Advertisement

Journal of Neural Transmission

, Volume 119, Issue 10, pp 1133–1145 | Cite as

Clock gene variants in mood and anxiety disorders

  • Timo Partonen
Biological Psychiatry - Review article

Abstract

Circadian clocks are driven by signals from the habitat to match the solar day and to reset their phase relative to local time. A key function of the circadian clocks allows individuals to anticipate routine environmental conditions and to adjust their behaviors to the change of conditions. In clinical practice mood, anxiety and alcohol use disorders are often comorbid conditions. Clinical data have demonstrated that there are abnormalities in the circadian rhythms in patients with mood disorders and those with alcohol use disorders. Recent findings of molecular genetics have yielded the first insight into the targets of interest. Circadian clock gene variants are a fruitful target for elucidation of the pathogenesis. The findings that have gained support indicate that genetic variants of RORA (rs2028122) and CRY1 (rs2287161) associate with depressive disorder, those of RORB (rs7022435, rs3750420, rs1157358, rs3903529) and NR1D1 (rs2314339) with bipolar disorder, and those of NPAS2 (rs11541353) and CRY2 (rs10838524) with seasonal affective disorder or winter depression. Concerning anxiety disorders and alcohol use disorders, the current findings are preliminary and need further verification to explain the association of ARNTL2, being suggestive only, with social phobia (rs2306073) and with alcohol abuse (rs7958822, rs4964057).

Keywords

Alcohol Bipolar Circadian Comorbid Depressive Polymorphism Seasonal Sleep 

Abbreviations

ARNTL

Aryl hydrocarbon receptor nuclear translocator-like

ARNTL2

Aryl hydrocarbon receptor nuclear translocator-like 2

BHLHE40

Basic helix-loop-helix family, member e40

CLOCK

Circadian locomoter output cycles kaput homolog (mouse)

CRY1

Cryptochrome 1 (photolyase-like)

CRY2

Cryptochrome 2 (photolyase-like)

CSNK1E

Casein kinase 1, epsilon

GSK3B

Glycogen synthase kinase 3 beta

NPAS2

Neuronal PAS [period—aryl hydrocarbon receptor nuclear translocator—single-minded] domain protein 2

NR1D1

Nuclear receptor subfamily 1, group D, member 1

PER1

Period homolog 1 (Drosophila)

PER2

Period homolog 2 (Drosophila)

PER3

Period homolog 3 (Drosophila)

RORA

RAR [retinoic acid receptor]-related orphan receptor A [alpha]

RORB

RAR-related orphan receptor B [beta]

SIRT1

Sirtuin 1

TIMELESS

Timeless homolog (Drosophila)

VIP

Vasoactive intestinal peptide

Notes

Conflict of interest

The author declares that he has no conflict of interest.

