Journal of Neural Transmission

, Volume 119, Issue 7, pp 747–757 | Cite as

CSF markers in amyotrophic lateral sclerosis

  • Joanna Tarasiuk
  • Alina Kułakowska
  • Wiesław Drozdowski
  • Johannes Kornhuber
  • Piotr Lewczuk
Basic Neurosciences, Genetics and Immunology - Review article


Amyotrophic lateral sclerosis (ALS, ‘Lou Gehrig disease’) is the most common, progressive, neurodegenerative, motor neuron disease, causing damage to upper and lower motor neurons, leading to paralysis and death within 3–5 years. Majority of ALS cases are sporadic ALS (SALS) and only 5–10 % of cases are familial ALS (FALS). Pathogenesis of ALS is complicated and still unclear, including genetic, glutamate excitotoxicity, oxidative stress, mitochondrial dysfunction, neurofilament accumulation, impaired trophic support, altered glial function, viral infection, immune imbalance and impairment of the blood–brain, blood–spinal cord and blood–cerebrospinal fluid barriers (BBB/BSCB/BCSFB). The CSF analysis is still one of the basic laboratory tools and might reflect pathophysiological alterations in the course of the disease and could provide an insight into disease pathomechanisms. The most important aim of its analysis is evaluation of blood-CSF barrier, which is altered in 46 % of ALS patients. The CSF biomarkers may give insight into ALS pathophysiology and may be useful for early, presymptomatic diagnosis, therapeutic monitoring and the development of new therapeutic strategies. This review summarizes the general concepts of biomarkers in CSF of ALS patients and their potential usefulness in further research.


Amyotrophic lateral sclerosis Motor neuron disease Cerebrospinal fluid Biomarker Blood–brain barrier Blood–CSF barrier 


  1. Ahmed Z, Mackenzie IR, Hutton ML, Dickson DW (2007) Progranulin in frontotemporal lobar degeneration and neuroinflammation. J Neuroinflammation 4:7PubMedCrossRefGoogle Scholar
  2. Al-Chalabi A, Andersen PM, Nilsson P, Chioza B, Andersson JL, Russ C, Shaw CE, Powell JF, Leigh PN (1999) Deletions of the heavy neurofilament subunit tail in amyotrophic lateral sclerosis. Hum Mol Genet 8:157–164PubMedCrossRefGoogle Scholar
  3. Almer G, Teismann P, Stevic Z, Halaschek-Wiener J, Deecke L, Kostic V, Przedborski S (2002) Increased levels of the pro-inflammatory prostaglandin PGE2 in CSF from ALS patients. Neurology 58:1277–1279PubMedCrossRefGoogle Scholar
  4. Aoyama K, Matsubara K, Fujikawa Y, Nagahiro Y, Shimizu K, Umegae N, Hayase N, Shiono H, Kobayashi S (2000) Nitration of manganese superoxide dismutase in cerebrospinal fluids is a marker for peroxynitrite-mediated oxidative stress in neurodegenerative diseases. Ann Neurol 47:524–527PubMedCrossRefGoogle Scholar
  5. Apostolski S, Nikolić J, Bugarski-Prokopljević C, Miletić V, Pavlović S, Filipović S (1991) Serum and CSF immunological findings in ALS. Acta Neurol Scand 83:96–98PubMedCrossRefGoogle Scholar
  6. Ballabh P, Braun A, Nedergaard M (2004) The blood-brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol Dis 16:1–13PubMedCrossRefGoogle Scholar
  7. Bertel O, Malessa S, Sluga E, Hornykiewicz O (1991) Amyotrophic lateral sclerosis: changes of noradrenergic and serotonergic transmitter systems in the spinal cord. Brain Res 566:54–60PubMedCrossRefGoogle Scholar
  8. Beuche W, Yushchenko M, Mäder M, Maliszewska M, Felgenhauer K, Weber F (2000) Matrix metalloproteinase-9 is elevated in serum of patients with amyotrophic lateral sclerosis. NeuroReport 11:3419–3422PubMedCrossRefGoogle Scholar
  9. Bilak MM, Corse AM, Bilak SR, Lehar M, Tombran-Tink J, Kuncl RW (1999) Pigment epithelium-derived factor (PEDF) protects motor neurons from chronic glutamate-mediated neurodegeneration. J Neuropathol Exp Neurol 58:719–728PubMedCrossRefGoogle Scholar
  10. Boillée S, Vande Velde C, Cleveland DW (2006a) ALS: a disease of motor neurons and their nonneuronal neighbors. Neuron 52:39–59PubMedCrossRefGoogle Scholar
  11. Boillée S, Yamanaka K, Lobsiger CS, Copeland NG, Jenkins NA, Kassiotis G, Kollias G, Cleveland DW (2006b) Onset and progression in inherited ALS determined by motor neurons and microglia. Science 312:1389–1392PubMedCrossRefGoogle Scholar
