Journal of Neural Transmission

, Volume 119, Issue 2, pp 197–209 | Cite as

The kynurenine system and immunoregulation

  • Yvette MándiEmail author
  • László Vécsei
Basic Neurosciences, Genetics and Immunology - Review article


There is developing interest in the role of the kynurenines in the immune function. A considerable amount of evidence has accumulated as concerns interactions between the kynurenine pathway, cytokines and the nervous system. Indoleamine 2,3-dioxygenase (IDO) occupies a key position connecting the immune system and the kynurenine pathway. There are evidences of the immunosuppressive effect of IDO. Following the interferon (IFN)-mediated activation of antigen presenting cells, the induction of IDO and the kynurenine system exerts a counter-regulating effect, maintaining the homeostasis. Inhibition of T cell functions, activation of the regulatory T cells, and the inhibition of Natural Killer cells are among the important factors in the immunosuppressive effects of IDO and kynurenines. There is a close connection between cytokines (IFN-α, IFN-γ, TNF-α, TGF-β, IL-4 and IL-23) and the kynurenine system, and an imbalance in the TH1/TH2 cytokine profile may possibly lead to neurologic or psychiatric disorders. As the tryptophan metabolic pathway is activated by pro-inflammatory stimuli, the anti-inflammatory effect of kynurenic acid provides a further feedback mechanism in modulating the immune responses.


