Advertisement

Journal of Neural Transmission

, Volume 119, Issue 10, pp 1147–1166 | Cite as

Neuroimmunomodulation in unipolar depression: a focus on chronobiology and chronotherapeutics

  • Harris Eyre
  • Bernhard T. Baune
Basic Neurosciences, Genetics and Immunology - Review article

Abstract

The rising burden of unipolar depression along with its often related sleep disturbances, as well as increasing rates of sleep restriction in modern society, make the search for an extended understanding of the aetiology and pathophysiology of depression necessary. Accumulating evidence suggests an important role for the immune system in mediating disrupted neurobiological and chronobiological processes in depression. This review aims to provide an overview of the neuroimmunomodulatory processes involved with depression and antidepressant treatments with a special focus on chronobiology, chronotherapeutics and the emerging field of immune-circadian bi-directional crosstalk. Increasing evidence suggests that chronobiological disruption can mediate immune changes in depression, and likewise, immune processes can mediate chronobiological disruption. This may suggest a bi-directional relationship in immune-circadian crosstalk. Furthermore, given the immunomodulatory effects of antidepressants and chronotherapeutics, as well as their associated beneficial effects on circadian disturbance, we—and others—suggest that these therapeutic agents may exert their chronobiotic effects partially via the neuroimmune system. Further research is required to better elucidate the mechanisms of immune involvement in the chronobiology of depression.

Keywords

Depression Antidepressant Immune Chronobiology Circadian rhythm Sleep–wake cycle 

Notes

Conflict of interest

All authors declare that there are no conflicts of interest.

References

  1. Albrecht U (2011) The circadian clock, reward, and memory. Front Mol Neurosci 4:41PubMedCrossRefGoogle Scholar
  2. Allaman I, Fiumelli H, Magistretti PJ, Martin JL (2011) Fluoxetine regulates the expression of neurotrophic/growth factors and glucose metabolism in astrocytes. Psychopharmacology 216(1):75–84PubMedCrossRefGoogle Scholar
  3. Amir S, Harbour VL, Robinson B (2006) Pinealectomy does not affect diurnal PER2 expression in the rat limbic forebrain. Neurosci Lett 399(1–2):147–150PubMedCrossRefGoogle Scholar
  4. Anacker C, Pariante CM (2012) Can adult neurogenesis buffer stress responses and depressive behaviour? Mol Psychiatry 17(1):9–10Google Scholar
  5. Anacker C, Zunszain PA, Carvalho LA, Pariante CM (2011) The glucocorticoid receptor: pivot of depression and of antidepressant treatment? Psychoneuroendocrinology 36(3):415–425PubMedCrossRefGoogle Scholar
  6. Andrews PW, Kornstein SG, Halberstadt LJ, Gardner CO, Neale MC (2011) Blue again: perturbational effects of antidepressants suggest monoaminergic homeostasis in major depression. Front Psychol 2:159PubMedCrossRefGoogle Scholar
  7. Anisman H (2011) Inflaming depression. J Psychiatry Neurosci 36(5):291–295PubMedCrossRefGoogle Scholar
  8. Antle MC, Silver R (2005) Orchestrating time: arrangements of the brain circadian clock. Trends Neurosci 28(3):145–151PubMedCrossRefGoogle Scholar
  9. Antonioli M, Rybka J, Carvalho LA (2012) Neuroimmune endocrine effects of antidepressants. Neuropsychiatr Dis Treat 8:65–83PubMedGoogle Scholar
  10. Arjona A, Sarkar DK (2006a) The circadian gene mPer2 regulates the daily rhythm of IFN-gamma. J Interf Cytokine Res 26(9):645–649CrossRefGoogle Scholar
  11. Arjona A, Sarkar DK (2006b) Evidence supporting a circadian control of natural killer cell function. Brain Behav Immun 20(5):469–476PubMedCrossRefGoogle Scholar
  12. Bachstetter AD, Morganti JM, Jernberg J, Schlunk A, Mitchell SH, Brewster KW, Hudson CE, Cole MJ, Harrison JK, Bickford PC, Gemma C (2011) Fractalkine and CX 3 CR1 regulate hippocampal neurogenesis in adult and aged rats. Neurobiol Aging 32(11):2030–2044PubMedCrossRefGoogle Scholar
  13. Banasr M, Dwyer JM, Duman RS (2011) Cell atrophy and loss in depression: reversal by antidepressant treatment. Curr Opin Cell Biol 23(6):730–737PubMedCrossRefGoogle Scholar
  14. Barbui C, Cipriani A (2012) Novel melatonin-based treatments for major depression. Lancet 379(9812):215 (author reply 217–219)PubMedCrossRefGoogle Scholar
  15. Baune BT, Caliskan S, Todder D (2007) Effects of adjunctive antidepressant therapy with quetiapine on clinical outcome, quality of sleep and daytime motor activity in patients with treatment-resistant depression. Hum Psychopharmacol 22(1):1–9PubMedCrossRefGoogle Scholar
  16. Bechtold DA, Gibbs JE, Loudon AS (2010) Circadian dysfunction in disease. Trends Pharmacol Sci 31(5):191–198PubMedCrossRefGoogle Scholar
  17. Bedrosian TA, Fonken LK, Walton JC, Haim A, Nelson RJ (2011) Dim light at night provokes depression-like behaviors and reduces CA1 dendritic spine density in female hamsters. Psychoneuroendocrinology 36(7):1062–1069PubMedCrossRefGoogle Scholar
  18. Bellani M, Dusi N, Yeh P H, Soares JC, Brambilla P (2011) The effects of antidepressants on human brain as detected by imaging studies. Focus on major depression. Prog Neuropsychopharmacol Biol Psychiatry 35(7):1544–1552Google Scholar
  19. Ben Menachem-Zidon O, Avital A, Ben-Menahem Y, Goshen I, Kreisel T, Shmueli EM, Segal M, Ben Hur T, Yirmiya R (2011) Astrocytes support hippocampal-dependent memory and long-term potentiation via interleukin-1 signaling. Brain Behav Immun 25(5):1008–1016PubMedCrossRefGoogle Scholar
  20. Besedovsky L, Lange T, Born J (2012) Sleep and immune function. Pflugers Arch 463(1):121–137PubMedCrossRefGoogle Scholar
  21. Beurel E (2011) Regulation by glycogen synthase kinase-3 of inflammation and T cells in CNS diseases. Front Mol Neurosci 4:18PubMedCrossRefGoogle Scholar
  22. Beynon AL, Coogan AN (2010) Diurnal, age, and immune regulation of interleukin-1beta and interleukin-1 type 1 receptor in the mouse suprachiasmatic nucleus. Chronobiol Int 27(8):1546–1563PubMedCrossRefGoogle Scholar
  23. Bollinger T, Bollinger A, Oster H, Solbach W (2010) Sleep, immunity, and circadian clocks: a mechanistic model. Gerontology 56(6):574–580PubMedCrossRefGoogle Scholar