References

  1. Albrecht U (2010) Circadian clocks in mood-related behaviors. Ann Med 42:241–251PubMedGoogle Scholar
  2. Artioli P, Lorenzi C, Pirovano A, Serretti A, Benedetti F, Catalano M, Smeraldi E (2007) How do genes exert their role? Period 3 gene variants and possible influences on mood disorder phenotypes. Eur Neuropsychopharmacol 17:587–594PubMedGoogle Scholar
  3. Asher G, Schibler U (2011) Crosstalk between components of circadian and metabolic cycles in mammals. Cell Metab 13:125–137PubMedGoogle Scholar
  4. Bailer U, Wiesegger G, Leisch F, Fuchs K, Leitner I, Letmaier M, Konstantinidis A, Stastny J, Sieghart W, Hornik K, Mitterauer B, Kasper S, Aschauer HN (2005) No association of clock gene T3111C polymorphism and affective disorders. Eur Neuropsychopharmacol 15:51–55PubMedGoogle Scholar
  5. Barnard AR, Nolan PM (2008) When clocks go bad: neurobehavioural consequences of disrupted circadian timing. PLoS Genet 4:e1000040PubMedGoogle Scholar
  6. Beck-Friis J, Kjellman BF, Aperia B, Undén F, von Rosen D, Ljunggren JG, Wetterberg L (1985) Serum melatonin in relation to clinical variables in patients with major depressive disorder and a hypothesis of a low melatonin syndrome. Acta Psychiatr Scand 71:319–330PubMedGoogle Scholar
  7. Belle MD, Diekman CO, Forger DB, Piggins HD (2009) Daily electrical silencing in the mammalian circadian clock. Science 326:281–284PubMedGoogle Scholar
  8. Benedetti F, Serretti A, Colombo C, Barbini B, Lorenzi C, Campori E, Smeraldi E (2003) Influence of CLOCK gene polymorphism on circadian mood fluctuation and illness recurrence in bipolar depression. Am J Med Genet B Neuropsychiatr Genet 123B:23–26PubMedGoogle Scholar
  9. Benedetti F, Bernasconi A, Lorenzi C, Pontiggia A, Serretti A, Colombo C, Smeraldi E (2004a) A single nucleotide polymorphism in glycogen synthase kinase 3-β promoter gene influences onset of illness in patients affected by bipolar disorder. Neurosci Lett 355:37–40PubMedGoogle Scholar
  10. Benedetti F, Serretti A, Colombo C, Lorenzi C, Tubazio V, Smeraldi E (2004b) A glycogen synthase kinase 3-β promoter gene single nucleotide polymorphism is associated with age at onset and response to total sleep deprivation in bipolar depression. Neurosci Lett 368:123–126PubMedGoogle Scholar
  11. Benedetti F, Dallaspezia S, Fulgosi MC, Lorenzi C, Serretti A, Barbini B, Colombo C, Smeraldi E (2007) Actimetric evidence that CLOCK 3111 T/C SNP influences sleep and activity patterns in patients affected by bipolar depression. Am J Med Genet B Neuropsychiatr Genet 144B:631–635PubMedGoogle Scholar
  12. Benedetti F, Radaelli D, Bernasconi A, Dallaspezia S, Falini A, Scotti G, Lorenzi C, Colombo C, Smeraldi E (2008a) Clock genes beyond the clock: CLOCK genotype biases neural correlates of moral valence decision in depressed patients. Genes Brain Behav 7:20–25PubMedGoogle Scholar
  13. Benedetti F, Dallaspezia S, Colombo C, Pirovano A, Marino E, Smeraldi E (2008b) A length polymorphism in the circadian clock gene Per3 influences age at onset of bipolar disorder. Neurosci Lett 445:184–187PubMedGoogle Scholar
  14. Bruce VG (1972) Mutants of the biological clock in Chlamydomonas reinhardi. Genetics 70:537–548PubMedGoogle Scholar
  15. Bunney WE, Bunney BG (2000) Molecular clock genes in man and lower animals: possible implications for circadian abnormalities in depression. Neuropsychopharmacology 22:335–345PubMedGoogle Scholar
  16. Calati R, Gaspar-Barba E, Yukler A, Serretti A (2010) T3111C clock single nucleotide polymorphism and mood disorders: a meta-analysis. Chronobiol Int 27:706–721PubMedGoogle Scholar
  17. Chen R, Schirmer A, Lee Y, Lee H, Kumar V, Yoo SH, Takahashi JS, Lee C (2009) Rhythmic PER abundance defines a critical nodal point for negative feedback within the circadian clock mechanism. Mol Cell 36:417–430PubMedGoogle Scholar
  18. Comasco E, Nordquist N, Göktürk C, Aslund C, Hallman J, Oreland L, Nilsson KW (2010) The clock gene PER2 and sleep problems: association with alcohol consumption among Swedish adolescents. Ups J Med Sci 115:41–48PubMedGoogle Scholar