Kynurenines IDO T cells NK cells Treg cells TH1 TH2 cytokines 



Indoleamine 2,3-dioxygenase






Kynurenic acid


Kynurenine 3-monooxygenase








3-Hydroxyanthranilic acid


3-Hydroxyantranilate 3,4-dioxygenase


Quinolinic acid




α7-Nicotinic acethylcholine

NK cells

Natural killer cells


Dendritic cell


Regulatory T cells


Polymorphonuclear cells




Tumor necrosis factor-α


Transforming growth factor-β






Cerebrospinal fluid


Central nervous system




Blood brain barrier


High-mobility group box protein 1


Human neutrophil peptide 1-3


  1. Andersson U, Wang HC, Palmblad K, Aveberger AC, Bloom O, Erlandsson-Harris H, Janson A, Kokkola R, Zhang MH, Yang H, Tracey KJ (2000) High mobility group 1 protein (HMG-1) stimulates proinflammatory cytokine synthesis in human monocytes. J Exp Med 192:565–570PubMedCrossRefGoogle Scholar
  2. Baban B, Chandler P, McCool D, Marshall B, Munn DH, Mellor AL (2004) Indoleamine 2, 3-dioxygenase expression is restricted to fetal trophoblast giant cells during murine gestation and is maternal genome specific. J Reprod Immunol 61:67–77PubMedCrossRefGoogle Scholar
  3. Babcock TA, Carlin JM (2000) Transcriptional activation of indoleamine dioxygenase by interleukin 1 and tumor necrosis factor alpha in interferon-treated epithelial cells. Cytokine 12:588–594PubMedCrossRefGoogle Scholar
  4. Barry S, Clarke G, Scully P, Dinan TG (2009) Kynurenine pathway in psychosis: evidence of increased tryptophan degradation. J Psychopharmacol 23:287–294PubMedCrossRefGoogle Scholar
  5. Belladonna ML, Puccetti P, Orabona C, Fallarino F, Vacca C, Volpi C, Gizzi S, Pallotta MT, Fioretti MC, Grohmann U (2007) Immunosuppression via tryptophan catabolism: the role of kynurenine pathway enzymes. Transplantation 84:S17–S20PubMedCrossRefGoogle Scholar
  6. Belladonna ML, Volpi C, Bianchi R, Vacca C, Orabona C, Pallotta MT, Boon L, Gizzi S, Fioretti MC, Grohmann U, Puccetti P (2008) Cutting edge: autocrine TGF-beta sustains default tolerogenesis by IDO-competent dendritic cells. J Immunol 181:5194–5198PubMedGoogle Scholar
  7. Belladonna ML, Orabona C, Grohmann U, Puccetti P (2009) TGF-beta and kynurenines as the key to infectious tolerance. Trends Mol Med 15:41–49PubMedCrossRefGoogle Scholar
  8. Bettelli E, Carrier YJ, Gao WD, Korn T, Strom TB, Oukka M, Weiner HL, Kuchroo VK (2006) Reciprocal developmental pathways for the generation of pathogenic effector T(H)17 and regulatory T cells. Nature 441:235–238PubMedCrossRefGoogle Scholar
  9. Blobe GC, Schiemann WP, Lodish HF (2000) Mechanisms of disease: role of transforming growth factor beta in human disease. N Engl J Med 342:1350–1358PubMedCrossRefGoogle Scholar
  10. Bonaccorso S, Marino V, Biondi M, Grimaldi F, Ippoliti F, Maes M (2002) Depression induced by treatment with interferon-alpha in patients affected by hepatitis C virus. J Affect Disord 72:237–241PubMedCrossRefGoogle Scholar
  11. Bozza S, Fallarino F, Pitzurra L, Zelante T, Montagnoli C, Bellocchio S, Mosci P, Vacca C, Puccetti P, Romani L (2005) A crucial role for tryptophan catabolism at the host/Candida albicans interface. J Immunol 174:2910–2918PubMedGoogle Scholar
  12. Bradley JR (2008) TNF-mediated inflammatory disease. J Pathol 214:149–160PubMedCrossRefGoogle Scholar
  13. Brown RR, Lee CM, Kohler PC, Hank JA, Storer BE, Sondel PM (1989) Altered tryptophan and neopterin metabolism in cancer-patients treated with recombinant interleukin-2. Cancer Res 49:4941–4944PubMedGoogle Scholar
  14. Carosella ED, Moreau P, Le Maoult J, Le Discorde M, Dausset J, Rouas-Freiss N (2003) HLA-G molecules: from maternal-fetal tolerance to tissue acceptance. Adv Immunol 81:199–252PubMedCrossRefGoogle Scholar
