Journal of Neural Transmission

, Volume 119, Issue 11, pp 1407–1416 | Cite as

Changes in insulin-signaling transduction pathway underlie learning/memory deficits in an Alzheimer’s disease rat model

  • Xiaojuan Han
  • Yan Ma
  • Xiaohui Liu
  • Lu Wang
  • Shen Qi
  • Qinghua Zhang
  • Yifeng DuEmail author
Dementias - Original Article


Brain metabolic dysregulation is a hallmark pathological change in Alzheimer’s disease (AD). Although detailed mechanisms are still not fully elucidated, recent studies suggest alterations of insulin-signaling transduction cascades underlie neuronal stresses in AD brains. In this study, we performed in vivo experiments to determine the impact of soluble Aβ oligomers on insulin-signaling transduction in rat hippocampi by utilizing lateral ventricular injection of amyloid beta (Aβ) oligomers on male Wistar rats (225 ± 25 g, 3–4 months old) as an AD rat model. The Aβ-infused rats manifested remarkably increased escape latency and significantly decreased proportions of time and pathway crossing the hidden platform as compared to the rats in the pseudo-injection group and the non-injection group in Morris water maze test implicating the damaging effect of soluble Aβ oligomers on rat learning and memory functions. Accordingly, our subsequent results demonstrated that the infusion of soluble Aβ oligomers significantly decreased the expressions of insulin receptor, insulin receptor substrate-I, B cell lymphoma/leukemia-2 and serine/threonine protein kinase B in rat hippocampal neurons, whereas the expression level of total cAMP response element-binding protein was not changed. This study suggests that soluble Aβ oligomers instigated insulin-signaling disturbances which are potentially associated with learning and memory deficits in the AD rat model.


Alzheimer’s disease Soluble Aβ oligomers Insulin-signaling transduction pathway Rats 



This study was supported by the Natural Science Foundation of Shandong Province (Y2008C116). We thank Dr. Edward C. Mignot for linguistic advice and Professor Shuli Sheng and Heng Du for revisal advice.


  1. Balducci C, Beeg M, Stravalaci M, Bastone A, Sclip A, Biasini E, Tapella L, Colombo L, Manzoni C, Borsello T, Chiesa R, Gobbi M, Salmona M, Forloni G (2010) Synthetic amyloid-beta oligomers impair long-term memory independently of cellular prion protein. Proc Natl Acad Sci USA 107:2295–2300PubMedCrossRefGoogle Scholar
  2. Begum AN, Yang F, Teng E, Hu S, Jones MR, Rosario ER, Beech W, Hudspeth B, Ubeda OJ, Cole GM, Frautschy SA (2008) Use of copper and insulin-resistance to accelerate cognitive deficits and synaptic protein loss in a rat Abeta-infusion Alzheimer’s disease model. J Alzheimers Dis 15:625–640PubMedGoogle Scholar
  3. Benedict C, Hallschmid M, Schmitz K, Schultes B, Ratter F, Fehm HL, Born J, Kern W (2007) Intranasal insulin improves memory in humans: superiority of insulin aspart. Neuropsychopharmacology 32:239–243PubMedCrossRefGoogle Scholar
  4. Brunet A, Datta SR, Greenberg ME (2001) Transcription-dependent and -independent control of neuronal survival by the PI3K-Akt signaling pathway. Curr Opin Neurobiol 11:297–305PubMedCrossRefGoogle Scholar
  5. Caccamo A, Majumder S, Richardson A, Strong R, Oddo S (2010) Molecular interplay between mammalian target of rapamycin (mTOR), amyloid-beta, and Tau: effects on cognitive impairments. J Biol Chem 285:13107–13120PubMedCrossRefGoogle Scholar
  6. Chen SY, Wright JW, Barnes CD (1996) The neurochemical and behavioral effects of beta-amyloid peptide(25–35). Brain Res 720:54–60PubMedCrossRefGoogle Scholar
