Journal of Neural Transmission

, Volume 119, Issue 5, pp 569–574 | Cite as

The first phase of a migraine attack resides in the cortex

  • Hayrunnisa Bolay
Biological Psychiatry - CONy Pro/Con debate


Migraine headache is generated by the complex interaction of various players such as genetic predisposition, environmental triggers and intrinsic factors. The initial mechanism of a migraine attack has long been a controversial topic and exploring its origin is a challenging task. The scientific evidences so far indicate neuronal dysfunction in the cerebral cortex and particularly cortical spreading depression waves, as upstream to cascade of events leading to a migraine attack. Neocortex, evolutionary valuable part of the brain, is surrounded by pain sensing system that is finely tuned for detecting noxious signals. Abnormal functioning of more than one cortical area in migraineurs may suggest that hyperexcitable neocortex could be more easily challenged, overreacts and depolarize to repetitive sensorial stimuli and could switch to extreme excitability state where spreading depression waves occur. In this paper, I will review the data supporting the notion that migraine is a neuronal disorder where cortex has prime importance. Despite clear demonstration of cortical participation in migraine, the contribution of brain structures other than cortex to the development of migraine remains unclear.


Migraine Headache Cortical spreading depression Trigeminal nerve Excitability 


  1. Akcali D, Sayin A, Sara Y, Bolay H (2010) Does single cortical spreading depression elicit pain behaviour in freely moving rats? Cephalalgia 30:1195–1206PubMedCrossRefGoogle Scholar
  2. Ambrosini A, Rossi P, De Pasqua V, Pierelli F, Schoenen J (2003) Lack of habituation causes high intensity dependence of auditory evoked cortical potentials in migraine. Brain 126(Pt 9):2009–2015PubMedCrossRefGoogle Scholar
  3. Antal A, Kriener N, Lang N, Boros K, Paulus W (2011) Cathodal transcranial direct current stimulation of the visual cortex in the prophylactic treatment of migraine. Cephalalgia 31:820–828PubMedCrossRefGoogle Scholar
  4. Artemenko AR, Kurenkov AL, Filatova EG, Nikitin SS, Kaube S, Katsarava Z (2008) Effects of topiramate on migraine frequency and cortical excitability in patients with frequent migraine. Cephalalgia 28:203–208PubMedCrossRefGoogle Scholar
  5. Ayata C, Jin H, Kudo C et al (2006) Suppression of cortical spreading depression in migraine prophylaxis. Ann Neurol 59:652–661PubMedCrossRefGoogle Scholar
  6. Berger M, Speckmann EJ, Pape HC, Gorji A (2008) Spreading depression enhances human neocortical excitability in vitro. Cephalalgia 28(5):558–562PubMedCrossRefGoogle Scholar
  7. Bolay H, Moskowitz MA (2005a) The neurobiology of migraine and transformation of headache therapy. In: Waxman S (ed) ‘Neuroscience, Molecular Medicine and the Therapeutic Transformation of Neurology’, Elsevier, Oxford, pp 107–123Google Scholar
  8. Bolay H, Moskowitz MA (2005b) The emerging importance of cortical spreading depression in migraine headache. Rev Neurol 161(6–7):655–657PubMedCrossRefGoogle Scholar
  9. Bolay H, Reuter U, Dunn AK, Huang Z, Boas D, Moskowitz A (2002) Intrinsic brain activity triggers trigeminal meningeal afferents in a migraine model. Nat Med 8:136–142PubMedCrossRefGoogle Scholar
  10. Cao Y, Aurora SK, Nagesh V, Patel SC, Welch KM (2002) Functional MRI-BOLD of brainstem structures during visually triggered migraine. Neurology 59:72–78PubMedGoogle Scholar
  11. Chadaide Z, Arlt S, Antal A, Nitsche MA, Lang N, Paulus W (2007) Transcranial direct current stimulation reveals inhibitory deficiency in migraine. Cephalalgia 27:833–839PubMedCrossRefGoogle Scholar
  12. Coppola G, Pierelli F, Schoenen J (2007) Is the cerebral cortex hyperexcitable or hyperresponsive in migraine? Cephalalgia 27(12):1427–1439PubMedCrossRefGoogle Scholar