  15. Chaves AC, Cerávolo IP, Gomes JA, Zani CL, Romanha AJ, Gazzinelli RT (2001) IL-4 and IL-13 regulate the induction of indoleamine 2, 3-dioxygenase activity and the control of Toxoplasma gondii replication in human fibroblasts activated with IFN-gamma. Eur J Immunol 31:333–344PubMedCrossRefGoogle Scholar
  16. Chomarat P, Rybak ME, Banchereau J (1998) Interleukin-4. In: Thomson A (ed) The cytokine handbook, 3rd edn. Academic Press, New York, pp 133–174Google Scholar
  17. Chon SY, Hassanain HH, Gupta SL (1996) Cooperative role of interferon regulatory factor 1 and p91 (STAT1) response elements in interferon-gamma-inducible expression of human indoleamine 2, 3-dioxygenase gene. J Biol Chem 271:17247–17252PubMedCrossRefGoogle Scholar
  18. Chung IY, Benveniste EN (1990) Tumor necrosis factor-alpha production by astrocytes—induction by lipopolysaccharide, IFN-gamma, and IL-1-beta. J Immunol 144:2999–3007PubMedGoogle Scholar
  19. Daubener W, MacKenzie CR (1999) IFN-gamma activated indoleamine 2, 3-dioxygenase activity in human cells is an antiparasitic and an antibacterial effector mechanism. Adv Exp Med Biol 467:517–524PubMedCrossRefGoogle Scholar
  20. de Waal Malefyt, R, Moore KW (1998) Interleukin-10. In: Thomson A (ed) The cytokine handbook, 3rd edn. Academic Press, New York, pp 333–364Google Scholar
  21. Della Chiesa M, Carlomagno S, Frumento G, Balsamo M, Cantoni C, Conte R, Moretta L, Moretta A, Vitale M (2006) The tryptophan catabolite l-kynurenine inhibits the surface expression of NKp46-and NKG2D-activating receptors and regulates NK-cell function. Blood 108:4118–4125PubMedCrossRefGoogle Scholar
  22. Fallarini S, Magliulo L, Paoletti T, de Lalla C, Lombardi G (2010) Expression of functional GPR35 in human iNKT cells. Biochem Biophys Res Commun 398:420–425PubMedCrossRefGoogle Scholar
  23. Fallarino F, Grohmann U, Vacca C, Bianchi R, Orabona C, Spreca A, Fioretti MC, Puccetti P (2002) T cell apoptosis by tryptophan catabolism. Cell Death Differ 9:1069–1077PubMedCrossRefGoogle Scholar
  24. Fallarino F, Grohmann U, You S, McGrath BC, Cavener DR, Vacca C, Orabona C, Bianchi R, Belladonna ML, Volpi C, Santamaria P, Fioretti MC, Puccetti P (2006) The combined effects of tryptophan starvation and tryptophan catabolites down-regulate T cell receptor zeta-chain and induce a regulatory phenotype in naive T cells. J Immunol 176:6752–6761PubMedGoogle Scholar
  25. Fantini MC, Becker C, Monteleone G, Pallone F, Galle PR, Neurath MF (2004) Cutting edge: TGF-beta induces a regulatory phenotype in CD4(+)CD25(-) T cells through Foxp3 induction and down-regulation of Smad7. J Immunol 172:5149–5153PubMedGoogle Scholar
  26. Fiers W (1991) Tumor necrosis factor. Characterization at the molecular, cellular and in vivo level. FEBS Lett 285:199–212PubMedCrossRefGoogle Scholar
  27. Fillit H, Ding W, Buee L, Kalman J, Altstiel L, Lawlor B, Wolfklein G (1991) Elevated circulating tumor-necrosis-factor levels in Alzheimers-disease. Neurosci Lett 129:318–320PubMedCrossRefGoogle Scholar
  28. Forrest CM, Mackay GM, Stoy N, Spiden SL, Taylor R, Stone TW, Darlington LG (2010) Blood levels of kynurenines, interleukin-23 and soluble human leucocyte antigen-G at different stages of Huntington’s disease. J Neurochem 112:112–122PubMedCrossRefGoogle Scholar
  29. Frumento G, Rotondo R, Tonetti M, Damonte G, Benatti U, Ferrara GB (2002) Tryptophan-derived catabolites are responsible for inhibition of T and natural killer cell proliferation induced by indoleamine 2, 3-dioxygenase. J Exp Med 196:459–468PubMedCrossRefGoogle Scholar
  30. Fujigaki H, Saito K, Fujigaki S, Takemura M, Sudo K, Ishiguro H, Seishima M (2006) The signal transducer and activator of transcription 1 alpha and interferon regulatory factor 1 are not essential for the induction of indoleamine 2, 3-dioxygenase by lipopolysaccharide: involvement of p38 mitogen-activated protein kinase and nuclear factor-kappa B pathways, and synergistic effect of several proinflammatory cytokines. J Biochem 139:655–662PubMedCrossRefGoogle Scholar