  12. Boll MC, Alcaraz-Zubeldia M, Montes S, Murillo-Bonilla L, Rios C (2003) Raised nitrate concentration and low SOD activity in the CSF of sporadic ALS patients. Neurochem Res 28:699–703PubMedCrossRefGoogle Scholar
  13. Bossolasco P, Cova L, Calzarossa C, Servida F, Mencacci NE, Onida F, Polli E, Lambertenghi Deliliers G, Silani V (2010) Metalloproteinase alterations in the bone marrow of ALS patients. J Mol Med (Berl) 88:553–564CrossRefGoogle Scholar
  14. Brettschneider J, Petzold A, Junker A, Tumani H (2006a) Axonal damage markers in the cerebrospinal fluid of patients with clinically isolated syndrome improve predicting conversion to definite multiple sclerosis. Mult Scler 12:143–148PubMedCrossRefGoogle Scholar
  15. Brettschneider J, Petzold A, Schottle D, Claus A, Riepe M, Tumani H (2006b) The neurofilament heavy chain (NfH) in the cerebrospinal fluid diagnosis of Alzheimer’s disease. Dement Geriatr Cogn Disord 21:291–295PubMedCrossRefGoogle Scholar
  16. Brettschneider J, Petzold A, Süssmuth SD, Ludolph AC, Tumani H (2006c) Axonal damage markers in cerebrospinal fluid are increased in ALS. Neurology 66:852–856PubMedCrossRefGoogle Scholar
  17. Brettschneider J, Widl K, Ehrenreich H, Riepe M, Tumani H (2006d) Erythropoietin in the cerebrospinal fluid in neurodegenerative diseases. Neurosci Lett 404:347–351PubMedCrossRefGoogle Scholar
  18. Brooks BR, Miller RG, Swash M, Munsat TL, Diseases WFoNRGoMN (2000) El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord 1:293–299PubMedCrossRefGoogle Scholar
  19. Bruijn LI, Miller TM, Cleveland DW (2004) Unraveling the mechanisms involved in motor neuron degeneration in ALS. Annu Rev Neurosci 27:723–749PubMedCrossRefGoogle Scholar
  20. Calingasan NY, Chen J, Kiaei M, Beal MF (2005) Beta-amyloid 42 accumulation in the lumbar spinal cord motor neurons of amyotrophic lateral sclerosis patients. Neurobiol Dis 19:340–347PubMedCrossRefGoogle Scholar
  21. Candelario-Jalil E, Yang Y, Rosenberg GA (2009) Diverse roles of matrix metalloproteinases and tissue inhibitors of metalloproteinases in neuroinflammation and cerebral ischemia. Neuroscience 158:983–994PubMedCrossRefGoogle Scholar
  22. Cleveland DW, Liu J (2000) Oxidation versus aggregation—how do SOD1 mutants cause ALS? Nat Med 6:1320–1321PubMedCrossRefGoogle Scholar
  23. Consilvio C, Vincent AM, Feldman EL (2004) Neuroinflammation, COX-2, and ALS–a dual role? Exp Neurol 187:1–10PubMedCrossRefGoogle Scholar
  24. Daniel R, He Z, Carmichael KP, Halper J, Bateman A (2000) Cellular localization of gene expression for progranulin. J Histochem Cytochem 48:999–1009PubMedCrossRefGoogle Scholar
  25. Del Bo R, Corti S, Santoro D, Ghione I, Fenoglio C, Ghezzi S, Ranieri M, Galimberti D, Mancuso M, Siciliano G, Briani C, Murri L, Scarpini E, Schymick JC, Traynor BJ, Bresolin N, Comi GP (2011) No major progranulin genetic variability contribution to disease etiopathogenesis in an ALS Italian cohort. Neurobiol Aging 32:1157–1158PubMedCrossRefGoogle Scholar
  26. Demestre M, Parkin-Smith G, Petzold A, Pullen AH (2005) The pro and the active form of matrix metalloproteinase-9 is increased in serum of patients with amyotrophic lateral sclerosis. J Neuroimmunol 159:146–154PubMedCrossRefGoogle Scholar
  27. Devos D, Moreau C, Lassalle P, Perez T, De Seze J, Brunaud-Danel V, Destée A, Tonnel AB, Just N (2004) Low levels of the vascular endothelial growth factor in CSF from early ALS patients. Neurology 62:2127–2129PubMedCrossRefGoogle Scholar
  28. Doble A (1996) The pharmacology and mechanism of action of riluzole. Neurology 47:S233–S241PubMedCrossRefGoogle Scholar
  29. Donato R (2001) S100: a multigenic family of calcium-modulated proteins of the EF-hand type with intracellular and extracellular functional roles. Int J Biochem Cell Biol 33:637–668PubMedCrossRefGoogle Scholar
  30. Engelhardt B (2006) Regulation of immune cell entry into the central nervous system. Results Probl Cell Differ 43:259–280PubMedCrossRefGoogle Scholar
  31. Fang L, Teuchert M, Huber-Abel F, Schattauer D, Hendrich C, Dorst J, Zettlmeissel H, Wlaschek M, Scharffetter-Kochanek K, Kapfer T, Tumani H, Ludolph AC, Brettschneider J (2010) MMP-2 and MMP-9 are elevated in spinal cord and skin in a mouse model of ALS. J Neurol Sci 294:51–56PubMedCrossRefGoogle Scholar