  19. Dallaspezia S, Lorenzi C, Pirovano A, Colombo C, Smeraldi E, Benedetti F (2011) Circadian clock gene Per3 variants influence the postpartum onset of bipolar disorder. Eur Psychiatry 26:138–140PubMedGoogle Scholar
  20. Dardente H, Fortier EE, Martineau V, Cermakian N (2007) Cryptochromes impair phosphorylation of transcriptional activators in the clock: a general mechanism for circadian repression. Biochem J 402:525–536PubMedGoogle Scholar
  21. Desan PH, Oren DA, Malison R, Price LH, Rosenbaum J, Smoller J, Charney DS, Gelernter J (2000) Genetic polymorphism at the CLOCK gene locus and major depression. Am J Med Genet 96:418–421PubMedGoogle Scholar
  22. Feldman JF, Hoyle MN (1973) Isolation of circadian clock mutants of Neurospora crassa. Genetics 75:605–613PubMedGoogle Scholar
  23. Florez JC, Takahashi JS (1995) The circadian clock: from molecules to behaviour. Ann Med 27:481–490PubMedGoogle Scholar
  24. Foley LE, Gegear RJ, Reppert SM (2011) Human cryptochrome exhibits light-dependent magnetosensitivity. Nat Commun 2:356PubMedGoogle Scholar
  25. Gonzalez MM, Aston-Jones G (2008) Light deprivation damages monoamine neurons and produces a depressive behavioral phenotype in rats. Proc Natl Acad Sci USA 105:4898–4903PubMedGoogle Scholar
  26. Grimaldi S, Englund A, Partonen T, Haukka J, Pirkola S, Reunanen A, Aromaa A, Lönnqvist J (2009) Experienced poor lighting contributes to the seasonal fluctuations in weight and appetite that relate to the metabolic syndrome. J Environ Public Health 2009:165013PubMedGoogle Scholar
  27. Hakkarainen R, Johansson C, Kieseppä T, Partonen T, Koskenvuo M, Kaprio J, Lönnqvist J (2003) Seasonal changes, sleep length and circadian preference among twins with bipolar disorder. BMC Psychiatry 3:6PubMedGoogle Scholar
  28. Hampp G, Ripperger JA, Houben T, Schmutz I, Blex C, Perreau-Lenz S, Brunk I, Spanagel R, Ahnert-Hilger G, Meijer JH, Albrecht U (2008) Regulation of monoamine oxidase A by circadian-clock components implies clock influence on mood. Curr Biol 18:678–683PubMedGoogle Scholar
  29. Harrison NL, Zatz M (1989) Voltage-dependent calcium channels regulate melatonin output from cultured chick pineal cells. J Neurosci 9:2462–2467PubMedGoogle Scholar
  30. Hiltunen L, Suominen K, Lönnqvist J, Partonen T (2011) Relationship between day length and suicide in Finland. J Circadian Rhythms 9:10PubMedGoogle Scholar
  31. Hughes ME, DiTacchio L, Hayes KR, Vollmers C, Pulivarthy S, Baggs JE, Panda S, Hogenesch JB (2009) Harmonics of circadian gene transcription in mammals. PLoS Genet 5:e1000442PubMedGoogle Scholar
  32. Huttunen P, Kortelainen ML (1990) Long-term alcohol consumption and brown adipose tissue in man. Eur J Appl Physiol Occup Physiol 60:418–424PubMedGoogle Scholar
  33. Irwin RP, Allen CN (2007) Calcium response to retinohypothalamic tract synaptic transmission in suprachiasmatic nucleus neurons. J Neurosci 27:11748–11757PubMedGoogle Scholar
  34. Jetten AM (2009) Retinoid-related orphan receptors (RORs): critical roles in development, immunity, circadian rhythm, and cellular metabolism. Nucl Recept Signal 7:e003PubMedGoogle Scholar
  35. Johansson C, Willeit M, Smedh C, Ekholm J, Paunio T, Kieseppä T, Lichtermann D, Praschak-Rieder N, Neumeister A, Nilsson LG, Kasper S, Peltonen L, Adolfsson R, Schalling M, Partonen T (2003) Circadian clock-related polymorphisms in seasonal affective disorder and their relevance to diurnal preference. Neuropsychopharmacology 28:734–739PubMedGoogle Scholar
  36. Johnston JD, Tournier BB, Andersson H, Masson-Pévet M, Lincoln GA, Hazlerigg DG (2006) Multiple effects of melatonin on rhythmic clock gene expression in the mammalian pars tuberalis. Endocrinology 147:959–965PubMedGoogle Scholar
  37. Kaasik K, Lee CC (2004) Reciprocal regulation of haem biosynthesis and the circadian clock in mammals. Nature 430:467–471PubMedGoogle Scholar
  38. Katzenberg D, Young T, Finn L, Lin L, King DP, Takahashi JS, Mignot E (1998) A CLOCK polymorphism associated with human diurnal preference. Sleep 21:569–576PubMedGoogle Scholar
  39. Kieseppä T, Partonen T, Haukka J, Kaprio J, Lönnqvist J (2004) High concordance of bipolar I disorder in a nationwide sample of twins. Am J Psychiatry 161:1814–1821PubMedGoogle Scholar