  24. Bondy SC, Li H, Zhou J, Wu M, Bailey JA, Lahiri DK (2010) Melatonin alters age-related changes in transcription factors and kinase activation. Neurochem Res 35(12):2035–2042PubMedCrossRefGoogle Scholar
  25. Borgs L, Beukelaers P, Vandenbosch R, Nguyen L, Moonen G, Maquet P, Albrecht U, Belachew S, Malgrange B (2009) Period 2 regulates neural stem/progenitor cell proliferation in the adult hippocampus. BMC Neurosci 10:30PubMedCrossRefGoogle Scholar
  26. Cabras S, Saba F, Reali C, Scorciapino ML, Sirigu A, Talani G, Biggio G, Sogos V (2010) Antidepressant imipramine induces human astrocytes to differentiate into cells with neuronal phenotype. Int J Neuropsychopharmacol 13(5):603–615PubMedCrossRefGoogle Scholar
  27. Capuron L, Miller AH (2011) Immune system to brain signaling: neuropsychopharmacological implications. Pharmacol Ther 130(2):226–238PubMedCrossRefGoogle Scholar
  28. Carroll BJ (2012) Novel melatonin-based treatments for major depression. Lancet 379(9812):216 (author reply 217–219)PubMedCrossRefGoogle Scholar
  29. Castanon-Cervantes O, Wu M, Ehlen JC, Paul K, Gamble KL, Johnson RL, Besing RC, Menaker M, Gewirtz AT, Davidson AJ (2010) Dysregulation of inflammatory responses by chronic circadian disruption. J Immunol 185(10):5796–5805PubMedCrossRefGoogle Scholar
  30. Cavadini G, Petrzilka S, Kohler P, Jud C, Tobler I, Birchler T, Fontana A (2007) TNF-alpha suppresses the expression of clock genes by interfering with E-box-mediated transcription. Proc Nat Acad Sci USA 104(31):12843–12848PubMedCrossRefGoogle Scholar
  31. Cecon E, Fernandes PA, Pinato L, Ferreira ZS, Markus RP (2010) Daily variation of constitutively activated nuclear factor kappa B (NFKB) in rat pineal gland. Chronobiol Int 27(1):52–67PubMedCrossRefGoogle Scholar
  32. Chen L, Taishi P, Majde JA, Peterfi Z, Obal F Jr, Krueger JM (2004) The role of nitric oxide synthases in the sleep responses to tumor necrosis factor-alpha. Brain Behav Immun 18(4):390–398PubMedCrossRefGoogle Scholar
  33. Chen F, Madsen TM, Wegener G, Nyengaard JR (2010) Imipramine treatment increases the number of hippocampal synapses and neurons in a genetic animal model of depression. Hippocampus 20(12):1376–1384PubMedCrossRefGoogle Scholar
  34. Christoffel DJ, Golden SA, Russo SJ (2011) Structural and synaptic plasticity in stress-related disorders. Rev Neurosci 22(5):535–549PubMedGoogle Scholar
  35. Chu YX, Zhang Y, Zhang YQ, Zhao ZQ (2010) Involvement of microglial P2X7 receptors and downstream signaling pathways in long-term potentiation of spinal nociceptive responses. Brain Behav Immun 24(7):1176–1189PubMedCrossRefGoogle Scholar
  36. Cohen H, Ziv Y, Cardon M, Kaplan Z, Matar MA, Gidron Y, Schwartz M, Kipnis J (2006) Maladaptation to mental stress mitigated by the adaptive immune system via depletion of naturally occurring regulatory CD4+ CD25+ cells. J Neurobiol 66(6):552–563PubMedCrossRefGoogle Scholar
  37. Conboy L, Varea E, Castro JE, Sakouhi-Ouertatani H, Calandra T, Lashuel HA, Sandi C (2011) Macrophage migration inhibitory factor is critically involved in basal and fluoxetine-stimulated adult hippocampal cell proliferation and in anxiety, depression, and memory-related behaviors. Mol Psychiatry 16(5):533–547PubMedCrossRefGoogle Scholar
  38. Coogan AN, Thome J (2011) Chronotherapeutics and psychiatry: setting the clock to relieve the symptoms. World J Biol Psychiatry 12(1):40–43PubMedGoogle Scholar
  39. Coogan AN, Wyse CA (2008) Neuroimmunology of the circadian clock. Brain Res 1232:104–112PubMedCrossRefGoogle Scholar
  40. Corona AW, Huang Y, O’Connor JC, Dantzer R, Kelley KW, Popovich PG, Godbout JP (2010) Fractalkine receptor (CX3CR1) deficiency sensitizes mice to the behavioral changes induced by lipopolysaccharide. J Neuroinflamm 7:93CrossRefGoogle Scholar
  41. Crumbley C, Burris TP (2011) Direct regulation of CLOCK expression by REV-ERB. PLoS One 6(3):e17290PubMedCrossRefGoogle Scholar
  42. Cuesta M, Mendoza J, Clesse D, Pevet P, Challet E (2008) Serotonergic activation potentiates light resetting of the main circadian clock and alters clock gene expression in a diurnal rodent. Exp Neurol 210(2):501–513PubMedCrossRefGoogle Scholar
  43. Dagyte G, Trentani A, Postema F, Luiten PG, Den Boer JA, Gabriel C, Mocaer E, Meerlo P, Van der Zee EA (2010) The novel antidepressant agomelatine normalizes hippocampal neuronal activity and promotes neurogenesis in chronically stressed rats. CNS Neurosci Ther 16(4):195–207PubMedCrossRefGoogle Scholar
  44. Dagyte G, Crescente I, Postema F, Seguin L, Gabriel C, Mocaer E, Boer JA, Koolhaas JM (2011) Agomelatine reverses the decrease in hippocampal cell survival induced by chronic mild stress. Behav Brain Res 218(1):121–128PubMedCrossRefGoogle Scholar
  45. Dantzer R, O’Connor JC, Freund GG, Johnson RW, Kelley KW (2008) From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci 9(1):46–56PubMedCrossRefGoogle Scholar
  46. Dantzer R, O’Connor JC, Lawson MA, Kelley KW (2011) Inflammation-associated depression: from serotonin to kynurenine. Psychoneuroendocrinology 36(3):426–436PubMedCrossRefGoogle Scholar
  47. David DJ, Wang J, Samuels BA, Rainer Q, David I, Gardier AM, Hen R (2010) Implications of the functional integration of adult-born hippocampal neurons in anxiety-depression disorders. Neuroscientist 16(5):578–591PubMedCrossRefGoogle Scholar
  48. Delerive P, Monte D, Dubois G, Trottein F, Fruchart-Najib J, Mariani J, Fruchart JC, Staels B (2001) The orphan nuclear receptor ROR alpha is a negative regulator of the inflammatory response. EMBO Rep 2(1):42–48PubMedCrossRefGoogle Scholar
  49. Deng XH, Bertini G, Palomba M, Xu YZ, Bonaconsa M, Nygard M, Bentivoglio M (2010) Glial transcripts and immune-challenged glia in the suprachiasmatic nucleus of young and aged mice. Chronobiol Int 27(4):742–767PubMedCrossRefGoogle Scholar
  50. Derecki NC, Cardani AN, Yang CH, Quinnies KM, Crihfield A, Lynch KR, Kipnis J (2010) Regulation of learning and memory by meningeal immunity: a key role for IL-4. J Exp Med 207(5):1067–1080PubMedCrossRefGoogle Scholar
  51. Derecki NC, Quinnies KM, Kipnis J (2011) Alternatively activated myeloid (M2) cells enhance cognitive function in immune compromised mice. Brain Behav Immun 25(3):379–385PubMedCrossRefGoogle Scholar