  32. Frutiger K, Lukas TJ, Gorrie G, Ajroud-Driss S, Siddique T (2008) Gender difference in levels of Cu/Zn superoxide dismutase (SOD1) in cerebrospinal fluid of patients with amyotrophic lateral sclerosis. Amyotroph Lateral Scler 9:184–187PubMedCrossRefGoogle Scholar
  33. Fujita K, Honda M, Hayashi R, Ogawa K, Ando M, Yamauchi M, Nagata Y (1998) Transglutaminase activity in serum and cerebrospinal fluid in sporadic amyotrophic lateral sclerosis: a possible use as an indicator of extent of the motor neuron loss. J Neurol Sci 158:53–57PubMedCrossRefGoogle Scholar
  34. Ganesalingam J, An J, Shaw CE, Shaw G, Lacomis D, Bowser R (2011) Combination of neurofilament heavy chain and complement C3 as CSF biomarkers for ALS. J Neurochem 117:528–537PubMedCrossRefGoogle Scholar
  35. Garbuzova-Davis S, Haller E, Saporta S, Kolomey I, Nicosia SV, Sanberg PR (2007a) Ultrastructure of blood-brain barrier and blood-spinal cord barrier in SOD1 mice modeling ALS. Brain Res 1157:126–137PubMedCrossRefGoogle Scholar
  36. Garbuzova-Davis S, Saporta S, Haller E, Kolomey I, Bennett SP, Potter H, Sanberg PR (2007b) Evidence of compromised blood-spinal cord barrier in early and late symptomatic SOD1 mice modeling ALS. PLoS ONE 2:e1205PubMedCrossRefGoogle Scholar
  37. Garbuzova-Davis S, Saporta S, Sanberg PR (2008) Implications of blood-brain barrier disruption in ALS. Amyotroph Lateral Scler 9:375–376PubMedCrossRefGoogle Scholar
  38. Garbuzova-Davis S, Rodrigues MC, Hernandez-Ontiveros DG, Louis MK, Willing AE, Borlongan CV, Sanberg PR (2011) Amyotrophic lateral sclerosis: a neurovascular disease. Brain Res 1398:113–125PubMedCrossRefGoogle Scholar
  39. Gasche Y, Soccal PM, Kanemitsu M, Copin JC (2006) Matrix metalloproteinases and diseases of the central nervous system with a special emphasis on ischemic brain. Front Biosci 11:1289–1301PubMedCrossRefGoogle Scholar
  40. Glabinski AR, Tani M, Strieter RM, Tuohy VK, Ransohoff RM (1997) Synchronous synthesis of alpha- and beta-chemokines by cells of diverse lineage in the central nervous system of mice with relapses of chronic experimental autoimmune encephalomyelitis. Am J Pathol 150:617–630PubMedGoogle Scholar
  41. Goldknopf IL, Sheta EA, Bryson J, Folsom B, Wilson C, Duty J, Yen AA, Appel SH (2006) Complement C3c and related protein biomarkers in amyotrophic lateral sclerosis and Parkinson’s disease. Biochem Biophys Res Commun 342:1034–1039PubMedCrossRefGoogle Scholar
  42. Graves MC, Fiala M, Dinglasan LA, Liu NQ, Sayre J, Chiappelli F, van Kooten C, Vinters HV (2004) Inflammation in amyotrophic lateral sclerosis spinal cord and brain is mediated by activated macrophages, mast cells and T cells. Amyotroph Lateral Scler Other Motor Neuron Disord 5:213–219PubMedCrossRefGoogle Scholar
  43. Hampel H, Kötter HU, Padberg F, Körschenhausen DA, Möller HJ (1999) Oligoclonal bands and blood–cerebrospinal-fluid barrier dysfunction in a subset of patients with Alzheimer disease: comparison with vascular dementia, major depression, and multiple sclerosis. Alzheimer Dis Assoc Disord 13:9–19PubMedCrossRefGoogle Scholar
  44. Haverkamp LJ, Appel V, Appel SH (1995) Natural history of amyotrophic lateral sclerosis in a database population. Validation of a scoring system and a model for survival prediction. Brain 118(Pt 3):707–719PubMedCrossRefGoogle Scholar
  45. Henkel JS, Engelhardt JI, Siklós L, Simpson EP, Kim SH, Pan T, Goodman JC, Siddique T, Beers DR, Appel SH (2004) Presence of dendritic cells, MCP-1, and activated microglia/macrophages in amyotrophic lateral sclerosis spinal cord tissue. Ann Neurol 55:221–235PubMedCrossRefGoogle Scholar
  46. Henkel JS, Beers DR, Wen S, Bowser R, Appel SH (2009) Decreased mRNA expression of tight junction proteins in lumbar spinal cords of patients with ALS. Neurology 72:1614–1616PubMedCrossRefGoogle Scholar
  47. Ihara Y, Nobukuni K, Takata H, Hayabara T (2005) Oxidative stress and metal content in blood and cerebrospinal fluid of amyotrophic lateral sclerosis patients with and without a Cu, Zn-superoxide dismutase mutation. Neurol Res 27:105–108PubMedCrossRefGoogle Scholar