  40. Kishi T, Kitajima T, Ikeda M, Yamanouchi Y, Kinoshita Y, Kawashima K, Okochi T, Ozaki N, Iwata N (2008) Association analysis of nuclear receptor Rev–erb alpha gene (NR1D1) with mood disorders in the Japanese population. Neurosci Res 62:211–215PubMedGoogle Scholar
  41. Kishi T, Kitajima T, Ikeda M, Yamanouchi Y, Kinoshita Y, Kawashima K, Okochi T, Okumura T, Tsunoka T, Inada T, Ozaki N, Iwata N (2009) Association study of clock gene (CLOCK) and schizophrenia and mood disorders in the Japanese population. Eur Arch Psychiatry Clin Neurosci 259:293–297PubMedGoogle Scholar
  42. Kishi T, Yoshimura R, Kitajima T, Okochi T, Okumura T, Tsunoka T, Yamanouchi Y, Kinoshita Y, Kawashima K, Fukuo Y, Naitoh H, Umene-Nakano W, Inada T, Nakamura J, Ozaki N, Iwata N (2010) SIRT1 gene is associated with major depressive disorder in the Japanese population. J Affect Disord 126:167–173PubMedGoogle Scholar
  43. Kishi T, Yoshimura R, Fukuo Y, Kitajima T, Okochi T, Matsunaga S, Inada T, Kunugi H, Kato T, Yoshikawa T, Ujike H, Umene-Nakano W, Nakamura J, Ozaki N, Serretti A, Correll CU, Iwata N (2011) The CLOCK gene and mood disorders: a case–control study and meta-analysis. Chronobiol Int 28:825–833PubMedGoogle Scholar
  44. Kondo T, Tsinoremas NF, Golden SS, Johnson CH, Kutsuna S, Ishiura M (1994) Circadian clock mutants of cyanobacteria. Science 266:1233–1236PubMedGoogle Scholar
  45. Kondratov RV, Kondratova AA, Lee C, Gorbacheva VY, Chernov MV, Antoch MP (2006) Post-translational regulation of circadian transcriptional CLOCK(NPAS2)/BMAL1 complex by CRYPTOCHROMES. Cell Cycle 5:890–895PubMedGoogle Scholar
  46. Konopka RJ, Benzer S (1971) Clock mutants of Drosophila melanogaster. Proc Natl Acad Sci USA 68:2112–2116PubMedGoogle Scholar
  47. Kovanen L, Saarikoski ST, Haukka J, Pirkola S, Aromaa A, Lönnqvist J, Partonen T (2010) Circadian clock gene polymorphisms in alcohol use disorders and alcohol consumption. Alcohol Alcohol 45:303–311PubMedGoogle Scholar
  48. Kripke DF, Mullaney DJ, Atkinson M, Wolf S (1978) Circadian rhythm disorders in manic-depressives. Biol Psychiatry 13:335–351PubMedGoogle Scholar
  49. Kripke DF, Nievergelt CM, Joo E, Shekhtman T, Kelsoe JR (2009) Circadian polymorphisms associated with affective disorders. J Circadian Rhythms 7:2PubMedGoogle Scholar
  50. Kronfeld-Schor N, Einat H (2012) Circadian rhythms and depression: human psychopathology and animal models. Neuropharmacology 62:101–114PubMedGoogle Scholar
  51. Lavebratt C, Sjöholm LK, Partonen T, Schalling M, Forsell Y (2010a) PER2 variation is associated with depression vulnerability. Am J Med Genet B Neuropsychiatr Genet 153B:570–581PubMedGoogle Scholar
  52. Lavebratt C, Sjöholm LK, Soronen P, Paunio T, Vawter MP, Bunney WE, Adolfsson R, Forsell Y, Wu JC, Kelsoe JR, Partonen T, Schalling M (2010b) CRY2 is associated with depression. PLoS One 5:e9407PubMedGoogle Scholar
  53. Lee KY, Song JY, Kim SH, Kim SC, Joo EJ, Ahn YM, Kim YS (2010) Association between CLOCK 3111T/C and preferred circadian phase in Korean patients with bipolar disorder. Prog Neuropsychopharmacol Biol Psychiatry 34:1196–1201PubMedGoogle Scholar
  54. Le-Niculescu H, Patel SD, Bhat M, Kuczenski R, Faraone SV, Tsuang MT, McMahon FJ, Schork NJ, Nurnberger JI Jr, Niculescu AB III (2009) Convergent functional genomics of genome-wide association data for bipolar disorder: comprehensive identification of candidate genes, pathways and mechanisms. Am J Med Genet B Neuropsychiatr Genet 150B:155–181PubMedGoogle Scholar
  55. Lewy AJ, Sack RL (1988) The phase-shift hypothesis of seasonal affective disorder. Am J Psychiatry 145:1041–1043PubMedGoogle Scholar
  56. Lewy AJ, Lefler BJ, Emens JS, Bauer VK (2006) The circadian basis of winter depression. Proc Natl Acad Sci USA 103:7414–7419PubMedGoogle Scholar
  57. Libert S, Pointer K, Bell EL, Das A, Cohen DE, Asara JM, Kapur K, Bergmann S, Preisig M, Otowa T, Kendler KS, Chen X, Hettema JM, van den Oord EJ, Rubio JP, Guarente L (2011) SIRT1 activates MAO-A in the brain to mediate anxiety and exploratory drive. Cell 147:1459–1472PubMedGoogle Scholar