  52. D’Mello C, Le T, Swain MG (2009) Cerebral microglia recruit monocytes into the brain in response to tumor necrosis factoralpha signaling during peripheral organ inflammation. J Neurosci 29(7):2089–2102PubMedCrossRefGoogle Scholar
  53. Dominguez-Alonso A, Ramirez-Rodriguez G, Benitez-King G (2011) Melatonin increases dendritogenesis in the hilus of hippocampal organotypic cultures. J Pineal Res (accepted, uncorrected proof)Google Scholar
  54. Dowlati Y, Herrmann N, Swardfager W, Liu H, Sham L, Reim EK, Lanctot KL (2010) A meta-analysis of cytokines in major depression. Biol Psychiatry 67(5):446–457PubMedCrossRefGoogle Scholar
  55. Drevets WC (2003) Neuroimaging abnormalities in the amygdala in mood disorders. Ann N Y Acad Sci 985:420–444PubMedCrossRefGoogle Scholar
  56. Drevets WC (2007) Orbitofrontal cortex function and structure in depression. Ann N Y Acad Sci 1121:499–527PubMedCrossRefGoogle Scholar
  57. Drevets WC, Price JL, Furey ML (2008) Brain structural and functional abnormalities in mood disorders: implications for neurocircuitry models of depression. Brain Struct Funct 213(1–2):93–118PubMedCrossRefGoogle Scholar
  58. Duman RS, Voleti B (2012) Signaling pathways underlying the pathophysiology and treatment of depression: novel mechanisms for rapid-acting agents. Trends Neurosci 35(1):47–56PubMedCrossRefGoogle Scholar
  59. Dzhagalov I, Zhang N, He YW (2004) The roles of orphan nuclear receptors in the development and function of the immune system. Cell Mol Immunol 1(6):401–407PubMedGoogle Scholar
  60. Einstein O, Grigoriadis N, Mizrachi-Kol R, Reinhartz E, Polyzoidou E, Lavon I, Milonas I, Karussis D, Abramsky O, Ben-Hur T (2006) Transplanted neural precursor cells reduce brain inflammation to attenuate chronic experimental autoimmune encephalomyelitis. Exp Neurol 198(2):275–284PubMedCrossRefGoogle Scholar
  61. Ekdahl CT, Kokaia Z, Lindvall O (2009) Brain inflammation and adult neurogenesis: the dual role of microglia. Neuroscience 158(3):1021–1029PubMedCrossRefGoogle Scholar
  62. Eyre H, Baune BT (2012a) Neuroimmunological effects of physical exercise in depression. Brain Behav Immun 26(2):251–266PubMedCrossRefGoogle Scholar
  63. Eyre H, Baune BT (2012). Neuroplastic changes in depression: a role for the immune system. Psychoneuroendocrinology (accepted; in press)Google Scholar
  64. Fernandes PA, Cecon E, Markus RP, Ferreira ZS (2006) Effect of TNF-alpha on the melatonin synthetic pathway in the rat pineal gland: basis for a ‘feedback’ of the immune response on circadian timing. J Pineal Res 41(4):344–350PubMedCrossRefGoogle Scholar
  65. Fornaro M, Martino M, Battaglia F, Colicchio S, Perugi G (2011) Increase in IL-6 levels among major depressive disorder patients after a 6-week treatment with duloxetine 60 mg/day: a preliminary observation. Neuropsychiatr Dis Treat 7:51–56PubMedCrossRefGoogle Scholar
  66. Frank MG, Baratta MV, Sprunger DB, Watkins LR, Maier SF (2007) Microglia serve as a neuroimmune substrate for stress-induced potentiation of CNS pro-inflammatory cytokine responses. Brain Behav Immun 21(1):47–59PubMedCrossRefGoogle Scholar
  67. Frenois F, Moreau M, O’Connor J, Lawson M, Micon C, Lestage J, Kelley KW, Dantzer R, Castanon N (2007) Lipopolysaccharide induces delayed FosB/DeltaFosB immunostaining within the mouse extended amygdala, hippocampus and hypothalamus, that parallel the expression of depressive-like behavior. Psychoneuroendocrinology 32(5):516–531PubMedCrossRefGoogle Scholar
  68. Galecki P, Szemraj J, Bartosz G, Bienkiewicz M, Galecka E, Florkowski A, Lewinski A, Karbownik-Lewinska M (2010) Single-nucleotide polymorphisms and mRNA expression for melatonin synthesis rate-limiting enzyme in recurrent depressive disorder. J Pineal Res 48(4):311–317PubMedCrossRefGoogle Scholar
  69. Garay PA, McAllister AK (2010) Novel roles for immune molecules in neural development: implications for neurodevelopmental disorders. Front Synaptic Neurosci 2:136PubMedGoogle Scholar
  70. Garcia-Macia M, Vega-Naredo I, De Gonzalo-Calvo D, Rodriguez-Gonzalez SM, Camello PJ, Camello-Almaraz C, Martin-Cano FE, Rodriguez-Colunga MJ, Pozo MJ, Coto-Montes AM (2011) Melatonin induces neural SOD2 expression independent of the NF-kappaB pathway and improves the mitochondrial population and function in old mice. J Pineal Res 50(1):54–63PubMedCrossRefGoogle Scholar
  71. Garriock HA, Kraft JB, Shyn SI, Peters EJ, Yokoyama JS, Jenkins GD, Reinalda MS, Slager SL, McGrath PJ, Hamilton SP (2010) A genome wide association study of citalopram response in major depressive disorder. Biol Psychiatry 67(2):133–138PubMedCrossRefGoogle Scholar
  72. Gedge L, Lazowski L, Murray D, Jokic R, Milev R (2010) Effects of quetiapine on sleep architecture in patients with unipolar or bipolar depression. Neuropsychiatr Dis Treat 6:501–508PubMedGoogle Scholar
  73. Gibbs JE, Blaikley J, Beesley S, Matthews L, Simpson KD, Boyce SH, Farrow SN, Else KJ, Singh D, Ray DW, Loudon AS (2011) The nuclear receptor REV-ERBalpha mediates circadian regulation of innate immunity through selective regulation of inflammatory cytokines. Proc Natl Acad Sci USA 109(2):582–587Google Scholar
  74. Gibson EM, Wang C, Tjho S, Khattar N, Kriegsfeld LJ (2010) Experimental ‘jet lag’ inhibits adult neurogenesis and produces long-term cognitive deficits in female hamsters. PLoS One 5(12):e15267PubMedCrossRefGoogle Scholar
  75. Gilhooley MJ, Pinnock SB, Herbert J (2011) Rhythmic expression of per1 in the dentate gyrus is suppressed by corticosterone: implications for neurogenesis. Neurosci Lett 489(3):177–181PubMedCrossRefGoogle Scholar
  76. Glozier N, Martiniuk A, Patton G, Ivers R, Li Q, Hickie I, Senserrick T, Woodward M, Norton R, Stevenson M (2010) Short sleep duration in prevalent and persistent psychological distress in young adults: the DRIVE study. Sleep 33(9):1139–1145PubMedGoogle Scholar
  77. Goehler LE, Gaykema RP, Nguyen KT, Lee JE, Tilders FJ, Maier SF, Watkins LR (1999) Interleukin-1beta in immune cells of the abdominal vagus nerve: a link between the immune and nervous systems? J Neurosci 19(7):2799–2806PubMedGoogle Scholar
