
  36. Karran E, Mercken M, De Strooper B (2011) The amyloid cascade hypothesis for Alzheimer’s disease: an appraisal for the development of therapeutics. Nat Rev Drug Discov 10:698–712PubMedCrossRefGoogle Scholar
  37. Krautwald M, Münch G (2010) Advanced glycation end products as biomarkers and gerontotoxins—a basis to explore methylglyoxal-lowering agents for Alzheimer’s disease? Exp Gerontol 45:744–751PubMedCrossRefGoogle Scholar
  38. Kuhla B, Loske C, Garcia De Arriba S, Schinzel R, Huber J, Münch G (2004) Differential effects of “Advanced glycation endproducts” and beta-amyloid peptide on glucose utilization and ATP levels in the neuronal cell line SH-SY5Y. J Neural Transm 111:427–439PubMedCrossRefGoogle Scholar
  39. Kuhla B, Haase C, Flach K, Luth HJ, Arendt T, Münch G (2007) Effect of pseudophosphorylation and cross-linking by lipid peroxidation and advanced glycation end product precursors on tau aggregation and filament formation. J Biol Chem 282:6984–6991PubMedCrossRefGoogle Scholar
  40. Loske C, Gerdemann A, Schepl W, Wycislo M, Schinzel R, Palm D, Riederer P, Münch G (2000) Transition metal-mediated glycoxidation accelerates cross-linking of beta-amyloid peptide. Eur J Biochem 267:4171–4178PubMedCrossRefGoogle Scholar
  41. Maczurek A, Shanmugam K, Munch G (2008) Inflammation and the redox-sensitive AGE-RAGE pathway as a therapeutic target in Alzheimer’s disease. Ann NY Acad Sci 1126:147–151PubMedCrossRefGoogle Scholar
  42. Malpass K (2011) Parkinson disease: induced pluripotent stem cells—a new in vitro model to investigate alpha-synuclein dysfunction in Parkinson disease. Nat Rev Neurol 7:536PubMedCrossRefGoogle Scholar
  43. Münch G, Robinson SR (2002) Potential neurotoxic inflammatory responses to Aβ vaccination in humans. J Neural Transm 109:1081–1087PubMedCrossRefGoogle Scholar
  44. Münch G, Thome J, Foley P, Schinzel R, Riederer P (1997) Advanced glycation endproducts in ageing and Alzheimer’s disease. Brain Res Brain Res Rev 23:134–143PubMedCrossRefGoogle Scholar
  45. Münch G, Schinzel R, Loske C, Wong A, Durany N, Li JJ, Vlassara H, Smith MA et al (1998) Alzheimer’s disease—synergistic effects of glucose deficit, oxidative stress and advanced glycation endproducts. J Neural Transm 105:439–461PubMedCrossRefGoogle Scholar
  46. Murrell W, Wetzig A, Donnellan M, Feron F, Burne T, Meedeniya A, Kesby J, Bianco J et al (2008) Olfactory mucosa is a potential source for autologous stem cell therapy for Parkinson’s disease. Stem Cells 26:2183–2192PubMedCrossRefGoogle Scholar
  47. Navarrete LP, Perez P, Morales I, Maccioni RB (2011) Novel drugs affecting tau behavior in the treatment of Alzheimer’s disease and tauopathies. Curr Alzheimer Res 8:678–685PubMedCrossRefGoogle Scholar
  48. Nishino K, Toyoda M, Yamazaki-Inoue M, Fukawatase Y, Chikazawa E, Sakaguchi H, Akutsu H, Umezawa A (2011) DNA methylation dynamics in human induced pluripotent stem cells over time. PLoS Genet 7:e1002085PubMedCrossRefGoogle Scholar
  49. O’Connor MD, Kardel MD, Eaves CJ (2011) Functional assays for human embryonic stem cell pluripotency. Methods Mol Biol 690:67–80PubMedCrossRefGoogle Scholar
  50. Okita K, Ichisaka T, Yamanaka S (2007) Generation of germline-competent induced pluripotent stem cells. Nature 448:313–317PubMedCrossRefGoogle Scholar
  51. Ooi L, Wood IC (2007) Chromatin crosstalk in development and disease: lessons from REST. Nat Rev Genet 8:544–554PubMedCrossRefGoogle Scholar
  52. Panza F, Frisardi V, Imbimbo BP, D’Onofrio G, Pietrarossa G, Seripa D, Pilotto A, Solfrizzi V (2010) Bapineuzumab: anti-beta-amyloid monoclonal antibodies for the treatment of Alzheimer’s disease. Immunotherapy 2:767–782PubMedCrossRefGoogle Scholar