  31. Gal EM, Sherman AD (1980) l-kynurenine—its synthesis and possible regulatory function in brain. Neurochem Res 5:223–239PubMedCrossRefGoogle Scholar
  32. Gigler G, Szenasi G, Simo A, Levay G, Harsing LG, Sas K, Vecsei L, Toldi J (2007) Neuroprotective effect of l-kynurenine sulfate administered before focal cerebral ischemia in mice and global cerebral ischemia in gerbils. Eur J Pharmacol 564:116–122PubMedCrossRefGoogle Scholar
  33. Gonzalez A, Varo N, Alegre E, Diaz A, Melero I (2008) Immunosuppression routed via the kynurenine pathway: a biochemical and pathophysiologic approach. Adv Clin Chem 45:155–197PubMedCrossRefGoogle Scholar
  34. González-Hernandez A, LeMaoult J, Lopez A, Alegre E, Caumartin J, Le Rond S, Daouya M, Moreau P, Carosella ED (2005) Linking two immuno-suppressive molecules: indoleamine 2, 3 dioxygenase can modify HLA-G cell-surface expression. Biol Reprod 73:571–578PubMedCrossRefGoogle Scholar
  35. Grohmann U, Fallarino F, Puccetti P (2003) Tolerance, DCs and tryptophan: much ado about IDO. Trends Immunol 24:242–248PubMedCrossRefGoogle Scholar
  36. Guillemin GJ, Kerr SJ, Smythe GA, Smith DG, Kapoor V, Armati PJ, Croitoru J, Brew BJ (2001) Kynurenine pathway metabolism in human astrocytes: a paradox for neuronal protection. J Neurochem 78:842–853PubMedCrossRefGoogle Scholar
  37. Guillemin GJ, Smythe G, Takikawa O, Brew BJ (2005) Expression of indoleamine 2, 3-dioxygenase and production of quinolinic acid by human microglia, astrocytes, and neurons. Glia 49:15–23PubMedCrossRefGoogle Scholar
  38. Harber M, Sundstedt A, Wraith D (2000) The role of cytokines in immunological tolerance: potential for therapy. Exp Rev Mol Med 1–20Google Scholar
  39. Harris HE, Andersson U (2004) The nuclear protein HMGB1 as a proinflammatory mediator. Eur J Immunol 34:1503–1512CrossRefGoogle Scholar
  40. Hartai Z, Klivenyi P, Janaky T, Penke B, Dux L, Vecsei L (2005) Kynurenine metabolism in multiple sclerosis. Acta Neurol Scand 112:93–96PubMedCrossRefGoogle Scholar
  41. Hassanain HH, Chon SY, Gupta SL (1993) Differential regulation of human indoleamine 2, 3-dioxygenase gene expression by interferons-gamma and -alpha. Analysis of the regulatory region of the gene and identification of an interferon-gamma-inducible DNA-binding factor. J Biol Chem 268:5077–5084PubMedGoogle Scholar
  42. Hill M, Tanguy-Royer S, Royer P, Chauveau C, Asghar K, Tesson L, Lavainne F, Remy S, Brion R, Huber FX, Heslan M, Rimbert M, Berthelot L, Moffett JR, Josien R, Gregoire M, Anegon I (2007) IDO expands human CD4(+)CD25(high) regulatory T cells by promoting maturation of LPS-treated dendritic cells. Eur J Immunol 37:3054–3062PubMedCrossRefGoogle Scholar
  43. Hilmas C, Pereira EF, Alkondon M, Rassoulpour A, Schwarcz R, Albuuqerque EX (2001) The brain metabolite kynurenic acid inhibits α7 nicotinic receptor activity and increases non-α7 nicotic expression: physiopathological implications. J Neurosci 21:7463–7473PubMedGoogle Scholar
  44. Kaszaki J, Palasthy Z, Erczes D, Racz A, Torday C, Varga G, Vecsei L, Boros M (2008) Kynurenic acid inhibits intestinal hypermotility and xanthine oxidase activity during experimental colon obstruction in dogs. Neurogastroenterol Motil 20:53–62PubMedGoogle Scholar
  45. Kita T, Morrison PF, Heyes MP, Markey SP (2002) Effects of systemic and central nervous system localized inflammation on the contributions of metabolic precursors to the l-kynurenine and quinolinic acid pools in brain. J Neurochem 82:258–268PubMedCrossRefGoogle Scholar
  46. Klivenyi P, Toldi J, Vecsei L (2004) Kynurenines in neurodegenerative disorders: therapeutic consideration. In: Vecsei L (ed) Frontiers in clinical neuroscience: neurodegeneration and neuroprotection, Adv Exp Med Biol, vol 541, Kluwer, New York, pp 169–183Google Scholar