  7. Correia SC, Santos RX, Perry G, Zhu X, Moreira PI, Smith MA (2011) Insulin-resistant brain state: the culprit in sporadic Alzheimer’s disease? Ageing Res Rev 10:264–273PubMedCrossRefGoogle Scholar
  8. Craft JM, Watterson DM, Frautschy SA, Van Eldik LJ (2004) Aminopyridazines inhibit beta-amyloid-induced glial activation and neuronal damage in vivo. Neurobiol Aging 25:1283–1292PubMedCrossRefGoogle Scholar
  9. Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA (1995) Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378:785–789PubMedCrossRefGoogle Scholar
  10. Datta SR, Dudek H, Tao X, Masters S, Fu H, Gotoh Y, Greenberg ME (1997) Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91:231–241PubMedCrossRefGoogle Scholar
  11. de Felice FG, Vieira MN, Bomfim TR, Decker H, Velasco PT, Lambert MP, Viola KL, Zhao WQ, Ferreira ST, Klein WL (2009) Protection of synapses against Alzheimer’s-linked toxins: insulin signaling prevents the pathogenic binding of Abeta oligomers. Proc Natl Acad Sci USA 106:1971–1976PubMedCrossRefGoogle Scholar
  12. de la Monte SM, Wands JR (2002) Chronic gestational exposure to ethanol impairs insulin-stimulated survival and mitochondrial function in cerebellar neurons. Cell Mol Life Sci 59:882–893PubMedCrossRefGoogle Scholar
  13. Demuro A, Mina E, Kayed R, Milton SC, Parker I, Glabe CG (2005) Calcium dysregulation and membrane disruption as a ubiquitous neurotoxic mechanism of soluble amyloid oligomers. J Biol Chem 280:17294–17300PubMedCrossRefGoogle Scholar
  14. Dineley KT, Kayed R, Neugebauer V, Fu Y, Zhang W, Reese LC, Taglialatela G (2010) Amyloid-beta oligomers impair fear conditioned memory in a calcineurin-dependent fashion in mice. J Neurosci Res 88:2923–2932PubMedGoogle Scholar
  15. Du H, Guo L, Zhang W, Rydzewska M, Yan S (2011a) Cyclophilin D deficiency improves mitochondrial function and learning/memory in aging Alzheimer disease mouse model. Neurobiol Aging 32:398–406PubMedCrossRefGoogle Scholar
  16. Du YF, Yan P, Guo SG, Qu CQ (2011b) Effects of fibrillar Abeta(1–40) on the viability of primary cultures of cholinergic neurons and the expression of insulin signaling-related proteins. Anat Rec (Hoboken) 294:287–294CrossRefGoogle Scholar
  17. Dudek H, Datta SR, Franke TF, Birnbaum MJ, Yao R, Cooper GM, Segal RA, Kaplan DR, Greenberg ME (1997) Regulation of neuronal survival by the serine-threonine protein kinase Akt. Science 275:661–665PubMedCrossRefGoogle Scholar
  18. Dumurgier J, Paquet C, Peoc’h K, Lapalus P, Mouton-Liger F, Benisty S, Chasseigneaux S, Chabriat H, Hugon J (2011) CSF Abeta1–42 levels and glucose metabolism in Alzheimer’s disease. J Alzheimers Dis 27:845–851PubMedGoogle Scholar
  19. Fischer A, Sananbenesi F, Pang PT, Lu B, Tsai LH (2005) Opposing roles of transient and prolonged expression of p25 in synaptic plasticity and hippocampus-dependent memory. Neuron 48:825–838PubMedCrossRefGoogle Scholar
  20. Frautschy SA, Yang F, Calderon L, Cole GM (1996) Rodent models of Alzheimer’s disease: rat A beta infusion approaches to amyloid deposits. Neurobiol Aging 17:311–321PubMedCrossRefGoogle Scholar
  21. Frautschy SA, Hu W, Kim P, Miller SA, Chu T, Harris-White ME, Cole GM (2001) Phenolic anti-inflammatory antioxidant reversal of Abeta-induced cognitive deficits and neuropathology. Neurobiol Aging 22:993–1005PubMedCrossRefGoogle Scholar
  22. Freir DB, Fedriani R, Scully D, Smith IM, Selkoe DJ, Walsh DM, Regan CM (2011) Abeta oligomers inhibit synapse remodelling necessary for memory consolidation. Neurobiol Aging 32:2211–2218PubMedCrossRefGoogle Scholar