  48. Iłzecka J (2004) Cerebrospinal fluid vascular endothelial growth factor in patients with amyotrophic lateral sclerosis. Clin Neurol Neurosurg 106:289–293PubMedCrossRefGoogle Scholar
  49. Janssen JC, Godbolt AK, Ioannidis P, Thompson EJ, Rossor MN (2004) The prevalence of oligoclonal bands in the CSF of patients with primary neurodegenerative dementia. J Neurol 251:184–188PubMedCrossRefGoogle Scholar
  50. Jonsson PA, Graffmo KS, Andersen PM, Brännström T, Lindberg M, Oliveberg M, Marklund SL (2006) Disulphide-reduced superoxide dismutase-1 in CNS of transgenic amyotrophic lateral sclerosis models. Brain 129:451–464PubMedCrossRefGoogle Scholar
  51. Kasai T, Tokuda T, Ishigami N, Sasayama H, Foulds P, Mitchell DJ, Mann DM, Allsop D, Nakagawa M (2009) Increased TDP-43 protein in cerebrospinal fluid of patients with amyotrophic lateral sclerosis. Acta Neuropathol 117:55–62PubMedCrossRefGoogle Scholar
  52. Kawamata T, Akiyama H, Yamada T, McGeer PL (1992) Immunologic reactions in amyotrophic lateral sclerosis brain and spinal cord tissue. Am J Pathol 140:691–707PubMedGoogle Scholar
  53. Keller JN, Mattson MP (1998) Roles of lipid peroxidation in modulation of cellular signaling pathways, cell dysfunction, and death in the nervous system. Rev Neurosci 9:105–116PubMedCrossRefGoogle Scholar
  54. Kokić AN, Stević Z, Stojanović S, Blagojević DP, Jones DR, Pavlović S, Niketić V, Apostolski S, Spasić MB (2005) Biotransformation of nitric oxide in the cerebrospinal fluid of amyotrophic lateral sclerosis patients. Redox Rep 10:265–270PubMedCrossRefGoogle Scholar
  55. Kuncl RW, Bilak MM, Bilak SR, Corse AM, Royal W, Becerra SP (2002) Pigment epithelium-derived factor is elevated in CSF of patients with amyotrophic lateral sclerosis. J Neurochem 81:178–184PubMedCrossRefGoogle Scholar
  56. Kuźma M, Jamrozik Z, Barańczyk-Kuźma A (2006) Activity and expression of glutathione S-transferase pi in patients with amyotrophic lateral sclerosis. Clin Chim Acta 364:217–221PubMedCrossRefGoogle Scholar
  57. Lacomblez L, Bensimon G, Leigh PN, Guillet P, Meininger V (1996) Dose-ranging study of riluzole in amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis/Riluzole Study Group II. Lancet 347:1425–1431PubMedGoogle Scholar
  58. Lambrechts D, Poesen K, Fernández-Santiago R, Al-Chalabi A, Del Bo R, Van Vught PW, Khan S, Marklund SL, Brockington A, van Marion I, Anneser J, Shaw C, Ludolph AC, Leigh NP, Comi GP, Gasser T, Shaw PJ, Morrison KE, Andersen PM, Van den Berg LH, Thijs V, Siddique T, Robberecht W, Carmeliet P (2009) Meta-analysis of vascular endothelial growth factor variations in amyotrophic lateral sclerosis: increased susceptibility in male carriers of the -2578AA genotype. J Med Genet 46:840–846PubMedCrossRefGoogle Scholar
  59. Leigh PN, Abrahams S, Al-Chalabi A, Ampong MA, Goldstein LH, Johnson J, Lyall R, Moxham J, Mustfa N, Rio A, Shaw C, Willey E, Team KsMCaR (2003) The management of motor neurone disease. J Neurol Neurosurg Psychiatry 74(Suppl 4):iv32–iv47PubMedGoogle Scholar
  60. Leonardi A, Abbruzzese G, Arata L, Cocito L, Vische M (1984) Cerebrospinal fluid (CSF) findings in amyotrophic lateral sclerosis. J Neurol 231:75–78PubMedCrossRefGoogle Scholar
  61. Li TM, Alberman E, Swash M (1988) Comparison of sporadic and familial disease amongst 580 cases of motor neuron disease. J Neurol Neurosurg Psychiatry 51:778–784PubMedCrossRefGoogle Scholar
  62. McGeer PL, McGeer EG (2002) Inflammatory processes in amyotrophic lateral sclerosis. Muscle Nerve 26:459–470PubMedCrossRefGoogle Scholar
  63. Migheli A, Cordera S, Bendotti C, Atzori C, Piva R, Schiffer D (1999) S-100beta protein is upregulated in astrocytes and motor neurons in the spinal cord of patients with amyotrophic lateral sclerosis. Neurosci Lett 261:25–28PubMedCrossRefGoogle Scholar
  64. Mitchell JD, Borasio GD (2007) Amyotrophic lateral sclerosis. Lancet 369:2031–2041PubMedCrossRefGoogle Scholar
  65. Mitchell RM, Freeman WM, Randazzo WT, Stephens HE, Beard JL, Simmons Z, Connor JR (2009) A CSF biomarker panel for identification of patients with amyotrophic lateral sclerosis. Neurology 72:14–19PubMedCrossRefGoogle Scholar