  53. Park IH, Arora N, Huo H, Maherali N, Ahfeldt T, Shimamura A, Lensch MW, Cowan C et al (2008) Disease-specific induced pluripotent stem cells. Cell 134:877–886PubMedCrossRefGoogle Scholar
  54. Qiang L, Fujita R, Yamashita T, Angulo S, Rhinn H, Rhee D, Doege C, Chau L et al (2011) Directed conversion of Alzheimer’s disease patient skin fibroblasts into functional neurons. Cell 146:359–371PubMedCrossRefGoogle Scholar
  55. Rahmadi A, Steiner N, Münch G (2011) Advanced glycation endproducts as gerontotoxins and biomarkers for carbonyl-based degenerative processes in Alzheimer’s disease. Clin Chem Lab Med 49:385–391PubMedCrossRefGoogle Scholar
  56. Retz W, Gsell W, Münch G, Rosler M, Riederer P (1998) Free radicals in Alzheimer’s disease. J Neural Transm Suppl 54:221–236PubMedGoogle Scholar
  57. Riederer P, Hoyer S (2006) From benefit to damage. Glutamate and advanced glycation end products in Alzheimer brain. J Neural Transm 113:1671–1677PubMedCrossRefGoogle Scholar
  58. Robinson SR, Bishop GM, Lee HG, Münch G (2004) Lessons from the AN 1792 Alzheimer vaccine: lest we forget. Neurobiol Aging 25:609–615PubMedCrossRefGoogle Scholar
  59. Sastre M, Klockgether T, Heneka MT (2006) Contribution of inflammatory processes to Alzheimer’s disease: molecular mechanisms. Int J Dev Neurosci 24:167–176PubMedCrossRefGoogle Scholar
  60. Scheuner D, Eckman C, Jensen M, Song X, Citron M, Suzuki N, Bird TD, Hardy J et al (1996) Secreted amyloid beta-protein similar to that in the senile plaques of Alzheimer’s disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer’s disease. Nat Med 2:864–870PubMedCrossRefGoogle Scholar
  61. Schliebs R, Arendt T (2011) The cholinergic system in aging and neuronal degeneration. Behav Brain Res 221:555–563PubMedCrossRefGoogle Scholar
  62. Shi Y, Kirwan P, Smith J, MacLean G, Orkin SH, Livesey FJ (2012) A human stem cell model of early Alzheimer’s disease pathology in Down syndrome. Sci Transl Med 4:124ra129.Google Scholar
  63. Sidhu KS (2011) New approaches for the generation of induced pluripotent stem cells. Expert Opin Biol Ther 11:569–579PubMedCrossRefGoogle Scholar
  64. Smith AD (2010) Why are drug trials in Alzheimer’s disease failing? Lancet 376:1466PubMedCrossRefGoogle Scholar
  65. Song F, Poljak A, Smythe GA, Sachdev P (2009) Plasma biomarkers for mild cognitive impairment and Alzheimer’s disease. Brain Res Rev 61:69–80PubMedCrossRefGoogle Scholar
  66. Srikanth V, Maczurek A, Phan T, Steele M, Westcott B, Juskiw D, Münch G (2011) Advanced glycation endproducts and their receptor RAGE in Alzheimer’s disease. Neurobiol Aging 32:763–777PubMedCrossRefGoogle Scholar
  67. Sun N, Panetta NJ, Gupta DM, Wilson KD, Lee A, Jia F, Hu S, Cherry AM et al (2009) Feeder-free derivation of induced pluripotent stem cells from adult human adipose stem cells. Proc Natl Acad Sci USA 106:15720–15725PubMedCrossRefGoogle Scholar
  68. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676PubMedCrossRefGoogle Scholar
  69. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872PubMedCrossRefGoogle Scholar
  70. Thal DR, Rub U, Orantes M, Braak H (2002) Phases of Aβ-deposition in the human brain and its relevance for the development of AD. Neurology 58:1791–1800PubMedCrossRefGoogle Scholar
  71. Thal DR, Capetillo-Zarate E, Del Tredici K, Braak H (2006) The development of amyloid beta protein deposits in the aged brain. Sci Aging Knowledge Environ 2006:re1.Google Scholar
  72. Thome J, Kornhuber J, Münch G, Schinzel R, Taneli Y, Zielke B, Rosler M, Riederer P (1996) New hypothesis on etiopathogenesis of Alzheimer syndrome. Advanced glycation end products (AGEs). Nervenarzt 67:924–929PubMedCrossRefGoogle Scholar
  73. Tomita T, Maruyama K, Saido TC, Kume H, Shinozaki K, Tokuhiro S, Capell A, Walter J et al (1997) The presenilin 2 mutation (N141I) linked to familial Alzheimer disease (Volga German families) increases the secretion of amyloid beta protein ending at the 42nd (or 43rd) residue. Proc Natl Acad Sci USA 94:2025–2030PubMedCrossRefGoogle Scholar