  78. Gonzalez-Perez O, Jauregui-Huerta F, Galvez-Contreras AY (2010a) Immune system modulates the function of adult neural stem cells. Curr Immunol Rev 6(3):167–173PubMedCrossRefGoogle Scholar
  79. Gonzalez-Perez O, Quinones-Hinojosa A, Garcia-Verdugo JM (2010b) Immunological control of adult neural stem cells. J Stem Cells 5(1):23–31PubMedGoogle Scholar
  80. Guilding C, Piggins HD (2007) Challenging the omnipotence of the suprachiasmatic timekeeper: are circadian oscillators present throughout the mammalian brain? Eur J Neurosci 25(11):3195–3216PubMedCrossRefGoogle Scholar
  81. Guzman-Marin R, Suntsova N, Bashir T, Szymusiak R, McGinty D (2007) Cell proliferation in the dentate gyrus of the adult rat fluctuates with the light-dark cycle. Neurosci Lett 422(3):198–201PubMedCrossRefGoogle Scholar
  82. Halassa MM, Florian C, Fellin T, Munoz JR, Lee SY, Abel T, Haydon PG, Frank MG (2009) Astrocytic modulation of sleep homeostasis and cognitive consequences of sleep loss. Neuron 61(2):213–219PubMedCrossRefGoogle Scholar
  83. Hale A, Corral RM, Mencacci C, Ruiz JS, Severo CA, Gentil V (2010) Superior antidepressant efficacy results of agomelatine versus fluoxetine in severe MDD patients: a randomized, double-blind study. Int Clin Psychopharmacol 25(6):305–314PubMedCrossRefGoogle Scholar
  84. Hannestad J, Dellagioia N, Bloch M (2011) The effect of antidepressant medication treatment on serum levels of inflammatory cytokines: a meta-analysis. Neuropsychopharmacology 36(12):2452–2459PubMedCrossRefGoogle Scholar
  85. Hanson ND, Owens MJ, Nemeroff CB (2011) Depression, antidepressants, and neurogenesis: a critical reappraisal. Neuropsychopharmacology 36(13):2589–2602PubMedCrossRefGoogle Scholar
  86. Haroon E, Raison CL, Miller AH (2012) Psychoneuroimmunology meets neuropsychopharmacology: translational implications of the impact of inflammation on behavior. Neuropsychopharmacology 37(1):137–162PubMedCrossRefGoogle Scholar
  87. Hart BL (1988) Biological basis of the behavior of sick animals. Neurosci Biobehav Rev 12(2):123–137PubMedCrossRefGoogle Scholar
  88. Harvey AG (2011) Sleep and circadian functioning: critical mechanisms in the mood disorders? Annu Rev Clin Psychol 7:297–319PubMedCrossRefGoogle Scholar
  89. Hickie IB, Rogers NL (2011) Novel melatonin-based therapies: potential advances in the treatment of major depression. Lancet 378(9791):621–631PubMedCrossRefGoogle Scholar
  90. Himmerich H, Milenovic S, Fulda S, Plumakers B, Sheldrick AJ, Michel TM, Kircher T, Rink L (2010) Regulatory T cells increased while IL-1beta decreased during antidepressant therapy. J Psychiatr Res 44(15):1052–1057PubMedCrossRefGoogle Scholar
  91. Hinojosa AE, Garcia-Bueno B, Leza JC, Madrigal JL (2011) CCL2/MCP-1 modulation of microglial activation and proliferation. J Neuroinflamm 8:77CrossRefGoogle Scholar
  92. Howland RH (2012) Novel melatonin-based treatments for major depression. Lancet 379(9812):215–216 (author reply 217–219)PubMedCrossRefGoogle Scholar
  93. Hsu JC, Lee YS, Chang CN, Chuang HL, Ling EA, Lan CT (2003) Sleep deprivation inhibits expression of NADPH-d and NOS while activating microglia and astroglia in the rat hippocampus. Cells Tissues Organs 173(4):242–254PubMedCrossRefGoogle Scholar
  94. Hunsberger J, Austin DR, Henter ID, Chen G (2009) The neurotrophic and neuroprotective effects of psychotropic agents. Dialogues Clin Neurosci 11(3):333–348PubMedGoogle Scholar
  95. Imeri L, Opp MR (2009) How (and why) the immune system makes us sleep. Nat Rev Neurosci 10(3):199–210PubMedCrossRefGoogle Scholar
  96. Jackson FR (2011) Glial cell modulation of circadian rhythms. Glia 59(9):1341–1350PubMedCrossRefGoogle Scholar
  97. Janssen DG, Caniato RN, Verster JC, Baune BT (2010) A psychoneuroimmunological review on cytokines involved in antidepressant treatment response. Hum Psychopharmacol 25(3):201–215PubMedCrossRefGoogle Scholar
  98. Jilg A, Lesny S, Peruzki N, Schwegler H, Selbach O, Dehghani F, Stehle JH (2010) Temporal dynamics of mouse hippocampal clock gene expression support memory processing. Hippocampus 20(3):377–388PubMedGoogle Scholar
  99. Jope RS (2011) Glycogen synthase kinase-3 in the etiology and treatment of mood disorders. Front Mol Neurosci 4:16PubMedCrossRefGoogle Scholar
  100. Jureidini J, Raven M (2012) Novel melatonin-based treatments for major depression. Lancet 379(9812):216–217 (author reply 217–219)PubMedCrossRefGoogle Scholar
  101. Jurgens HA, Johnson RW (2012) Dysregulated neuronal-microglial cross-talk during aging, stress and inflammation. Exp Neurol 233(1):40–48PubMedCrossRefGoogle Scholar
  102. Kalehua AN, Nagel JE, Whelchel LM, Gides JJ, Pyle RS, Smith RJ, Kusiak JW, Taub DD (2004) Monocyte chemoattractant protein-1 and macrophage inflammatory protein-2 are involved in both excitotoxin-induced neurodegeneration and regeneration. Exp Cell Res 297(1):197–211PubMedCrossRefGoogle Scholar
  103. Karatsoreos IN, Bhagat S, Bloss EB, Morrison JH, McEwen BS (2011) Disruption of circadian clocks has ramifications for metabolism, brain, and behavior. Proc Nat Acad Sci USA 108(4):1657–1662PubMedCrossRefGoogle Scholar
  104. Kasper S, Hajak G, Wulff K, Hoogendijk WJ, Montejo AL, Smeraldi E, Rybakowski JK, Quera-Salva MA, Wirz-Justice AM, Picarel-Blanchot F, Bayle FJ (2010) Efficacy of the novel antidepressant agomelatine on the circadian rest-activity cycle and depressive and anxiety symptoms in patients with major depressive disorder: a randomized, double-blind comparison with sertraline. J Clin Psychiatry 71(2):109–120PubMedCrossRefGoogle Scholar
  105. Kaster MP, Gadotti VM, Calixto JB, Santos AR, Rodrigues AL (2012) Depressive-like behavior induced by tumor necrosis factor-alpha in mice. Neuropharmacology 62(1):419–426PubMedCrossRefGoogle Scholar
  106. Kent S, Bluthe RM, Kelley KW, Dantzer R (1992) Sickness behavior as a new target for drug development. Trends Pharmacol Sci 13(1):24–28PubMedCrossRefGoogle Scholar
  107. Kim HS, Suh YH (2009) Minocycline and neurodegenerative diseases. Behav Brain Res 196(2):168–179PubMedCrossRefGoogle Scholar
  108. Kipnis J, Derecki NC, Yang C, Scrable H (2008) Immunity and cognition: what do age-related dementia, HIV-dementia and ‘chemo-brain’ have in common? Trends Immunol 29(10):455–463PubMedCrossRefGoogle Scholar