  23. Gaspar RC, Villarreal SA, Bowles N, Hepler RW, Joyce JG, Shughrue PJ (2010) Oligomers of beta-amyloid are sequestered into and seed new plaques in the brains of an AD mouse model. Exp Neurol 223:394–400PubMedCrossRefGoogle Scholar
  24. Gasparini L, Netzer WJ, Greengard P, Xu H (2002) Does insulin dysfunction play a role in Alzheimer’s disease? Trends Pharmacol Sci 23:288–293PubMedCrossRefGoogle Scholar
  25. Gerozissis K (2008) Brain insulin, energy and glucose homeostasis: genes, environment and metabolic pathologies. Eur J Pharmacol 585:38–49PubMedCrossRefGoogle Scholar
  26. Griffin RJ, Moloney A, Kelliher M, Johnston JA, Ravid R, Dockery P, O’Connor R, O’Neill C (2005) Activation of Akt/PKB, increased phosphorylation of Akt substrates and loss and altered distribution of Akt and PTEN are features of Alzheimer’s disease pathology. J Neurochem 93:105–117PubMedCrossRefGoogle Scholar
  27. Hanger DP, Noble W (2011) Functional implications of glycogen synthase kinase-3-mediated tau phosphorylation. Int J Alzheimers Dis 2011:352805PubMedGoogle Scholar
  28. Harkany T, O’Mahony S, Kelly JP, Soos K, Toro I, Penke B, Luiten PG, Nyakas C, Gulya K, Leonard BE (1998) Beta-amyloid(Phe(SO3H)24)25–35 in rat nucleus basalis induces behavioral dysfunctions, impairs learning and memory and disrupts cortical cholinergic innervation. Behav Brain Res 90:133–145PubMedCrossRefGoogle Scholar
  29. Hoyer S, Lee SK, Loffler T, Schliebs R (2000) Inhibition of the neuronal insulin receptor. An in vivo model for sporadic Alzheimer disease? Ann N Y Acad Sci 920:256–258PubMedCrossRefGoogle Scholar
  30. Hu S, Begum AN, Jones MR, Oh MS, Beech WK, Beech BH, Yang F, Chen P, Ubeda OJ, Kim PC, Davies P, Ma Q, Cole GM, Frautschy SA (2009) GSK3 inhibitors show benefits in an Alzheimer’s disease (AD) model of neurodegeneration but adverse effects in control animals. Neurobiol Dis 33:193–206PubMedCrossRefGoogle Scholar
  31. Iqbal K, Grundke-Iqbal I (2008) Alzheimer neurofibrillary degeneration: significance, etiopathogenesis, therapeutics and prevention. J Cell Mol Med 12:38–55PubMedCrossRefGoogle Scholar
  32. Jin Y, Yan EZ, Fan Y, Zong ZH, Qi ZM, Li Z (2005) Sodium ferulate prevents amyloid-beta-induced neurotoxicity through suppression of p38 MAPK and upregulation of ERK-1/2 and Akt/protein kinase B in rat hippocampus. Acta Pharmacol Sin 26:943–951PubMedCrossRefGoogle Scholar
  33. Klein WL, Krafft GA, Finch CE (2001) Targeting small Abeta oligomers: the solution to an Alzheimer’s disease conundrum? Trends Neurosci 24:219–224PubMedCrossRefGoogle Scholar
  34. Lambert MP, Barlow AK, Chromy BA, Edwards C, Freed R, Liosatos M, Morgan TE, Rozovsky I, Trommer B, Viola KL, Wals P, Zhang C, Finch CE, Krafft GA, Klein WL (1998) Diffusible, nonfibrillar ligands derived from Abeta1-42 are potent central nervous system neurotoxins. Proc Natl Acad Sci USA 95:6448–6453PubMedCrossRefGoogle Scholar
  35. Lehericy S, Hirsch EC, Cervera-Pierot P, Hersh LB, Bakchine S, Piette F, Duyckaerts C, Hauw JJ, Javoy-Agid F, Agid Y (1993) Heterogeneity and selectivity of the degeneration of cholinergic neurons in the basal forebrain of patients with Alzheimer’s disease. J Comp Neurol 330:15–31PubMedCrossRefGoogle Scholar
  36. Lesne S, Koh MT, Kotilinek L, Kayed R, Glabe CG, Yang A, Gallagher M, Ashe KH (2006) A specific amyloid-beta protein assembly in the brain impairs memory. Nature 440:352–357PubMedCrossRefGoogle Scholar
  37. Ma QL, Harris-White ME, Ubeda OJ, Simmons M, Beech W, Lim GP, Teter B, Frautschy SA, Cole GM (2007) Evidence of Abeta- and transgene-dependent defects in ERK-CREB signaling in Alzheimer’s models. J Neurochem 103:1594–1607PubMedCrossRefGoogle Scholar
  38. Mattson MP (2004) Pathways towards and away from Alzheimer’s disease. Nature 430:631–639PubMedCrossRefGoogle Scholar