  66. Miyazaki K, Ohta Y, Nagai M, Morimoto N, Kurata T, Takehisa Y, Ikeda Y, Matsuura T, Abe K (2011) Disruption of neurovascular unit prior to motor neuron degeneration in amyotrophic lateral sclerosis. J Neurosci Res 89:718–728PubMedCrossRefGoogle Scholar
  67. Moreau C, Devos D, Brunaud-Danel V, Defebvre L, Perez T, Destée A, Tonnel AB, Lassalle P, Just N (2005) Elevated IL-6 and TNF-alpha levels in patients with ALS: inflammation or hypoxia? Neurology 65:1958–1960PubMedCrossRefGoogle Scholar
  68. Mussap M, Plebani M (2004) Biochemistry and clinical role of human cystatin C. Crit Rev Clin Lab Sci 41:467–550PubMedCrossRefGoogle Scholar
  69. Nagai A, Ryu JK, Terashima M, Tanigawa Y, Wakabayashi K, McLarnon JG, Kobayashi S, Masuda J, Kim SU (2005) Neuronal cell death induced by cystatin C in vivo and in cultured human CNS neurons is inhibited with cathepsin B. Brain Res 1066:120–128PubMedCrossRefGoogle Scholar
  70. Neusch C, Bähr M, Schneider-Gold C (2007) Glia cells in amyotrophic lateral sclerosis: new clues to understanding an old disease? Muscle Nerve 35:712–724PubMedCrossRefGoogle Scholar
  71. Nicaise C, Mitrecic D, Demetter P, De Decker R, Authelet M, Boom A, Pochet R (2009a) Impaired blood-brain and blood-spinal cord barriers in mutant SOD1-linked ALS rat. Brain Res 1301:152–162PubMedCrossRefGoogle Scholar
  72. Nicaise C, Soyfoo MS, Authelet M, De Decker R, Bataveljic D, Delporte C, Pochet R (2009b) Aquaporin-4 overexpression in rat ALS model. Anat Rec (Hoboken) 292:207–213CrossRefGoogle Scholar
  73. Niebroj-Dobosz I, Jamrozik Z, Janik P, Hausmanowa-Petrusewicz I, Kwieciński H (1999) Anti-neural antibodies in serum and cerebrospinal fluid of amyotrophic lateral sclerosis (ALS) patients. Acta Neurol Scand 100:238–243PubMedCrossRefGoogle Scholar
  74. Niebroj-Dobosz I, Janik P, Sokołowska B, Kwiecinski H (2010) Matrix metalloproteinases and their tissue inhibitors in serum and cerebrospinal fluid of patients with amyotrophic lateral sclerosis. Eur J Neurol 17:226–231PubMedCrossRefGoogle Scholar
  75. Norgren N, Rosengren L, Stigbrand T (2003) Elevated neurofilament levels in neurological diseases. Brain Res 987:25–31PubMedCrossRefGoogle Scholar
  76. Noto Y, Shibuya K, Sato Y, Kanai K, Misawa S, Sawai S, Mori M, Uchiyama T, Isose S, Nasu S, Sekiguchi Y, Fujimaki Y, Kasai T, Tokuda T, Nakagawa M, Kuwabara S (2011) Elevated CSF TDP-43 levels in amyotrophic lateral sclerosis: specificity, sensitivity, and a possible prognostic value. Amyotroph Lateral Scler 12:140–143PubMedCrossRefGoogle Scholar
  77. Ono S, Imai T, Shimizu N, Nagao K (2000) Increased expression of laminin 1 in the skin of amyotrophic lateral sclerosis. Eur Neurol 43:215–220PubMedCrossRefGoogle Scholar
  78. Otto M, Bahn E, Wiltfang J, Boekhoff I, Beuche W (1998) Decrease of S100 beta protein in serum of patients with amyotrophic lateral sclerosis. Neurosci Lett 240:171–173PubMedCrossRefGoogle Scholar
  79. Pardridge WM (1999) Blood-brain barrier biology and methodology. J Neurovirol 5:556–569PubMedCrossRefGoogle Scholar
  80. Pasinelli P, Brown RH (2006) Molecular biology of amyotrophic lateral sclerosis: insights from genetics. Nat Rev Neurosci 7:710–723PubMedCrossRefGoogle Scholar
  81. Pasinetti GM, Ungar LH, Lange DJ, Yemul S, Deng H, Yuan X, Brown RH, Cudkowicz ME, Newhall K, Peskind E, Marcus S, Ho L (2006) Identification of potential CSF biomarkers in ALS. Neurology 66:1218–1222PubMedCrossRefGoogle Scholar
  82. Philips T, De Muynck L, Thu HN, Weynants B, Vanacker P, Dhondt J, Sleegers K, Schelhaas HJ, Verbeek M, Vandenberghe R, Sciot R, Van Broeckhoven C, Lambrechts D, Van Leuven F, Van Den Bosch L, Robberecht W, Van Damme P (2010) Microglial upregulation of progranulin as a marker of motor neuron degeneration. J Neuropathol Exp Neurol 69:1191–1200PubMedCrossRefGoogle Scholar
  83. Pirttilä T, Vanhatalo S, Turpeinen U, Riikonen R (2004) Cerebrospinal fluid insulin-like growth factor-1, insulin growth factor binding protein-2 or nitric oxide are not increased in MS or ALS. Acta Neurol Scand 109:337–341PubMedCrossRefGoogle Scholar
  84. Ranganathan S, Williams E, Ganchev P, Gopalakrishnan V, Lacomis D, Urbinelli L, Newhall K, Cudkowicz ME, Brown RH, Bowser R (2005) Proteomic profiling of cerebrospinal fluid identifies biomarkers for amyotrophic lateral sclerosis. J Neurochem 95:1461–1471PubMedCrossRefGoogle Scholar