  109. Kondratova AA, Kondratov RV (2012) The circadian clock and pathology of the ageing brain. Nat Rev Neurosci 13(5):325–335PubMedGoogle Scholar
  110. Koyanagi S, Ohdo S (2002) Alteration of intrinsic biological rhythms during interferon treatment and its possible mechanism. Mol Pharmacol 62(6):1393–1399PubMedCrossRefGoogle Scholar
  111. Kronfeld-Schor N, Einat H (2012) Circadian rhythms and depression: human psychopathology and animal models. Neuropharmacology 62(1):101–114PubMedCrossRefGoogle Scholar
  112. Krueger JM, Walter J, Dinarello CA, Wolff SM, Chedid L (1984) Sleep-promoting effects of endogenous pyrogen (interleukin-1). Am J Physiol 246(6 Pt 2):R994–R999PubMedGoogle Scholar
  113. Krystal AD (2010) Antidepressant and Antipsychotic Drugs. Sleep Med Clin 5(4):571–589PubMedCrossRefGoogle Scholar
  114. Kubera M, Obuchowicz E, Goehler L, Brzeszcz J, Maes M (2011) In animal models, psychosocial stress-induced (neuro)inflammation, apoptosis and reduced neurogenesis are associated to the onset of depression. Prog Neuropsychopharmacol Biol Psychiatry 35(3):744–759PubMedCrossRefGoogle Scholar
  115. Lange T, Dimitrov S, Born J (2010) Effects of sleep and circadian rhythm on the human immune system. Ann N Y Acad Sci 1193:48–59PubMedCrossRefGoogle Scholar
  116. Lanni C, Govoni S, Lucchelli A, Boselli C (2009) Depression and antidepressants: molecular and cellular aspects. Cell Mol Life Sci 66(18):2985–3008PubMedCrossRefGoogle Scholar
  117. Lau BW, Ren C, Yang J, Yan SW, Chang RC, Pu M, So KF (2011) Light deprivation induces depression-like behavior and suppresses neurogenesis in diurnal mongolian gerbil (Meriones unguiculatus). Cell Transplant 20(6):871–881PubMedCrossRefGoogle Scholar
  118. Lavebratt C, Sjoholm LK, Soronen P, Paunio T, Vawter MP, Bunney WE, Adolfsson R, Forsell Y, Wu JC, Kelsoe JR, Partonen T, Schalling M (2010) CRY2 is associated with depression. PLoS One 5(2):e9407PubMedCrossRefGoogle Scholar
  119. Lee JH, Sancar A (2011) Regulation of apoptosis by the circadian clock through NF-kappaB signaling. Proc Nat Acad Sci USA 108(29):12036–12041PubMedCrossRefGoogle Scholar
  120. Lee MY, Kuan YH, Chen HY, Chen TY, Chen ST, Huang CC, Yang IP, Hsu YS, Wu TS, Lee EJ (2007) Intravenous administration of melatonin reduces the intracerebral cellular inflammatory response following transient focal cerebral ischemia in rats. J Pineal Res 42(3):297–309PubMedCrossRefGoogle Scholar
  121. Lee S, Jeong J, Kwak Y, Park SK (2010) Depression research: where are we now? Mol Brain 3:8PubMedCrossRefGoogle Scholar
  122. Lemoine P, Guilleminault C, Alvarez E (2007) Improvement in subjective sleep in major depressive disorder with a novel antidepressant, agomelatine: randomized, double-blind comparison with venlafaxine. J Clin Psychiatry 68(11):1723–1732PubMedCrossRefGoogle Scholar
  123. Leone MJ, Marpegan L, Bekinschtein TA, Costas MA, Golombek DA (2006) Suprachiasmatic astrocytes as an interface for immune-circadian signalling. J Neurosci Res 84(7):1521–1527PubMedCrossRefGoogle Scholar
  124. Levi F, Schibler U (2007) Circadian rhythms: mechanisms and therapeutic implications. Annu Rev Pharmacol Toxicol 47:593–628PubMedCrossRefGoogle Scholar
  125. Liu J, Malkani G, Shi X, Meyer M, Cunningham-Runddles S, Ma X, Sun ZS (2006) The circadian clock Period 2 gene regulates gamma interferon production of NK cells in host response to lipopolysaccharide-induced endotoxic shock. Infect Immun 74(8):4750–4756PubMedCrossRefGoogle Scholar
  126. Liu D, Wang Z, Liu S, Wang F, Zhao S, Hao A (2011) Anti-inflammatory effects of fluoxetine in lipopolysaccharide(LPS)-stimulated microglial cells. Neuropharmacology 61(4):592–599PubMedCrossRefGoogle Scholar
  127. Lloret-Linares C, Bergmann JF, Mouly S (2012) Novel melatonin-based treatments for major depression. Lancet 379(9812):216 (author reply 217–219)PubMedCrossRefGoogle Scholar
  128. Loftis JM, Huckans M, Morasco BJ (2010) Neuroimmune mechanisms of cytokine-induced depression: current theories and novel treatment strategies. Neurobiol Dis 37(3):519–533PubMedCrossRefGoogle Scholar
  129. Logan RW, Sarkar DK (2012) Circadian nature of immune function. Mol Cell Endocrinol 349(1):82–90PubMedCrossRefGoogle Scholar
  130. Lucassen PJ, Meerlo P, Naylor AS, van Dam AM, Dayer AG, Fuchs E, Oomen CA, Czeh B (2010) Regulation of adult neurogenesis by stress, sleep disruption, exercise and inflammation: Implications for depression and antidepressant action. Eur Neuropsychopharmacol J Eur Coll Neuropsychopharmacol 20(1):1–17CrossRefGoogle Scholar
  131. Ma WP, Cao J, Tian M, Cui MH, Han HL, Yang YX, Xu L (2007) Exposure to chronic constant light impairs spatial memory and influences long-term depression in rats. Neurosci Res 59(2):224–230PubMedCrossRefGoogle Scholar
  132. MacQueen G, Frodl T (2011) The hippocampus in major depression: evidence for the convergence of the bench and bedside in psychiatric research? Mol Psychiatry 16(3):252–264PubMedCrossRefGoogle Scholar
  133. Maes M (2010) Depression is an inflammatory disease, but cell-mediated immune activation is the key component of depression. Prog Neuropsychopharmacol Biol PsychiatryGoogle Scholar
  134. Maes M, Galecki P, Chang YS, Berk M (2010) A review on the oxidative and nitrosative stress (O&NS) pathways in major depression and their possible contribution to the (neuro)degenerative processes in that illness. Prog Neuropsychopharmacol Biol Psychiatry 35(3):676–692Google Scholar
  135. Manda K, Reiter RJ (2010) Melatonin maintains adult hippocampal neurogenesis and cognitive functions after irradiation. Prog Neurobiol 90(1):60–68PubMedCrossRefGoogle Scholar
  136. Manzar MD, Hussain ME (2012) Sleep-immune system interaction: advantages and challenges of human sleep loss model. Front Neurol 3:2PubMedGoogle Scholar
  137. Martino G, Pluchino S, Bonfanti L, Schwartz M (2011) Brain regeneration in physiology and pathology: the immune signature driving therapeutic plasticity of neural stem cells. Physiol Rev 91(4):1281–1304PubMedCrossRefGoogle Scholar