  39. Moloney AM, Griffin RJ, Timmons S, O’Connor R, Ravid R, O’Neill C (2010) Defects in IGF-1 receptor, insulin receptor and IRS-1/2 in Alzheimer’s disease indicate possible resistance to IGF-1 and insulin signalling. Neurobiol Aging 31:224–243PubMedCrossRefGoogle Scholar
  40. Moroo I, Yamada T, Makino H, Tooyama I, McGeer PL, McGeer EG, Hirayama K (1994) Loss of insulin receptor immunoreactivity from the substantia nigra pars compacta neurons in Parkinson’s disease. Acta Neuropathol 87:343–348PubMedCrossRefGoogle Scholar
  41. Nakamura S, Murayama N, Noshita T, Annoura H, Ohno T (2001) Progressive brain dysfunction following intracerebroventricular infusion of beta(1–42)-amyloid peptide. Brain Res 912:128–136PubMedCrossRefGoogle Scholar
  42. Nitta A, Itoh A, Hasegawa T, Nabeshima T (1994) beta-Amyloid protein-induced Alzheimer’s disease animal model. Neurosci Lett 170:63–66PubMedCrossRefGoogle Scholar
  43. Poling A, Morgan-Paisley K, Panos JJ, Kim EM, O’Hare E, Cleary JP, Lesne S, Ashe KH, Porritt M, Baker LE (2008) Oligomers of the amyloid-beta protein disrupt working memory: confirmation with two behavioral procedures. Behav Brain Res 193:230–234PubMedCrossRefGoogle Scholar
  44. Rayasam GV, Tulasi VK, Sodhi R, Davis JA, Ray A (2009) Glycogen synthase kinase 3: more than a namesake. Br J Pharmacol 156:885–898PubMedCrossRefGoogle Scholar
  45. Reese LC, Zhang W, Dineley KT, Kayed R, Taglialatela G (2008) Selective induction of calcineurin activity and signaling by oligomeric amyloid beta. Aging Cell 7:824–835PubMedCrossRefGoogle Scholar
  46. Richardson JC, Kendal CE, Anderson R, Priest F, Gower E, Soden P, Gray R, Topps S, Howlett DR, Lavender D, Clarke NJ, Barnes JC, Haworth R, Stewart MG, Rupniak HT (2003) Ultrastructural and behavioural changes precede amyloid deposition in a transgenic model of Alzheimer’s disease. Neuroscience 122:213–228PubMedCrossRefGoogle Scholar
  47. Rivera EJ, Goldin A, Fulmer N, Tavares R, Wands JR, de la Monte SM (2005) Insulin and insulin-like growth factor expression and function deteriorate with progression of Alzheimer’s disease: link to brain reductions in acetylcholine. J Alzheimers Dis 8:247–268PubMedGoogle Scholar
  48. Ryder J, Su Y, Ni B (2004) Akt/GSK3beta serine/threonine kinases: evidence for a signalling pathway mediated by familial Alzheimer’s disease mutations. Cell Signal 16:187–200PubMedCrossRefGoogle Scholar
  49. Schubert M, Gautam D, Surjo D, Ueki K, Baudler S, Schubert D, Kondo T, Alber J, Galldiks N, Kustermann E, Arndt S, Jacobs AH, Krone W, Kahn CR, Bruning JC (2004) Role for neuronal insulin resistance in neurodegenerative diseases. Proc Natl Acad Sci USA 101:3100–3105PubMedCrossRefGoogle Scholar
  50. Selkoe DJ (2008) Soluble oligomers of the amyloid beta-protein impair synaptic plasticity and behavior. Behav Brain Res 192:106–113PubMedCrossRefGoogle Scholar
  51. Steen E, Terry BM, Rivera EJ, Cannon JL, Neely TR, Tavares R, Xu XJ, Wands JR, de la Monte SM (2005) Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer’s disease–is this type 3 diabetes? J Alzheimers Dis 7:63–80PubMedGoogle Scholar
  52. Stine WB Jr, Dahlgren KN, Krafft GA, LaDu MJ (2003) In vitro characterization of conditions for amyloid-beta peptide oligomerization and fibrillogenesis. J Biol Chem 278:11612–11622PubMedCrossRefGoogle Scholar
  53. Sweeney WA, Luedtke J, McDonald MP, Overmier JB (1997) Intrahippocampal injections of exogenous beta-amyloid induce postdelay errors in an eight-arm radial maze. Neurobiol Learn Mem 68:97–101PubMedCrossRefGoogle Scholar