  47. Kocsis AK, Szabolcs A, Hofner P, Takács T, Farkas G, Boda K, Mándi Y (2009) Plasma concentrations of high-mobility group box protein1, soluble receptor for advanced glycation end products and circulating DNA in patients with acute pancreatitis. Pancreatology 9:383–391PubMedCrossRefGoogle Scholar
  48. Kronenberg M (2005) Toward an understanding of NKT cell biology: progress and paradoxes. Annu Rev Immunol 23:877–900PubMedCrossRefGoogle Scholar
  49. Kudo Y, Boyd CAR, Sargent IL, Redman CWG (2003) Decreased tryptophan catabolism by placental indoleamine 2, 3-dioxygenase in preeclampsia. Am J Obstet Gynecol 188:719–726PubMedCrossRefGoogle Scholar
  50. Kudo Y, Boyd CAR, Spyropoulou I, Redman CWG, Takikawa O, Katsuki T, Hara T, Ohama K, Sargent IL (2004) Indoleamine 2, 3-dioxygenase: distribution and function in the developing human placenta. J Reprod Immunol 61:87–98PubMedCrossRefGoogle Scholar
  51. Leonhardt RM, Lee SJ, Kavathas PB, Cresswell P (2007) Severe tryptophan starvation blocks onset of conventional persistence and reduces reactivation of Chlamydia trachomatis. Infect Immun 75:5105–5117PubMedCrossRefGoogle Scholar
  52. Levy RM, Mollen KP, Prince JM, Kaczorowski DJ, Vallabhaneni R, Liu S, Tracey KJ, Lotze MT, Hackam DJ, Fink MP, Vodovotz Y, Billiar TR (2007) Systemic inflammation and remote organ injury following trauma require HMGB1. Am J Physiol Regul Integr Comp Physiol 293:R1538–R1544PubMedCrossRefGoogle Scholar
  53. Li MO, Wan YY, Sanjabi S, Robertson AKL, Flavell RA (2006) Transforming growth factor-beta regulation of immune responses. Annu Rev Immunol 24:99–146PubMedCrossRefGoogle Scholar
  54. Lio D, Scola L, Crivello A, Bonafe M, Franceschi C, Olivieri F, Colonna-Romano G, Candore G, Caruso C (2002) Allele frequencies of +874T->a single nucleotide polymorphism at the first intron of interferon-gamma gene in a group of Italian centenarians. Exp Gerontol 37:315–319PubMedCrossRefGoogle Scholar
  55. Lögters TT, Laryea MD, Altrichter J, Sokolowski J, Cinatl J, Reipen J, Linhart W, Windolf J, Scholz M, Wild M (2009) Increased plasma kynurenine values and kynurenine-tryptophan ratios after major trauma are early indicators for the development of sepsis. Shock 32:29–34PubMedCrossRefGoogle Scholar
  56. Lopez AS, Alegre E, LeMaoult J, Carosella E, Gonzalez A (2006) Regulatory role of tryptophan degradation pathway in HLA-G expression by human monocyte-derived dendritic cells. Mol Immunol 43:2151–2160PubMedCrossRefGoogle Scholar
  57. Lotze MT, Tracey KJ (2005) High-mobility group box 1 protein (HMGB): nuclear weapon in the immune arsenal. Nat Rev Immunol 5:331–342PubMedCrossRefGoogle Scholar
  58. Maes M, Mihaylova L, De Ruyter M, Kubera M, Bosmans E (2007) The immune effects of TRYCATs (tryptophan catabolites along the IDO pathway): relevance for depression and other conditions characterized by tryptophan depletion induced by inflammation. Neuro Endocrinol Lett 28:826–831PubMedGoogle Scholar
  59. Mazza J, Rossi A, Weinberg JM (2010) Innovatives uses of tumor necrosis factor alpha inhibitors. Dermatol Clin 28:559–575PubMedCrossRefGoogle Scholar
  60. McIlroy D, Tanguy-Royer S, Le Meur N, Guisle I, Royer PJ, Leger J, Meflah K, Gregoire M (2005) Profiling dendritic cell maturation with dedicated microarrays. J Leukoc Biol 78:794–803PubMedCrossRefGoogle Scholar
  61. Mellor AL, Munn DH (2004) IDO expression by dendritic cells: tolerance and tryptophan catabolism. Nature Rev Immunol 4:762–774CrossRefGoogle Scholar
  62. Miller CL, Llenos IC, Cwik M, Walkup J, Weis S (2008) Alterations in kynurenine precursor and product levels in schizophrenia and bipolar disorder. Neurochem Int 52:1297–1303PubMedCrossRefGoogle Scholar