  138. Mayberg HS (2003) Modulating dysfunctional limbic–cortical circuits in depression: towards development of brain-based algorithms for diagnosis and optimised treatment. Br Med Bull 65:193–207PubMedCrossRefGoogle Scholar
  139. Mayers AG, Baldwin DS (2005) Antidepressants and their effect on sleep. Hum Psychopharmacol 20(8):533–559PubMedCrossRefGoogle Scholar
  140. McAfoose J, Baune BT (2009) Evidence for a cytokine model of cognitive function. Neurosci Biobehav Rev 33(3):355–366PubMedCrossRefGoogle Scholar
  141. McCarthy MJ, Nievergelt CM, Kelsoe JR, Welsh DK (2012) A survey of genomic studies supports association of circadian clock genes with bipolar disorder spectrum illnesses and lithium response. PLoS One 7(2):e32091PubMedCrossRefGoogle Scholar
  142. McClung CA (2011) Circadian rhythms and mood regulation: insights from pre-clinical models. Eur Neuropsychopharmacol J Eur Coll Neuropsychopharmacol 21(Suppl 4):S683–S693CrossRefGoogle Scholar
  143. McNamee EN, Ryan KM, Griffin EW, Gonzalez-Reyes RE, Ryan KJ, Harkin A, Connor TJ (2010) Noradrenaline acting at central beta-adrenoceptors induces interleukin-10 and suppressor of cytokine signaling-3 expression in rat brain: implications for neurodegeneration. Brain Behav Immun 24(4):660–671PubMedCrossRefGoogle Scholar
  144. Meerlo P, Mistlberger RE, Jacobs BL, Heller HC, McGinty D (2009) New neurons in the adult brain: the role of sleep and consequences of sleep loss. Sleep Med Rev 13(3):187–194PubMedCrossRefGoogle Scholar
  145. Miller AH (2010) Depression and immunity: a role for T cells? Brain Behav Immun 24(1):1–8PubMedCrossRefGoogle Scholar
  146. Miller AH, Maletic V, Raison CL (2009) Inflammation and its discontents: the role of cytokines in the pathophysiology of major depression. Biol Psychiatry 65(9):732–741PubMedCrossRefGoogle Scholar
  147. Min K-j, Jang J, Kwon T (2011) Inhibitory effects of melatonin on the lipopolysaccharide (LPS)-induced CC chemokine expression in BV2 murine microglial cells are mediated by suppression of Akt-induced NF-κB and STAT/GAS activity. J Pineal Res (accepted)Google Scholar
  148. Moher D, Liberati A, Tetzlaff J, Altman DG (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. J Clin Epidemiol 62(10):1006–1012PubMedCrossRefGoogle Scholar
  149. Monje FJ, Cabatic M, Divisch I, Kim EJ, Herkner KR, Binder BR, Pollak DD (2011) Constant darkness induces IL-6-dependent depression-like behavior through the NF-kappaB signaling pathway. J Neurosci 31(25):9075–9083PubMedCrossRefGoogle Scholar
  150. Monteleone P, Martiadis V, Maj M (2011) Circadian rhythms and treatment implications in depression. Prog Neuropsychopharmacol Biol Psychiatry 35(7):1569–1574PubMedCrossRefGoogle Scholar
  151. Mueller AD, Mear RJ, Mistlberger RE (2011) Inhibition of hippocampal neurogenesis by sleep deprivation is independent of circadian disruption and melatonin suppression. Neuroscience 193:170–181PubMedCrossRefGoogle Scholar
  152. Muller N (2010) COX-2 inhibitors as antidepressants and antipsychotics: clinical evidence. Curr Opin Investig Drugs 11(1):31–42PubMedGoogle Scholar
  153. Mundigler G, Delle-Karth G, Koreny M, Zehetgruber M, Steindl-Munda P, Marktl W, Ferti L, Siostrzonek P (2002) Impaired circadian rhythm of melatonin secretion in sedated critically ill patients with severe sepsis. Crit Care Med 30(3):536–540PubMedCrossRefGoogle Scholar
  154. Nguyen K, D’Mello C, Le T, Urbanski S, Swain MG (2012) Regulatory T cells suppress sickness behaviour development without altering liver injury in cholestatic mice. J Hepatol 56(3):626–631PubMedCrossRefGoogle Scholar
  155. Nonaka K, Nakazawa Y, Kotorii T (1983) Effects of antibiotics, minocycline and ampicillin, on human sleep. Brain Res 288(1–2):253–259PubMedCrossRefGoogle Scholar
  156. O’Keeffe SM, Thome J, Coogan AN (2011) The noradrenaline reuptake inhibitor atomoxetine phase-shifts the circadian clock in mice. Neuroscience 201:219–230Google Scholar
  157. O’Sullivan JB, Ryan KM, Curtin NM, Harkin A, Connor TJ (2009) Noradrenaline reuptake inhibitors limit neuroinflammation in rat cortex following a systemic inflammatory challenge: implications for depression and neurodegeneration. Int J Neuropsychopharmacol 12(5):687–699PubMedCrossRefGoogle Scholar
  158. O’Sullivan JB, Ryan KM, Harkin A, Connor TJ (2010) Noradrenaline reuptake inhibitors inhibit expression of chemokines IP-10 and RANTES and cell adhesion molecules VCAM-1 and ICAM-1 in the CNS following a systemic inflammatory challenge. J Neuroimmunol 220(1–2):34–42PubMedCrossRefGoogle Scholar
  159. Oishi K, Miyazaki K, Kadota K, Kikuno R, Nagase T, Atsumi G, Ohkura N, Azama T, Mesaki M, Yukimasa S, Kobayashi H, Iitaka C, Umehara T, Horikoshi M, Kudo T, Shimizu Y, Yano M, Monden M, Machida K, Matsuda J, Horie S, Todo T, Ishida N (2003) Genome-wide expression analysis of mouse liver reveals CLOCK-regulated circadian output genes. J Biol Chem 278(42):41519–41527PubMedCrossRefGoogle Scholar
  160. Paizanis E, Renoir T, Lelievre V, Saurini F, Melfort M, Gabriel C, Barden N, Mocaer E, Hamon M, Lanfumey L (2010) Behavioural and neuroplastic effects of the new-generation antidepressant agomelatine compared to fluoxetine in glucocorticoid receptor-impaired mice. Int J Neuropsychopharmacol/official scientific journal of the Collegium Internationale Neuropsychopharmacologicum 13(6):759–774Google Scholar
  161. Pandi-Perumal SR, Moscovitch A, Srinivasan V, Spence DW, Cardinali DP, Brown GM (2009) Bidirectional communication between sleep and circadian rhythms and its implications for depression: lessons from agomelatine. Prog Neurobiol 88(4):264–271PubMedCrossRefGoogle Scholar
  162. Park SE, Dantzer R, Kelley KW, McCusker RH (2011a) Central administration of insulin-like growth factor-I decreases depressive-like behavior and brain cytokine expression in mice. J Neuroinflamm 8:12CrossRefGoogle Scholar
  163. Park SE, Lawson M, Dantzer R, Kelley KW, McCusker RH (2011b) Insulin-like growth factor-I peptides act centrally to decrease depression-like behavior of mice treated intraperitoneally with lipopolysaccharide. J Neuroinflamm 8:179CrossRefGoogle Scholar
  164. Pechnick RN, Zonis S, Wawrowsky K, Cosgayon R, Farrokhi C, Lacayo L, Chesnokova V (2011) Antidepressants stimulate hippocampal neurogenesis by inhibiting p21 expression in the subgranular zone of the hippocampus. PLoS One 6(11):e27290PubMedCrossRefGoogle Scholar