  85. Rebenko-Moll NM, Liu L, Cardona A, Ransohoff RM (2006) Chemokines, mononuclear cells and the nervous system: heaven (or hell) is in the details. Curr Opin Immunol 18:683–689PubMedCrossRefGoogle Scholar
  86. Reiber H, Ungefehr S, Jacobi C (1998) The intrathecal, polyspecific and oligoclonal immune response in multiple sclerosis. Mult Scler 4:111–117PubMedGoogle Scholar
  87. Ringel SP, Murphy JR, Alderson MK, Bryan W, England JD, Miller RG, Petajan JH, Smith SA, Roelofs RI, Ziter F (1993) The natural history of amyotrophic lateral sclerosis. Neurology 43:1316–1322PubMedCrossRefGoogle Scholar
  88. Rosen DR (1993) Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 364:362PubMedGoogle Scholar
  89. Rosengren LE, Karlsson JE, Karlsson JO, Persson LI, Wikkelsø C (1996) Patients with amyotrophic lateral sclerosis and other neurodegenerative diseases have increased levels of neurofilament protein in CSF. J Neurochem 67:2013–2018PubMedCrossRefGoogle Scholar
  90. Rothstein JD (2009) Current hypotheses for the underlying biology of amyotrophic lateral sclerosis. Ann Neurol 65(Suppl 1):S3–S9PubMedCrossRefGoogle Scholar
  91. Rowland LP, Shneider NA (2001) Amyotrophic lateral sclerosis. N Engl J Med 344:1688–1700PubMedCrossRefGoogle Scholar
  92. Ruan Q, Johnson GV (2007) Transglutaminase 2 in neurodegenerative disorders. Front Biosci 12:891–904PubMedCrossRefGoogle Scholar
  93. Rutka JT, Apodaca G, Stern R, Rosenblum M (1988) The extracellular matrix of the central and peripheral nervous systems: structure and function. J Neurosurg 69:155–170PubMedCrossRefGoogle Scholar
  94. Ryberg H, Söderling AS, Davidsson P, Blennow K, Caidahl K, Persson LI (2004) Cerebrospinal fluid levels of free 3-nitrotyrosine are not elevated in the majority of patients with amyotrophic lateral sclerosis or Alzheimer’s disease. Neurochem Int 45:57–62PubMedCrossRefGoogle Scholar
  95. Saleh IA, Zesiewicz T, Xie Y, Sullivan KL, Miller AM, Kuzmin-Nichols N, Sanberg PR, Garbuzova-Davis S (2009) Evaluation of humoral immune response in adaptive immunity in ALS patients during disease progression. J Neuroimmunol 215:96–101PubMedCrossRefGoogle Scholar
  96. Schymick JC, Talbot K, Traynor BJ (2007) Genetics of sporadic amyotrophic lateral sclerosis. Hum Mol Genet 16(Spec No. 2):R233–R242PubMedCrossRefGoogle Scholar
  97. Sekizawa T, Openshaw H, Ohbo K, Sugamura K, Itoyama Y, Niland JC (1998) Cerebrospinal fluid interleukin 6 in amyotrophic lateral sclerosis: immunological parameter and comparison with inflammatory and non-inflammatory central nervous system diseases. J Neurol Sci 154:194–199PubMedCrossRefGoogle Scholar
  98. Sharma HS (2005) Pathophysiology of blood-spinal cord barrier in traumatic injury and repair. Curr Pharm Des 11:1353–1389PubMedCrossRefGoogle Scholar
  99. Shibata N, Nagai R, Uchida K, Horiuchi S, Yamada S, Hirano A, Kawaguchi M, Yamamoto T, Sasaki S, Kobayashi M (2001) Morphological evidence for lipid peroxidation and protein glycoxidation in spinal cords from sporadic amyotrophic lateral sclerosis patients. Brain Res 917:97–104PubMedCrossRefGoogle Scholar
  100. Shoesmith CL, Findlater K, Rowe A, Strong MJ (2007) Prognosis of amyotrophic lateral sclerosis with respiratory onset. J Neurol Neurosurg Psychiatry 78:629–631PubMedCrossRefGoogle Scholar
  101. Siddique T, Deng HX (1996) Genetics of amyotrophic lateral sclerosis. Hum Mol Genet 5(Spec No):1465–1470PubMedGoogle Scholar
  102. Simpson EP, Yen AA, Appel SH (2003) Oxidative Stress: a common denominator in the pathogenesis of amyotrophic lateral sclerosis. Curr Opin Rheumatol 15:730–736PubMedCrossRefGoogle Scholar
  103. Simpson EP, Henry YK, Henkel JS, Smith RG, Appel SH (2004) Increased lipid peroxidation in sera of ALS patients: a potential biomarker of disease burden. Neurology 62:1758–1765PubMedCrossRefGoogle Scholar
  104. Sjögren M, Rosengren L, Minthon L, Davidsson P, Blennow K, Wallin A (2000) Cytoskeleton proteins in CSF distinguish frontotemporal dementia from AD. Neurology 54:1960–1964PubMedCrossRefGoogle Scholar