  13. Cosentino G, Fierro B, Vigneri S, Talamanca S, Palermo A, Puma A, Brighina F (2011) Impaired glutamatergic neurotransmission in migraine with aura? Evidence by an input–output curves transcranial magnetic stimulation study. Headache 51(5):726–733PubMedCrossRefGoogle Scholar
  14. Cutrer FM, Huerter K (2007) Migraine aura. Neurologist 13(3):118–125PubMedCrossRefGoogle Scholar
  15. DaSilva AF, Granziera C, Snyder J, Hadjikhani N (2007) Thickening in the somatosensory cortex of patients with migraine. Neurology 69(21):1990–1995PubMedCrossRefGoogle Scholar
  16. DaSilva AF, Becerra L, Pendse G, Chizh B, Tully S, Borsook D (2008) Colocalized structural and functional changes in the cortex of patients with trigeminal neuropathic pain. PLoS ONE 3(10):e3396PubMedCrossRefGoogle Scholar
  17. Denuelle M, Boulloche N, Payoux P, Fabre N, Trotter Y, Géraud G (2011) A PET study of photophobia during spontaneous migraine attacks. Neurology 76(3):213–218PubMedCrossRefGoogle Scholar
  18. Eikermann-Haerter K, Dilekoz E, Kudo C et al (2009) Genetic and hormonal factors modulate spreading depression and transient hemiparesis in mouse models of familial hemiplegic migraine type 1. J Clin Invest 119:99–109PubMedGoogle Scholar
  19. Granziera C, DaSilva AF, Snyder J, Tuch DS, Hadjikhani N (2006) Anatomical alterations of the visual motion processing network in migraine with and without aura. PLoS Med 3(10):1915–1921CrossRefGoogle Scholar
  20. Gursoy-Ozdemir Y, Qiu J, Matsuoka N, Bolay H, Bermpohl D, Jin H, Wang X, Rosenberg GA, Lo EH, Moskowitz MA (2004) Cortical spreading depression activates and upregulates MMP-9. J Clin Invest 113:1447–1455PubMedGoogle Scholar
  21. Hadjikhani N, Sanchez Del Rio M, Wu O et al (2001) Mechanisms of migraine aura revealed by functional MRI in human visual cortex. Proc Natl Acad Sci USA 98:4687–4692PubMedCrossRefGoogle Scholar
  22. Hashemi P, Bhatia R, Nakamura H, Dreier JP, Graf R, Strong AJ, Boutelle MG (2009) Persisting depletion of brain glucose following cortical spreading depression, despite apparent hyperaemia: evidence for risk of an adverse effect of Leão’s spreading depression. J Cereb Blood Flow Metab 29(1):166–175PubMedCrossRefGoogle Scholar
  23. Headache Classification Committee of the International Headache Society (2004) The International Classification of headache disorders. Cephalalgia 24:1–160Google Scholar
  24. Kim JH, Suh SI, Seol HY, Oh K, Seo WK, Yu SW, Park KW, Koh SB (2008) Regional grey matter changes in patients with migraine: a voxel-based morphometry study. Cephalalgia 28(6):598–604PubMedCrossRefGoogle Scholar
  25. Kim JH, Kim S, Suh SI, Koh SB, Park KW, Oh K (2010) Interictal metabolic changes in episodic migraine: a voxel-based FDG-PET study. Cephalalgia 30(1):53–61PubMedGoogle Scholar
  26. Kraig RP, Nicholson C (1978) Extracellular ionic variations during spreading depression. Neuroscience 3:1045–1059PubMedCrossRefGoogle Scholar
  27. Kruger H, Luhmann HJ, Heinemann U (1996) Repetitive spreading depression causes selective suppression of GABAergic function. NeuroReport 7:2733–2736PubMedCrossRefGoogle Scholar
  28. Lashley KS (1941) Patterns of cerebral integration indicated by the scotomas of migraine. Arch Neurol Psychiatry 46:331–339Google Scholar
  29. Lauritzen M, Olsen TS, Lassen NA, Paulson OB (1983) Regulation of regional cerebral blood flow during and between migraine attacks. Ann Neurol 14:569–572PubMedCrossRefGoogle Scholar
  30. Leao AAP (1944) Spreading depression of activity in cerebral cortex. J Neurophysiol 7:359–390Google Scholar
  31. Mayberg MR, Zervas NT, Moskowitz MA (1984) Trigeminal projections to supratentorial pial and dural blood vessels in cats demonstrated by horseradishperoxidase histochemistry. J Comp Neurol 223:46–56PubMedCrossRefGoogle Scholar
  32. Milner PM (1958) Note on a possible correspondence between the scotomas of migraine and spreading depression of Leao. Electroencephalogr Clin Neurophysiol 10:705PubMedCrossRefGoogle Scholar
  33. Moskowitz MA (1993) Neurogenic inflammation in the pathophysiology and treatment of migraine. Neurology 43(Suppl 3):S16–S20PubMedGoogle Scholar