  165. Petrzilka S, Taraborrelli C, Cavadini G, Fontana A, Birchler T (2009) Clock gene modulation by TNF-alpha depends on calcium and p38 MAP kinase signaling. J Biol Rhythms 24(4):283–294PubMedCrossRefGoogle Scholar
  166. Pigeon WR, Hegel M, Unutzer J, Fan MY, Sateia MJ, Lyness JM, Phillips C, Perlis ML (2008) Is insomnia a perpetuating factor for late-life depression in the IMPACT cohort? Sleep 31(4):481–488PubMedGoogle Scholar
  167. Piletz JE, Halaris A, Iqbal O, Hoppensteadt D, Fareed J, Zhu H, Sinacore J, Devane CL (2009) Pro-inflammatory biomarkers in depression: treatment with venlafaxine. World J Biol Psychiatry 10(4):313–323PubMedCrossRefGoogle Scholar
  168. Piser TM (2010) Linking the cytokine and neurocircuitry hypotheses of depression: a translational framework for discovery and development of novel anti-depressants. Brain Behav Immun 24(4):515–524PubMedCrossRefGoogle Scholar
  169. Plotkin SR, Banks WA, Kastin AJ (1996) Comparison of saturable transport and extracellular pathways in the passage of interleukin-1 alpha across the blood-brain barrier. J Neuroimmunol 67(1):41–47PubMedGoogle Scholar
  170. Pluchino S, Zanotti L, Rossi B, Brambilla E, Ottoboni L, Salani G, Martinello M, Cattalini A, Bergami A, Furlan R, Comi G, Constantin G, Martino G (2005) Neurosphere-derived multipotent precursors promote neuroprotection by an immunomodulatory mechanism. Nature 436(7048):266–271PubMedCrossRefGoogle Scholar
  171. Pluchino S, Zanotti L, Brambilla E, Rovere-Querini P, Capobianco A, Alfaro-Cervello C, Salani G, Cossetti C, Borsellino G, Battistini L, Ponzoni M, Doglioni C, Garcia-Verdugo JM, Comi G, Manfredi AA, Martino G (2009) Immune regulatory neural stem/precursor cells protect from central nervous system autoimmunity by restraining dendritic cell function. PLoS One 4(6):e5959PubMedCrossRefGoogle Scholar
  172. Quan N, Banks WA (2007) Brain-immune communication pathways. Brain Behav Immun 21(6):727–735PubMedCrossRefGoogle Scholar
  173. Racagni G, Riva MA, Molteni R, Musazzi L, Calabrese F, Popoli M, Tardito D (2011) Mode of action of agomelatine: Synergy between melatonergic and 5-HT(2C) receptors. World J Biol Psychiatry: the official journal of the World Federation of Societies of Biological Psychiatry 12(8):574–587Google Scholar
  174. Rainer Q, Xia L, Guilloux JP, Gabriel C, Mocaer E, Hen R, Enhamre E, Gardier AM, David DJ (2011) Beneficial behavioural and neurogenic effects of agomelatine in a model of depression/anxiety. Int J Neuropsychopharmacol/official scientific journal of the Collegium Internationale Neuropsychopharmacologicum 1–15Google Scholar
  175. Raison CL, Miller AH (2011) Is depression an inflammatory disorder? Curr Psychiatry Rep 13(6):467–475PubMedCrossRefGoogle Scholar
  176. Ramirez-Rodriguez G, Klempin F, Babu H, Benitez-King G, Kempermann G (2009) Melatonin modulates cell survival of new neurons in the hippocampus of adult mice. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology 34(9):2180–2191CrossRefGoogle Scholar
  177. Ramirez-Rodriguez G, Ortiz-Lopez L, Dominguez-Alonso A, Benitez-King GA, Kempermann G (2011) Chronic treatment with melatonin stimulates dendrite maturation and complexity in adult hippocampal neurogenesis of mice. J Pineal Res 50(1):29–37PubMedCrossRefGoogle Scholar
  178. Ron-Harel N, Cardon M, Schwartz M (2011) Brain homeostasis is maintained by “danger” signals stimulating a supportive immune response within the brain’s borders. Brain Behav Immun 25(5):1036–1043PubMedCrossRefGoogle Scholar
  179. Ruby NF, Hwang CE, Wessells C, Fernandez F, Zhang P, Sapolsky R, Heller HC (2008) Hippocampal-dependent learning requires a functional circadian system. Proc Nat Acad Sci USA 105(40):15593–15598PubMedCrossRefGoogle Scholar
  180. Schipke CG, Heuser I, Peters O (2011) Antidepressants act on glial cells: SSRIs and serotonin elicit astrocyte calcium signaling in the mouse prefrontal cortex. J Psychiatr Res 45(2):242–248PubMedCrossRefGoogle Scholar
  181. Schwartz M, Shechter R (2010a) Protective autoimmunity functions by intracranial immunosurveillance to support the mind: The missing link between health and disease. Mol Psychiatry 15(4):342–354PubMedCrossRefGoogle Scholar
  182. Schwartz M, Shechter R (2010b) Systemic inflammatory cells fight off neurodegenerative disease. Nat Rev Neurol 6(7):405–410PubMedCrossRefGoogle Scholar
  183. Serfaty M, Raven PW (2012) Novel melatonin-based treatments for major depression. Lancet 379(9812):217 (author reply 217–219)PubMedCrossRefGoogle Scholar
  184. Shen Y, Connor TJ, Nolan Y, Kelly JP, Leonard BE (1999) Differential effect of chronic antidepressant treatments on lipopolysaccharide-induced depressive-like behavioural symptoms in the rat. Life Sci 65(17):1773–1786PubMedCrossRefGoogle Scholar
  185. Shen Y, Zhang G, Liu L, Xu S (2007) Suppressive effects of melatonin on amyloid-beta-induced glial activation in rat hippocampus. Arch Med Res 38(3):284–290PubMedCrossRefGoogle Scholar
  186. Snyder JS, Soumier A, Brewer M, Pickel J, Cameron HA (2011) Adult hippocampal neurogenesis buffers stress responses and depressive behaviour. Nature 476(7361):458–461PubMedCrossRefGoogle Scholar
  187. Sompol P, Liu X, Baba K, Paul KN, Tosini G, Iuvone PM, Ye K (2011) N-acetylserotonin promotes hippocampal neuroprogenitor cell proliferation in sleep-deprived mice. Proc Nat Acad Sci USA 108(21):8844–8849PubMedCrossRefGoogle Scholar
  188. Song JH, Marszalec W, Kai L, Yeh JZ, Narahashi T (2011) Antidepressants inhibit proton currents and tumor necrosis factor-alpha production in BV2 microglial cells. Brain Res 1435:15–23Google Scholar
  189. Soria V, Martinez-Amoros E, Escaramis G, Valero J, Perez-Egea R, Garcia C, Gutierrez-Zotes A, Puigdemont D, Bayes M, Crespo JM, Martorell L, Vilella E, Labad A, Vallejo J, Perez V, Menchon JM, Estivill X, Gratacos M, Urretavizcaya M (2010) Differential association of circadian genes with mood disorders: CRY1 and NPAS2 are associated with unipolar major depression and CLOCK and VIP with bipolar disorder. Neuropsychopharmacology 35(6):1279–1289PubMedCrossRefGoogle Scholar