  74. Valenzuela MJ, Dean SK, Sachdev P, Tuch BE, Sidhu KS (2008) Neural precursors from canine skin: a new direction for testing autologous cell replacement in the brain. Stem Cells Dev 17:1087–1094PubMedCrossRefGoogle Scholar
  75. Vallier L, Touboul T, Brown S, Cho C, Bilican B, Alexander M, Cedervall J, Chandran S et al (2009a) Signaling pathways controlling pluripotency and early cell fate decisions of human induced pluripotent stem cells. Stem Cells 27:2655–2666PubMedCrossRefGoogle Scholar
  76. Vallier L, Touboul T, Chng Z, Brimpari M, Hannan N, Millan E, Smithers LE, Trotter M et al (2009b) Early cell fate decisions of human embryonic stem cells and mouse epiblast stem cells are controlled by the same signalling pathways. PLoS ONE 4:6082CrossRefGoogle Scholar
  77. Vierbuchen T, Ostermeier A, Pang ZP, Kokubu Y, Sudhof TC, Wernig M (2010) Direct conversion of fibroblasts to functional neurons by defined factors. Nature 463:1035–1041PubMedCrossRefGoogle Scholar
  78. Wan HI, Jacobsen JS, Rutkowski JL, Feuerstein GZ (2009) Translational medicine lessons from flurizan’s failure in Alzheimer’s disease (AD) trial: implication for future drug discovery and development for AD. Clin Transl Sci 2:242–247PubMedCrossRefGoogle Scholar
  79. Wang A, Huang K, Shen Y, Xue Z, Cai C, Horvath S, Fan G (2011) Functional modules distinguish human induced pluripotent stem cells from embryonic stem cells. Stem Cells Dev 20:1937–1950PubMedCrossRefGoogle Scholar
  80. Weisman D, Hakimian E, Ho GJ (2006) Interleukins, inflammation, and mechanisms of Alzheimer’s disease. Vitam Horm 74:505–530PubMedCrossRefGoogle Scholar
  81. Wernig M, Meissner A, Foreman R, Brambrink T, Ku M, Hochedlinger K, Bernstein BE, Jaenisch R (2007) In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 448:318–324PubMedCrossRefGoogle Scholar
  82. Wong A, Luth HJ, Deuther-Conrad W, Dukic-Stefanovic S, Gasic-Milenkovic J, Arendt T, Münch G (2001) Advanced glycation endproducts co-localize with inducible nitric oxide synthase in Alzheimer’s disease. Brain Res 920:32–40PubMedCrossRefGoogle Scholar
  83. Yagi T, Ito D, Okada Y, Akamatsu W, Nihei Y, Yoshizaki T, Yamanaka S, Okano H et al (2011) Modeling familial Alzheimer’s disease with induced pluripotent stem cells. Hum Mol Genet 20:4530–4539PubMedCrossRefGoogle Scholar
  84. Yahata N, Asai M, Kitaoka S, Takahashi K, Asaka I, Hioki H, Kaneko T, Maruyama K et al (2011) Anti-Aβ drug screening platform using human iPS cell-derived neurons for the treatment of Alzheimer’s disease. PLoS ONE 6:e25788PubMedCrossRefGoogle Scholar
  85. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA et al (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Lezanne Ooi
    • 1
  • Kuldip Sidhu
    • 6
  • Anne Poljak
    • 2
  • Greg Sutherland
    • 7
  • Michael D. O’Connor
    • 3
    • 4
  • Perminder Sachdev
    • 5
  • Gerald Münch
    • 1
    • 4
    Email author
  1. 1.Department of Pharmacology, School of MedicineUniversity of Western SydneyPenrith South DCAustralia
  2. 2.Bioanalytical Mass Spectrometry FacilityUniversity of New South WalesKensingtonAustralia
  3. 3.Regenerative Medicine, School of MedicineUniversity of Western SydneyCampbelltownAustralia
  4. 4.Molecular Medicine Research GroupUniversity of Western SydneyCampbelltownAustralia
  5. 5.Brain and Ageing Research Program, School of PsychiatryUniversity of New South WalesSydneyAustralia
  6. 6.Stem Cell Laboratory, Faculty of MedicineUniversity of New South WalesSydneyAustralia
  7. 7.Discipline of Pathology, School of Medical SciencesUniversity of SydneySydneyAustralia

Personalised recommendations