  34. Moskowitz MA, Nozaki K, Kraig RP (1993) Neocortical spreading depression provokes the expression of c-fos protein-like immunoreactivity within trigeminal nucleus caudalis via trigeminovascular mechanisms. J Neurosci 13:1167–1177PubMedGoogle Scholar
  35. Moskowitz MA, Bolay H, Dalkara T (2004) Deciphering migraine mechanisms: clues from familial hemiplegic migraine genotypes. Ann Neurol 55:276–280PubMedCrossRefGoogle Scholar
  36. Mulleners WM, Chronicle EP, Vredeveldb JW, Koehlera PJ (2002) Visual cortex excitability in migraine before and after valproate prophylaxis: a pilot study using TMS. Eur J Neurol 9:35–40PubMedCrossRefGoogle Scholar
  37. Obrenovitch TP, Urenjak J, Wang M (2002) Nitric oxide formation during cortical spreading depression is critical for rapid subsequent recovery of ionic homeostasis. J Cereb Blood Flow Metab 22:680–688PubMedCrossRefGoogle Scholar
  38. Olesen J, Larsen B, Lauritzen M (1981) Focal hyperemia followed by spreading oligemia and impaired activation of rCBF in classic migraine. Ann Neurol 9:344–352PubMedCrossRefGoogle Scholar
  39. Penfield W, McNaughton F (1940) Dural headache and innervation of the dura mater. Arch Neurol Psychiatry 44:43–75Google Scholar
  40. Rossi P, Ambrosini A, Buzzi MG (2005) Prodromes and predictors of migraine attack. Funct Neurol 20(4):185–191PubMedGoogle Scholar
  41. Schmidt-Wilcke T, Leinisch E, Straube A, Kämpfe N, Draganski B, Diener HC, Bogdahn U, May A (2005) Gray matter decrease in patients with chronic tension type headache. Neurology 65(9):1483–1486PubMedCrossRefGoogle Scholar
  42. Schmidt-Wilcke T, Gänssbauer S, Neuner T, Bogdahn U, May A (2008) Subtle grey matter changes between migraine patients and healthy controls. Cephalalgia 28(1):1–4PubMedCrossRefGoogle Scholar
  43. Schoenen J, Maertens de Noordout A, Timsit-Bertheir M, Timisit M (1986) Contingent negative variation and efficacy of beta-blocking agents in migraine. Cephalalgia 6:231–233CrossRefGoogle Scholar
  44. Schytz HW, Ciftçi K, Akin A, Ashina M, Bolay H (2010) Intact neurovascular coupling during executive function in migraine without aura: interictal near-infrared spectroscopy study. Cephalalgia 30(4):457–466PubMedGoogle Scholar
  45. Smith JM, Bradley DP, James MF, Huang CL (2006) Physiological studies of cortical spreading depression. Biol Rev 81:457–481PubMedCrossRefGoogle Scholar
  46. Takano T, Tian GF, Peng W, Lou N, Lovatt D, Hansen AJ, Kasischke KA, Nedergaard M (2007) Cortical spreading depression causes and coincides with tissue hypoxia. Nat Neurosci 10(6):674CrossRefGoogle Scholar
  47. Tibber MS, Guedes A, Shepherd AJ (2006) Orientation discrimination and contrast detection thresholds in migraine for cardinal and oblique angles. Invest Ophthalmol Vis Sci 47(12):5599–5604PubMedCrossRefGoogle Scholar
  48. Tottene A, Conti R, Fabbro A, Vecchia D, Shapovalova M, Santello M, van den Maagdenberg AM, Ferrari MD, Pietrobon D (2009) Enhanced excitatory transmission at cortical synapses as the basis for facilitated spreading depression in Ca(v) 2.1 knockin migraine mice. Neuron 61(5):762–773PubMedCrossRefGoogle Scholar
  49. van den Maagdenberg AM, Pietrobon D, Pizzorusso T, Kaja S, Broos LA, Cesetti T, van de Ven RC, Tottene A, van der Kaa J, Plomp JJ, Frants RR, Ferrari MD (2004) A Cacna1a knockin migraine mouse model with increased susceptibility to cortical spreading depression. Neuron 41(5):701–710Google Scholar
  50. Zanchin G, Dainese F, Trucco M, Mainardi F, Mampreso E, Maggioni F (2007) Osmophobia in migraine and tension-type headache and its clinical features in patients with migraine. Cephalalgia 27(9):1061–1068PubMedCrossRefGoogle Scholar
  51. Zhang X, Levy D, Noseda R, Kainz V, Jakubowski M, Burstein R (2010) Activation of meningeal nociceptorsby cortical spreading depression: implications for migraine with aura. J Neurosci 30:8807–8814PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Department of Neurology & Neuropsychiatry CentreGazi UniversityAnkaraTurkey

Personalised recommendations