  58. Lincoln GA, Andersson H, Hazlerigg D (2003) Clock genes and the long-term regulation of prolactin secretion: evidence for a photoperiod/circannual timer in the pars tuberalis. J Neuroendocrinol 15:390–397PubMedGoogle Scholar
  59. Liu Y, Blackwood DH, Caesar S, de Geus EJ, Farmer A, Ferreira MA, Ferrier IN, Fraser C, Gordon-Smith K, Green EK, Grozeva D, Gurling HM, Hamshere ML, Heutink P, Holmans PA, Hoogendijk WJ, Hottenga JJ, Jones L, Jones IR, Kirov G, Lin D, McGuffin P, Moskvina V, Nolen WA, Perlis RH, Posthuma D, Scolnick EM, Smit AB, Smit JH, Smoller JW, St Clair D, van Dyck R, Verhage M, Willemsen G, Young AH, Zandbelt T, Boomsma DI, Craddock N, O’Donovan MC, Owen MJ, Penninx BW, Purcell S, Sklar P, Sullivan PF; Wellcome Trust Case-Control Consortium (2011) Meta-analysis of genome-wide association data of bipolar disorder and major depressive disorder. Mol Psychiatry 16:2–4Google Scholar
  60. Maeda K, Robinson AJ, Henbest KB, Hogben HJ, Biskup T, Ahmad M, Schleicher E, Weber S, Timmel CR, Hore PJ (2012) Magnetically sensitive light-induced reactions in cryptochrome are consistent with its proposed role as a magnetoreceptor. Proc Natl Acad Sci USA 109:4774–4779PubMedGoogle Scholar
  61. Mansour HA, Monk TH, Nimgaonkar VL (2005) Circadian genes and bipolar disorder. Ann Med 37:196–205PubMedGoogle Scholar
  62. Mansour HA, Wood J, Logue T, Chowdari KV, Dayal M, Kupfer DJ, Monk TH, Devlin B, Nimgaonkar VL (2006) Association study of eight circadian genes with bipolar I disorder, schizoaffective disorder and schizophrenia. Genes Brain Behav 5:150–157PubMedGoogle Scholar
  63. Mansour HA, Talkowski ME, Wood J, Chowdari KV, McClain L, Prasad K, Montrose D, Fagiolini A, Friedman ES, Allen MH, Bowden CL, Calabrese J, El-Mallakh RS, Escamilla M, Faraone SV, Fossey MD, Gyulai L, Loftis JM, Hauser P, Ketter TA, Marangell LB, Miklowitz DJ, Nierenberg AA, Patel J, Sachs GS, Sklar P, Smoller JW, Laird N, Keshavan M, Thase ME, Axelson D, Birmaher B, Lewis D, Monk T, Frank E, Kupfer DJ, Devlin B, Nimgaonkar VL (2009) Association study of 21 circadian genes with bipolar I disorder, schizoaffective disorder, and schizophrenia. Bipolar Disord 11:701–710PubMedGoogle Scholar
  64. McCarthy MJ, Nievergelt CM, Kelsoe JR, Welsh DK (2012) A survey of genomic studies supports association of circadian clock genes with bipolar disorder spectrum illnesses and lithium response. PLoS One 7:e32091PubMedGoogle Scholar
  65. McGrath CL, Glatt SJ, Sklar P, Le-Niculescu H, Kuczenski R, Doyle AE, Biederman J, Mick E, Faraone SV, Niculescu AB, Tsuang MT (2009) Evidence for genetic association of RORB with bipolar disorder. BMC Psychiatry 9:70PubMedGoogle Scholar
  66. Menet JS, Rosbash M (2011) When brain clocks lose track of time: cause or consequence of neuropsychiatric disorders. Curr Opin Neurobiol 21:849–857PubMedGoogle Scholar
  67. Monje FJ, Cabatic M, Divisch I, Kim EJ, Herkner KR, Binder BR, Pollak DD (2011) Constant darkness induces IL-6-dependent depression-like behavior through the NF-κB signaling pathway. J Neurosci 31:9075–9083PubMedGoogle Scholar
  68. Monteleone P, Maj M (2008) The circadian basis of mood disorders: recent developments and treatment implications. Eur Neuropsychopharmacol 18:701–711PubMedGoogle Scholar
  69. Nahm SS, Farnell YZ, Griffith W, Earnest DJ (2005) Circadian regulation and function of voltage-dependent calcium channels in the suprachiasmatic nucleus. J Neurosci 25:9304–9308PubMedGoogle Scholar
  70. Nakamura TJ, Ebihara S, Shinohara K (2011) Reduced light response of neuronal firing activity in the suprachiasmatic nucleus and optic nerve of cryptochrome-deficient mice. PLoS One 6:e28726PubMedGoogle Scholar
  71. Nievergelt CM, Kripke DF, Remick RA, Sadovnick AD, McElroy SL, Keck PE Jr, Kelsoe JR (2005) Examination of the clock gene cryptochrome 1 in bipolar disorder: mutational analysis and absence of evidence for linkage or association. Psychiatr Genet 15:45–52PubMedGoogle Scholar