  190. Soumier A, Banasr M, Lortet S, Masmejean F, Bernard N, Kerkerian-Le-Goff L, Gabriel C, Millan MJ, Mocaer E, Daszuta A (2009) Mechanisms contributing to the phase-dependent regulation of neurogenesis by the novel antidepressant, agomelatine, in the adult rat hippocampus. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology 34(11):2390–2403CrossRefGoogle Scholar
  191. Sportiche N, Suntsova N, Methippara M, Bashir T, Mitrani B, Szymusiak R, McGinty D (2010) Sustained sleep fragmentation results in delayed changes in hippocampal-dependent cognitive function associated with reduced dentate gyrus neurogenesis. Neuroscience 170(1):247–258PubMedCrossRefGoogle Scholar
  192. Sun Y, Yang Z, Niu Z, Peng J, Li Q, Xiong W, Langnas AN, Ma MY, Zhao Y (2006) MOP3, a component of the molecular clock, regulates the development of B cells. Immunology 119(4):451–460PubMedCrossRefGoogle Scholar
  193. Tamai S, Sanada K, Fukada Y (2008) Time-of-day-dependent enhancement of adult neurogenesis in the hippocampus. PLoS One 3(12):e3835PubMedCrossRefGoogle Scholar
  194. Tanti A, Belzung C (2010) Open questions in current models of antidepressant action. Br J Pharmacol 159(6):1187–1200PubMedCrossRefGoogle Scholar
  195. Thase ME, Murck H, Post A (2010) Clinical relevance of disturbances of sleep and vigilance in major depressive disorder: a review. Prim Care Companion J Clin Psychiatry 12(6)Google Scholar
  196. Todder D, Caliskan S, Baune BT (2006) Night locomotor activity and quality of sleep in quetiapine-treated patients with depression. J Clin Psychopharmacol 26(6):638–642PubMedCrossRefGoogle Scholar
  197. Todder D, Caliskan S, Baune BT (2009) Longitudinal changes of day-time and night-time gross motor activity in clinical responders and non-responders of major depression. World J Biol Psychiatry : the official journal of the World Federation of Societies of Biological Psychiatry 10(4):276–284Google Scholar
  198. Tyagi E, Agrawal R, Nath C, Shukla R (2010) Effect of melatonin on neuroinflammation and acetylcholinesterase activity induced by LPS in rat brain. Eur J Pharmacol 640(1–3):206–210PubMedCrossRefGoogle Scholar
  199. Vgontzas AN, Papanicolaou DA, Bixler EO, Lotsikas A, Zachman K, Kales A, Prolo P, Wong ML, Licinio J, Gold PW, Hermida RC, Mastorakos G, Chrousos GP (1999) Circadian interleukin-6 secretion and quantity and depth of sleep. J Clin Endocrinol Metab 84(8):2603–2607PubMedCrossRefGoogle Scholar
  200. Wakamatsu H, Yoshinobu Y, Aida R, Moriya T, Akiyama M, Shibata S (2001) Restricted-feeding-induced anticipatory activity rhythm is associated with a phase-shift of the expression of mPer1 and mPer2 mRNA in the cerebral cortex and hippocampus but not in the suprachiasmatic nucleus of mice. Eur J Neurosci 13(6):1190–1196PubMedCrossRefGoogle Scholar
  201. Walker PA, Letourneau PA, Bedi S, Shah SK, Jimenez F, Jr CS (2011) Progenitor cells as remote “bioreactors”: neuroprotection via modulation of the systemic inflammatory response. World J Stem Cells 3(2):9–18PubMedCrossRefGoogle Scholar
  202. Walsh JT, Kipnis J (2011) Regulatory T cells in CNS injury: the simple, the complex and the confused. Trends Mol Med 17(10):541–547PubMedCrossRefGoogle Scholar
  203. Warner-Schmidt JL, Vanover KE, Chen EY, Marshall JJ, Greengard P (2011) Antidepressant effects of selective serotonin reuptake inhibitors (SSRIs) are attenuated by antiinflammatory drugs in mice and humans. Proc Natl Acad Sci USA 108(22):9262–9267PubMedCrossRefGoogle Scholar
  204. Watkins LR, Goehler LE, Relton JK, Tartaglia N, Silbert L, Martin D, Maier SF (1995) Blockade of interleukin-1 induced hyperthermia by subdiaphragmatic vagotomy: evidence for vagal mediation of immune-brain communication. Neurosci Lett 183(1–2):27–31PubMedCrossRefGoogle Scholar
  205. Welberg L (2011) Psychiatric disorders: the dark side of depression. Nat Rev Neurosci 12(8):435PubMedCrossRefGoogle Scholar
  206. WHO (2008) The global burden of disease: 2004 update. The global burden of disease. WHO, GenevaGoogle Scholar
  207. Wisor JP, Schmidt MA, Clegern WC (2011) Evidence for neuroinflammatory and microglial changes in the cerebral response to sleep loss. Sleep 34(3):261–272PubMedGoogle Scholar
  208. Wong ML, Dong C, Maestre-Mesa J, Licinio J (2008) Polymorphisms in inflammation-related genes are associated with susceptibility to major depression and antidepressant response. Mol Psychiatry 13(8):800–812PubMedCrossRefGoogle Scholar
  209. Wulff K, Gatti S, Wettstein JG, Foster RG (2010) Sleep and circadian rhythm disruption in psychiatric and neurodegenerative disease. Nat Rev Neurosci 11(8):589–599PubMedCrossRefGoogle Scholar
  210. Yang J, Jiang Z, Fitzgerald DC, Ma C, Yu S, Li H, Zhao Z, Li Y, Ciric B, Curtis M, Rostami A, Zhang GX (2009) Adult neural stem cells expressing IL-10 confer potent immunomodulation and remyelination in experimental autoimmune encephalitis. J Clin Investig 119(12):3678–3691PubMedCrossRefGoogle Scholar
  211. Yirmiya R, Goshen I (2011) Immune modulation of learning, memory, neural plasticity and neurogenesis. Brain Behav Immun 25(2):181–213PubMedCrossRefGoogle Scholar
  212. Zagaar M, Alhaider I, Dao A, Levine A, Alkarawi A, Alzubaidy M, Alkadhi K (2012) The beneficial effects of regular exercise on cognition in REM sleep deprivation: behavioral, electrophysiological and molecular evidence. Neurobiol Dis 45(3):1153–1162PubMedCrossRefGoogle Scholar
  213. Zhong Y, Zhou LJ, Ren WJ, Xin WJ, Li YY, Zhang T, Liu XG (2010) The direction of synaptic plasticity mediated by C-fibers in spinal dorsal horn is decided by Src-family kinases in microglia: the role of tumor necrosis factor-alpha. Brain Behav Immun 24(6):874–880PubMedCrossRefGoogle Scholar
  214. Ziv Y, Ron N, Butovsky O, Landa G, Sudai E, Greenberg N, Cohen H, Kipnis J, Schwartz M (2006) Immune cells contribute to the maintenance of neurogenesis and spatial learning abilities in adulthood. Nat Neurosci 9(2):268–275PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Discipline of Psychiatry, School of MedicineUniversity of Adelaide: North TerraceAdelaideAustralia
  2. 2.School of Medicine and DentistryJames Cook UniversityTownsvilleAustralia

Personalised recommendations