  105. Sleegers K, Brouwers N, Maurer-Stroh S, van Es MA, Van Damme P, van Vught PW, van der Zee J, Serneels S, De Pooter T, Van den Broeck M, Cruts M, Schymkowitz J, De Jonghe P, Rousseau F, van den Berg LH, Robberecht W, Van Broeckhoven C (2008) Progranulin genetic variability contributes to amyotrophic lateral sclerosis. Neurology 71:253–259PubMedCrossRefGoogle Scholar
  106. Spreux-Varoquaux O, Bensimon G, Lacomblez L, Salachas F, Pradat PF, Le Forestier N, Marouan A, Dib M, Meininger V (2002) Glutamate levels in cerebrospinal fluid in amyotrophic lateral sclerosis: a reappraisal using a new HPLC method with coulometric detection in a large cohort of patients. J Neurol Sci 193:73–78PubMedCrossRefGoogle Scholar
  107. Sreedharan J, Blair IP, Tripathi VB, Hu X, Vance C, Rogelj B, Ackerley S, Durnall JC, Williams KL, Buratti E, Baralle F, de Belleroche J, Mitchell JD, Leigh PN, Al-Chalabi A, Miller CC, Nicholson G, Shaw CE (2008) TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science 319:1668–1672PubMedCrossRefGoogle Scholar
  108. Strong M, Rosenfeld J (2003) Amyotrophic lateral sclerosis: a review of current concepts. Amyotroph Lateral Scler Other Motor Neuron Disord 4:136–143PubMedCrossRefGoogle Scholar
  109. Strong MJ, Kesavapany S, Pant HC (2005) The pathobiology of amyotrophic lateral sclerosis: a proteinopathy? J Neuropathol Exp Neurol 64:649–664PubMedCrossRefGoogle Scholar
  110. Süssmuth SD, Tumani H, Ecker D, Ludolph AC (2003) Amyotrophic lateral sclerosis: disease stage related changes of tau protein and S100 beta in cerebrospinal fluid and creatine kinase in serum. Neurosci Lett 353:57–60PubMedCrossRefGoogle Scholar
  111. Süssmuth SD, Sperfeld AD, Hinz A, Brettschneider J, Endruhn S, Ludolph AC, Tumani H (2010) CSF glial markers correlate with survival in amyotrophic lateral sclerosis. Neurology 74:982–987PubMedCrossRefGoogle Scholar
  112. Swash M, Ingram D (1988) Preclinical and subclinical events in motor neuron disease. J Neurol Neurosurg Psychiatry 51:165–168PubMedCrossRefGoogle Scholar
  113. Tan CF, Eguchi H, Tagawa A, Onodera O, Iwasaki T, Tsujino A, Nishizawa M, Kakita A, Takahashi H (2007) TDP-43 immunoreactivity in neuronal inclusions in familial amyotrophic lateral sclerosis with or without SOD1 gene mutation. Acta Neuropathol 113:535–542PubMedCrossRefGoogle Scholar
  114. Tanaka M, Kikuchi H, Ishizu T, Minohara M, Osoegawa M, Motomura K, Tateishi T, Ohyagi Y, Kira J (2006) Intrathecal upregulation of granulocyte colony stimulating factor and its neuroprotective actions on motor neurons in amyotrophic lateral sclerosis. J Neuropathol Exp Neurol 65:816–825PubMedCrossRefGoogle Scholar
  115. Tohgi H, Abe T, Yamazaki K, Murata T, Ishizaki E, Isobe C (1999) Increase in oxidized NO products and reduction in oxidized glutathione in cerebrospinal fluid from patients with sporadic form of amyotrophic lateral sclerosis. Neurosci Lett 260:204–206PubMedCrossRefGoogle Scholar
  116. Traynor BJ, Codd MB, Corr B, Forde C, Frost E, Hardiman O (2000) Amyotrophic lateral sclerosis mimic syndromes: a population-based study. Arch Neurol 57:109–113PubMedCrossRefGoogle Scholar
  117. Tsuboi Y, Yamada T (1994) Increased concentration of C4d complement protein in CSF in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 57:859–861PubMedCrossRefGoogle Scholar
  118. Tumani H, Shen G, Peter JB, Brück W (1999) Glutamine synthetase in cerebrospinal fluid, serum, and brain: a diagnostic marker for Alzheimer disease? Arch Neurol 56:1241–1246PubMedCrossRefGoogle Scholar
  119. Tumani H, Teunissen C, Süssmuth S, Otto M, Ludolph AC, Brettschneider J (2008) Cerebrospinal fluid biomarkers of neurodegeneration in chronic neurological diseases. Expert Rev Mol Diagn 8:479–494PubMedCrossRefGoogle Scholar
  120. Van Den Bosch L, Van Damme P, Bogaert E, Robberecht W (2006) The role of excitotoxicity in the pathogenesis of amyotrophic lateral sclerosis. Biochim Biophys Acta 1762:1068–1082Google Scholar
  121. van der Zee J, Le Ber I, Maurer-Stroh S, Engelborghs S, Gijselinck I, Camuzat A, Brouwers N, Vandenberghe R, Sleegers K, Hannequin D, Dermaut B, Schymkowitz J, Campion D, Santens P, Martin JJ, Lacomblez L, De Pooter T, Peeters K, Mattheijssens M, Vercelletto M, Van den Broeck M, Cruts M, De Deyn PP, Rousseau F, Brice A, Van Broeckhoven C (2007) Mutations other than null mutations producing a pathogenic loss of progranulin in frontotemporal dementia. Hum Mutat 28:416PubMedGoogle Scholar