  72. Nievergelt CM, Kripke DF, Barrett TB, Burg E, Remick RA, Sadovnick AD, McElroy SL, Keck PE Jr, Schork NJ, Kelsoe JR (2006) Suggestive evidence for association of the circadian genes PERIOD3 and ARNTL with bipolar disorder. Am J Med Genet B Neuropsychiatr Genet 141B:234–241PubMedGoogle Scholar
  73. Nikitopoulou G, Crammer JL (1976) Change in diurnal temperature rhythm in manic-depressive illness. Br Med J 1:1311–1314PubMedGoogle Scholar
  74. O’Neill JS, Reddy AB (2011) Circadian clocks in human red blood cells. Nature 469:498–503PubMedGoogle Scholar
  75. O’Neill JS, Maywood ES, Chesham JE, Takahashi JS, Hastings MH (2008) cAMP-dependent signaling as a core component of the mammalian circadian pacemaker. Science 320:949–953PubMedGoogle Scholar
  76. O’Neill JS, van Ooijen G, Dixon LE, Troein C, Corellou F, Bouget FY, Reddy AB, Millar AJ (2011) Circadian rhythms persist without transcription in a eukaryote. Nature 469:554–558PubMedGoogle Scholar
  77. Pajunen P, Lönnqvist J, Partonen T (2007) Seasonal changes in mood and behavior in relation to work conditions among the general population. Scand J Work Environ Health 33:198–203PubMedGoogle Scholar
  78. Park SK, Nguyen MD, Fischer A, Luke MP, Affar EB, Dieffenbach PB, Tseng HC, Shi Y, Tsai LH (2005) Par-4 links dopamine signaling and depression. Cell 122:275–287Google Scholar
  79. Partonen T (1994) The molecular basis for winter depression. Ann Med 26:239–243PubMedGoogle Scholar
  80. Partonen T, Lönnqvist J (1996) Seasonal variation in bipolar disorder. Br J Psychiatry 169:641–646PubMedGoogle Scholar
  81. Partonen T, Lönnqvist J (1998) Seasonal affective disorder. Lancet 352:1369–1374PubMedGoogle Scholar
  82. Partonen T, Treutlein J, Alpman A, Frank J, Johansson C, Depner M, Aron L, Rietschel M, Wellek S, Soronen P, Paunio T, Koch A, Chen P, Lathrop M, Adolfsson R, Persson ML, Kasper S, Schalling M, Peltonen L, Schumann G (2007) Three circadian clock genes Per2, Arntl, and Npas2 contribute to winter depression. Ann Med 39:229–238PubMedGoogle Scholar
  83. Pennartz CM, de Jeu MT, Bos NP, Schaap J, Geurtsen AM (2002) Diurnal modulation of pacemaker potentials and calcium current in the mammalian circadian clock. Nature 416:286–290PubMedGoogle Scholar
  84. Piggins HD (2002) Human clock genes. Ann Med 34:394–400PubMedGoogle Scholar
  85. Rocha PMB, Neves FS, Alvarenga NB, Hughet RB, Barbosa IG, Corrêa H (2010) Association of Per3 gene with bipolar disorder: comment on “Association study of 21 circadian genes with bipolar I disorder, schizoaffective disorder, and schizophrenia”. Bipolar Disord 12:875–876PubMedGoogle Scholar
  86. Rosenthal NE, Sack DA, Gillin JC, Lewy AJ, Goodwin FK, Davenport Y, Mueller PS, Newsome DA, Wehr TA (1984) Seasonal affective disorder: a description of the syndrome and preliminary findings with light therapy. Arch Gen Psychiatry 41:72–80PubMedGoogle Scholar
  87. Sancar G, Sancar C, Brügger B, Ha N, Sachsenheimer T, Gin E, Wdowik S, Lohmann I, Wieland F, Höfer T, Diernfellner A, Brunner M (2011) A global circadian repressor controls antiphasic expression of metabolic genes in Neurospora. Mol Cell 44:687–697PubMedGoogle Scholar
  88. Sasaki M, Yoshitane H, Du NH, Okano T, Fukada Y (2009) Preferential inhibition of BMAL2-CLOCK activity by PER2 reemphasizes its negative role and a positive role of BMAL2 in the circadian transcription. J Biol Chem 284:25149–25159PubMedGoogle Scholar
  89. Sato TK, Yamada RG, Ukai H, Baggs JE, Miraglia LJ, Kobayashi TJ, Welsh DK, Kay SA, Ueda HR, Hogenesch JB (2006) Feedback repression is required for mammalian circadian clock function. Nat Genet 38:312–319PubMedGoogle Scholar
  90. Saus E, Soria V, Escaramís G, Vivarelli F, Crespo JM, Kagerbauer B, Menchón JM, Urretavizcaya M, Gratacòs M, Estivill X (2010) Genetic variants and abnormal processing of pre-miR-182, a circadian clock modulator, in major depression patients with late insomnia. Hum Mol Genet 19:4017–4025PubMedGoogle Scholar
  91. Schmutz I, Ripperger JA, Baeriswyl-Aebischer S, Albrecht U (2010) The mammalian clock component PERIOD2 coordinates circadian output by interaction with nuclear receptors. Genes Dev 24:345–357PubMedGoogle Scholar