  54. Takeda S, Sato N, Rakugi H, Morishita R (2011) Molecular mechanisms linking diabetes mellitus and Alzheimer disease: beta-amyloid peptide, insulin signaling, and neuronal function. Mol Biosyst 7:1822–1827PubMedCrossRefGoogle Scholar
  55. Townsend M, Mehta T, Selkoe DJ (2007) Soluble Abeta inhibits specific signal transduction cascades common to the insulin receptor pathway. J Biol Chem 282:33305–33312PubMedCrossRefGoogle Scholar
  56. Tully T, Bourtchouladze R, Scott R, Tallman J (2003) Targeting the CREB pathway for memory enhancers. Nat Rev Drug Discov 2:267–277PubMedCrossRefGoogle Scholar
  57. Ueno H, Kondo E, Yamamoto-Honda R, Tobe K, Nakamoto T, Sasaki K, Mitani K, Furusaka A, Tanaka T, Tsujimoto Y, Kadowaki T, Hirai H (2000) Association of insulin receptor substrate proteins with Bcl-2 and their effects on its phosphorylation and antiapoptotic function. Mol Biol Cell 11:735–746PubMedGoogle Scholar
  58. Wang C, Yang XM, Zhuo YY, Zhou H, Lin HB, Cheng YF, Xu JP, Zhang HT (2011) The phosphodiesterase-4 inhibitor rolipram reverses Abeta-induced cognitive impairment and neuroinflammatory and apoptotic responses in rats. Int J Neuropsychopharmacol: 1–18. doi: 10.1017/S1461145711000836
  59. Xiao HB, Cao X, Wang L, Run XQ, Su Y, Tian C, Sun SG, Liang ZH (2011) 1,5-dicaffeoylquinic acid protects primary neurons from amyloid beta 1–42-induced apoptosis via PI3K/Akt signaling pathway. Chin Med J (Engl) 124:2628–2635Google Scholar
  60. Yamamoto-Sasaki M, Ozawa H, Saito T, Rosler M, Riederer P (1999) Impaired phosphorylation of cyclic AMP response element binding protein in the hippocampus of dementia of the Alzheimer type. Brain Res 824:300–303PubMedCrossRefGoogle Scholar
  61. Yang TT, Hsu CT, Kuo YM (2009) Cell-derived soluble oligomers of human amyloid-beta peptides disturb cellular homeostasis and induce apoptosis in primary hippocampal neurons. J Neural Transm 116:1561–1569PubMedCrossRefGoogle Scholar
  62. Youssef I, Florent-Bechard S, Malaplate-Armand C, Koziel V, Bihain B, Olivier JL, Leininger-Muller B, Kriem B, Oster T, Pillot T (2008) N-truncated amyloid-beta oligomers induce learning impairment and neuronal apoptosis. Neurobiol Aging 29:1319–1333PubMedCrossRefGoogle Scholar
  63. Zeng KW, Wang XM, Ko H, Kwon HC, Cha JW, Yang HO (2011) Hyperoside protects primary rat cortical neurons from neurotoxicity induced by amyloid beta-protein via the PI3K/Akt/Bad/Bcl(XL)-regulated mitochondrial apoptotic pathway. Eur J Pharmacol 672:45–55PubMedCrossRefGoogle Scholar
  64. Zhao WQ, Alkon DL (2001) Role of insulin and insulin receptor in learning and memory. Mol Cell Endocrinol 177:125–134PubMedCrossRefGoogle Scholar
  65. Zhao WQ, Chen H, Quon MJ, Alkon DL (2004) Insulin and the insulin receptor in experimental models of learning and memory. Eur J Pharmacol 490:71–81PubMedCrossRefGoogle Scholar
  66. Zhao WQ, De Felice FG, Fernandez S, Chen H, Lambert MP, Quon MJ, Krafft GA, Klein WL (2008) Amyloid beta oligomers induce impairment of neuronal insulin receptors. FASEB J 22:246–260PubMedCrossRefGoogle Scholar
  67. Zhou H, Li XM, Meinkoth J, Pittman RN (2000) Akt regulates cell survival and apoptosis at a postmitochondrial level. J Cell Biol 151:483–494PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Xiaojuan Han
    • 1
  • Yan Ma
    • 2
  • Xiaohui Liu
    • 1
  • Lu Wang
    • 1
  • Shen Qi
    • 1
  • Qinghua Zhang
    • 1
  • Yifeng Du
    • 1
    Email author
  1. 1.Department of NeurologyProvincial Hospital Affiliated to Shandong UniversityJinanPeople’s Republic of China
  2. 2.Department of NeurologyNo. 1 Central Hospital of Bao Ding CityBaodingPeople’s Republic of China

Personalised recommendations