  122. Vangilder RL, Rosen CL, Barr TL, Huber JD (2011) Targeting the neurovascular unit for treatment of neurological disorders. Pharmacol Ther 130:239–247PubMedCrossRefGoogle Scholar
  123. von Bernhardi R, Eugenín J (2004) Microglial reactivity to beta-amyloid is modulated by astrocytes and proinflammatory factors. Brain Res 1025:186–193CrossRefGoogle Scholar
  124. Vorbrodt AW, Dobrogowska DH (2003) Molecular anatomy of intercellular junctions in brain endothelial and epithelial barriers: electron microscopist’s view. Brain Res Brain Res Rev 42:221–242PubMedCrossRefGoogle Scholar
  125. Wada M, Uchihara T, Nakamura A, Oyanagi K (1999) Bunina bodies in amyotrophic lateral sclerosis on Guam: a histochemical, immunohistochemical and ultrastructural investigation. Acta Neuropathol 98:150–156PubMedCrossRefGoogle Scholar
  126. Wilms H, Sievers J, Dengler R, Bufler J, Deuschl G, Lucius R (2003) Intrathecal synthesis of monocyte chemoattractant protein-1 (MCP-1) in amyotrophic lateral sclerosis: further evidence for microglial activation in neurodegeneration. J Neuroimmunol 144:139–142PubMedCrossRefGoogle Scholar
  127. Wilson ME, Boumaza I, Lacomis D, Bowser R (2010) Cystatin C: a candidate biomarker for amyotrophic lateral sclerosis. PLoS ONE 5:e15133PubMedCrossRefGoogle Scholar
  128. Winhammar JM, Rowe DB, Henderson RD, Kiernan MC (2005) Assessment of disease progression in motor neuron disease. Lancet Neurol 4:229–238PubMedCrossRefGoogle Scholar
  129. Yamanaka K, Chun SJ, Boillee S, Fujimori-Tonou N, Yamashita H, Gutmann DH, Takahashi R, Misawa H, Cleveland DW (2008) Astrocytes as determinants of disease progression in inherited amyotrophic lateral sclerosis. Nat Neurosci 11:251–253PubMedCrossRefGoogle Scholar
  130. Yiangou Y, Facer P, Durrenberger P, Chessell IP, Naylor A, Bountra C, Banati RR, Anand P (2006) COX-2, CB2 and P2X7-immunoreactivities are increased in activated microglial cells/macrophages of multiple sclerosis and amyotrophic lateral sclerosis spinal cord. BMC Neurol 6:12PubMedCrossRefGoogle Scholar
  131. Yoshida Y, Une F, Utatsu Y, Nomoto M, Furukawa Y, Maruyama Y, Machigashira N, Matsuzaki T, Osame M (1999) Adenosine and neopterin levels in cerebrospinal fluid of patients with neurological disorders. Intern Med 38:133–139PubMedCrossRefGoogle Scholar
  132. Zetterström P, Andersen PM, Brännström T, Marklund SL (2011) Misfolded superoxide dismutase-1 in CSF from amyotrophic lateral sclerosis patients. J Neurochem 117:91–99PubMedCrossRefGoogle Scholar
  133. Zhang R, Gascon R, Miller RG, Gelinas DF, Mass J, Hadlock K, Jin X, Reis J, Narvaez A, McGrath MS (2005) Evidence for systemic immune system alterations in sporadic amyotrophic lateral sclerosis (sALS). J Neuroimmunol 159:215–224PubMedCrossRefGoogle Scholar
  134. Zhao W, Xie W, Le W, Beers DR, He Y, Henkel JS, Simpson EP, Yen AA, Xiao Q, Appel SH (2004) Activated microglia initiate motor neuron injury by a nitric oxide and glutamate-mediated mechanism. J Neuropathol Exp Neurol 63:964–977PubMedGoogle Scholar
  135. Zhong Z, Deane R, Ali Z, Parisi M, Shapovalov Y, O’Banion MK, Stojanovic K, Sagare A, Boillee S, Cleveland DW, Zlokovic BV (2008) ALS-causing SOD1 mutants generate vascular changes prior to motor neuron degeneration. Nat Neurosci 11:420–422PubMedCrossRefGoogle Scholar
  136. Zoccolella S, Beghi E, Palagano G, Fraddosio A, Samarelli V, Lamberti P, Lepore V, Serlenga L, Logroscino G, S registry (2006) Predictors of delay in the diagnosis and clinical trial entry of amyotrophic lateral sclerosis patients: a population-based study. J Neurol Sci 250:45–49PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Joanna Tarasiuk
    • 1
  • Alina Kułakowska
    • 1
  • Wiesław Drozdowski
    • 1
  • Johannes Kornhuber
    • 2
  • Piotr Lewczuk
    • 2
  1. 1.Department of NeurologyMedical University of BialystokBialystokPoland
  2. 2.Department of Psychiatry and Psychotherapy, Lab for Clinical Neurochemistry and Neurochemical Dementia DiagnosticsUniversitätsklinikum Erlangen and Friedrich-Alexander Universität Erlangen-NürnbergErlangenGermany

Personalised recommendations