  92. Serretti A, Benedetti F, Mandelli L, Lorenzi C, Pirovano A, Colombo C, Smeraldi E (2003) Genetic dissection of psychopathological symptoms: insomnia in mood disorders and CLOCK gene polymorphism. Am J Med Genet B Neuropsychiatr Genet 121B:35–38PubMedGoogle Scholar
  93. Serretti A, Benedetti F, Mandelli L, Calati R, Caneva B, Lorenzi C, Fontana V, Colombo C, Smeraldi E (2008) Association between GSK-3β-50T/C polymorphism and personality and psychotic symptoms in mood disorders. Psychiatry Res 158:132–140PubMedGoogle Scholar
  94. Serretti A, Gaspar-Barba E, Calati R, Cruz-Fuentes CS, Gomez-Sanchez A, Perez-Molina A, De Ronchi D (2010) 3111T/C clock gene polymorphism is not associated with sleep disturbances in untreated depressed patients. Chronobiol Int 27:265–277PubMedGoogle Scholar
  95. Severino G, Manchia M, Contu P, Squassina A, Lampus S, Ardau R, Chillotti C, Del Zompo M (2009) Association study in a Sardinian sample between bipolar disorder and the nuclear receptor REV-ERBα gene, a critical component of the circadian clock system. Bipolar Disord 11:215–220PubMedGoogle Scholar
  96. Shearman LP, Sriram S, Weaver DR, Maywood ES, Chaves I, Zheng B, Kume K, Lee CC, van der Horst GT, Hastings MH, Reppert SM (2000) Interacting molecular loops in the mammalian circadian clock. Science 288:1013–1019PubMedGoogle Scholar
  97. Shi J, Wittke-Thompson JK, Badner JA, Hattori E, Potash JB, Willour VL, McMahon FJ, Gershon ES, Liu C (2008) Clock genes may influence bipolar disorder susceptibility and dysfunctional circadian rhythm. Am J Med Genet B Neuropsychiatr Genet 147B:1047–1055PubMedGoogle Scholar
  98. Shi S, Hida A, McGuinness OP, Wasserman DH, Yamazaki S, Johnson CH (2010) Circadian clock gene Bmal1 is not essential; functional replacement with its paralog, Bmal2. Curr Biol 20:316–321PubMedGoogle Scholar
  99. Shiino Y, Nakajima S, Ozeki Y, Isono T, Yamada N (2003) Mutation screening of the human period 2 gene in bipolar disorder. Neurosci Lett 338:82–84PubMedGoogle Scholar
  100. Sipilä T, Kananen L, Greco D, Donner J, Silander K, Terwilliger JD, Auvinen P, Peltonen L, Lönnqvist J, Pirkola S, Partonen T, Hovatta I (2010) An association analysis of circadian genes in anxiety disorders. Biol Psychiatry 67:1163–1170PubMedGoogle Scholar
  101. Sjöholm LK, Backlund L, Cheteh EH, Ek IR, Frisén L, Schalling M, Osby U, Lavebratt C, Nikamo P (2010a) CRY2 is associated with rapid cycling in bipolar disorder patients. PLoS One 5:e12632PubMedGoogle Scholar
  102. Sjöholm LK, Kovanen L, Saarikoski ST, Schalling M, Lavebratt C, Partonen T (2010b) CLOCK is suggested to associate with comorbid alcohol use and depressive disorders. J Circadian Rhythms 8:1PubMedGoogle Scholar
  103. Solt LA, Griffin PR, Burris TP (2010) Ligand regulation of retinoic acid receptor-related orphan receptors: implications for development of novel therapeutics. Curr Opin Lipidol 21:204–211PubMedGoogle Scholar
  104. Soria V, Martínez-Amorós E, Escaramís G, Valero J, Pérez-Egea R, García C, Gutiérrez-Zotes A, Puigdemont D, Bayés M, Crespo JM, Martorell L, Vilella E, Labad A, Vallejo J, Pérez V, Menchón JM, Estivill X, Gratacòs M, Urretavizcaya M (2010) Differential association of circadian genes with mood disorders: CRY1 and NPAS2 are associated with unipolar major depression and CLOCK and VIP with bipolar disorder. Neuropsychopharmacology 35:1279–1289PubMedGoogle Scholar
  105. Spanagel R, Pendyala G, Abarca C, Zghoul T, Sanchis-Segura C, Magnone MC, Lascorz J, Depner M, Holzberg D, Soyka M, Schreiber S, Matsuda F, Lathrop M, Schumann G, Albrecht U (2005) The clock gene Per2 influences the glutamatergic system and modulates alcohol consumption. Nat Med 11:35–42PubMedGoogle Scholar
  106. Spoelstra K, Daan S (2008) Effects of constant light on circadian rhythmicity in mice lacking functional cry genes: dissimilar from per mutants. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 194:235–242PubMedGoogle Scholar
  107. Stoleru D, Nawathean P, Fernández MP, Menet JS, Ceriani MF, Rosbash M (2007) The Drosophila circadian network is a seasonal timer. Cell 129:207–219PubMedGoogle Scholar
  108. Szczepankiewicz A, Skibinska M, Hauser J, Slopien A, Leszczynska-Rodziewicz A, Kapelski P, Dmitrzak-Weglarz M, Czerski PM, Rybakowski JK (2006) Association analysis of the GSK-3β T-50C gene polymorphism with schizophrenia and bipolar disorder. Neuropsychobiology 53:51–56PubMedGoogle Scholar
  109. Takahashi JS, Hong HK, Ko CH, McDearmon EL (2008) The genetics of mammalian circadian order and disorder: implications for physiology and disease. Nat Rev Genet 9:764–775PubMedGoogle Scholar
  110. Teicher MH, Glod CA, Magnus E, Harper D, Benson G, Krueger K, McGreenery CE (1997) Circadian rest-activity disturbances in seasonal affective disorder. Arch Gen Psychiatry 54:124–130PubMedGoogle Scholar
  111. Thompson C, Stinson D, Smith A (1990) Seasonal affective disorder and season-dependent abnormalities of melatonin suppression by light. Lancet 336:703–706PubMedGoogle Scholar
  112. Thresher RJ, Vitaterna MH, Miyamoto Y, Kazantsev A, Hsu DS, Petit C, Selby CP, Dawut L, Smithies O, Takahashi JS, Sancar A (1998) Role of mouse cryptochrome blue-light photoreceptor in circadian photoresponses. Science 282:1490–1494PubMedGoogle Scholar
  113. Toh KL, Jones CR, He Y, Eide EJ, Hinz WA, Virshup DM, Ptácek LJ, Fu YH (2001) An hPer2 phosphorylation site mutation in familial advanced sleep phase syndrome. Science 291:1040–1043PubMedGoogle Scholar
  114. Ueda HR, Hayashi S, Chen W, Sano M, Machida M, Shigeyoshi Y, Iino M, Hashimoto S (2005) System-level identification of transcriptional circuits underlying mammalian circadian clocks. Nat Genet 37:187–192PubMedGoogle Scholar
  115. Ukai-Tadenuma M, Kasukawa T, Ueda HR (2008) Proof-by-synthesis of the transcriptional logic of mammalian circadian clocks. Nat Cell Biol 10:1154–1163PubMedGoogle Scholar
  116. Ukai-Tadenuma M, Yamada RG, Xu H, Ripperger JA, Liu AC, Ueda HR (2011) Delay in feedback repression by cryptochrome 1 is required for circadian clock function. Cell 144:268–281PubMedGoogle Scholar
  117. Utge SJ, Soronen P, Loukola A, Kronholm E, Ollila HM, Pirkola S, Porkka-Heiskanen T, Partonen T, Paunio T (2010) Systematic analysis of circadian genes in a population-based sample reveals association of TIMELESS with depression and sleep disturbance. PLoS One 5:e9259PubMedGoogle Scholar
  118. van der Horst GTJ, Muijtjens M, Kobayashi K, Takano R, Kanno S, Takao M, de Wit J, Verkerk A, Eker APM, van Leenen D, Buijs R, Bootsma D, Hoeijmakers JHJ, Yasui A (1999) Mammalian Cry1 and Cry2 are essential for maintenance of circadian rhythms. Nature 398:627–630PubMedGoogle Scholar
  119. Vitaterna MH, King DP, Chang AM, Kornhauser JM, Lowrey PL, McDonald JD, Dove WF, Pinto LH, Turek FW, Takahashi JS (1994) Mutagenesis and mapping of a mouse gene, Clock, essential for circadian behavior. Science 264:719–725PubMedGoogle Scholar
  120. Vitaterna MH, Selby CP, Todo T, Niwa H, Thompson C, Fruechte EM, Hitomi K, Thresher RJ, Ishikawa T, Miyazaki J, Takahashi JS, Sancar A (1999) Differential regulation of mammalian period genes and circadian rhythmicity by cryptochromes 1 and 2. Proc Natl Acad Sci USA 96:12114–12119PubMedGoogle Scholar
  121. Wehr TA, Duncan WC Jr, Sher L, Aeschbach D, Schwartz PJ, Turner EH, Postolache TT, Rosenthal NE (2001) A circadian signal of change of season in patients with seasonal affective disorder. Arch Gen Psychiatry 58:1108–1114PubMedGoogle Scholar
  122. Weydahl A, Sothern RB, Cornélissen G, Wetterberg L (2001) Geomagnetic activity influences the melatonin secretion at latitude 70 degrees N. Biomed Pharmacother 55(Suppl 1):57s–62sPubMedGoogle Scholar
  123. Ye R, Selby CP, Ozturk N, Annayev Y, Sancar A (2011) Biochemical analysis of the canonical model for the mammalian circadian clock. J Biol Chem 286:25891–25902PubMedGoogle Scholar
  124. Zhang EE, Liu Y, Dentin R, Pongsawakul PY, Liu AC, Hirota T, Nusinow DA, Sun X, Landais S, Kodama Y, Brenner DA, Montminy M, Kay SA (2010) Cryptochrome mediates circadian regulation of cAMP signaling and hepatic gluconeogenesis. Nat Med 16:1152–1156PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Department of Mental Health and Substance Abuse ServicesNational Institute for Health and WelfareHelsinkiFinland

Personalised recommendations