  63. Miura H, Ozaki N, Sawada M, Isobe K, Ohta T, Nagatsu T (2008) A link between stress and depression: shifts in the balance between the kynurenine and serotonin pathways of tryptophan metabolism and the etiology and pathophysiology of depression. Stress 11:198–209Google Scholar
  64. Moffett JR, Namboodiri MA (2003) Tryptophan and the immune response. Immunol Cell Biol 81:247–265PubMedCrossRefGoogle Scholar
  65. Molano A, Illarionov P, Besra GS, Putterman C, Porcelli SA (2008) Modulation of invariant natural killer T cell cytokine responses by indoleamine 2, 3-dioxygenase. Immunol Lett 117:81–90PubMedCrossRefGoogle Scholar
  66. Müller N, Schwarz M (2006) Schizophrenia as an inflammation-mediated dysbalance of glutamatergic neurotransmission. Neurotox Res 10:131–148PubMedCrossRefGoogle Scholar
  67. Müller N, Schwarz MJ (2007) The immunological basis of glutamatergic disturbance in schizophrenia: towards an integrated view. J Neural Transm Suppl 72:269–280CrossRefGoogle Scholar
  68. Müller N, Schwarz MJ (2010) Immune system and schizophrenia. Curr Immunol Rev 6:213–220PubMedCrossRefGoogle Scholar
  69. Müller N, Myint AM, Schwarz MJ (2011) Kynurenine pathway in schizophrenia: pathophysiological and therapeutic aspects. Curr Pharm Res 17:130–136CrossRefGoogle Scholar
  70. Munn DH, Zhou M, Attwood JT, Bondarev I, Conway SJ, Marshall B, Brown C, Mellor AL (1998) Prevention of allogeneic fetal rejection by tryptophan catabolism. Science 281:1191–1193PubMedCrossRefGoogle Scholar
  71. Musso T, Gusella GL, Brooks A, Longo DL, Varesio L (1994) Interleukin-4 inhibits indoleamine 2, 3-dioxygenase expression in human monocytes. Blood 83:1408–1411PubMedGoogle Scholar
  72. Myint AM, Kim YK (2003) Cytokine-serotonin interaction through IDO: a neurodegeneration hypothesis of depression. Med Hypotheses 61:519–525PubMedCrossRefGoogle Scholar
  73. Nemeth H, Toldi J, Vecsei L (2005) Role of kynurenines in the central and peripherial nervous systems. Curr Neurovasc Res 2:249–260PubMedCrossRefGoogle Scholar
  74. O’Connor JC, Andre C, Wang YX, Lawson MA, Szegedi SS, Lestage J, Castanon N, Kelley KW, Dantzer R (2009) Interferon-gamma and tumor necrosis factor-alpha mediate the upregulation of indoleamine 2, 3-dioxygenase and the induction of depressive-like behavior in mice in response to bacillus calmette-guerin. J Neurosci 29:4200–4209PubMedCrossRefGoogle Scholar
  75. Oxenkrug GF (2007) Genetic and hormonal regulation of tryptophan-kynurenine metabolism—implications for vascular cognitive Impairment, major depressive disorder, and aging. Ann NY Acad Sci 1122:35–49PubMedCrossRefGoogle Scholar
  76. Oxenkrug GF (2010) Tryptophan–kynurenine metabolism as a common mediator of genetic and environmental impacts in major depressive disorder: the serotonin hypothesis revisited 40 years later. Israel J Psychiatry 47:56–63Google Scholar
  77. Oxenkrug GF (2011) Interferon-gamma-inducible kynurenines/pteridines inflammation cascade: implications for aging and aging-associated psychiatric and medical disorders. J Neural Transm 118:75–85PubMedCrossRefGoogle Scholar
  78. Pemberton LA, Kerr SJ, Smythe G, Brew BJ (1997) Quinolinic acid production by macrophages stimulated with IFN-gamma, TNF-alpha, and IFN-alpha. J Interferon Cytokine Res 17:589–595PubMedCrossRefGoogle Scholar
  79. Pisetsky DS, Erlandsson-Harris H, Andersson U (2008) High-mobility group box protein 1 (HMGB1): an alarmin mediating the pathogenesis of rheumatic disease. Arthritis Res Ther 10:209PubMedCrossRefGoogle Scholar
  80. Pravica V, Perrey C, Stevens A, Lee JH, Hutchinson IV (2000) A single nucleotide polymorphism in the first intron of the human IFN-gamma gene: absolute correlation with a polymorphic CA microsatellite marker of high IFN-gamma production. Hum Immunol 61:863–866PubMedCrossRefGoogle Scholar
  81. Puccetti P, Grohmann U (2007) IDO and regulatory T cells: a role for reverse signalling and non-canonical NF-kappa B activation. Nat Rev Immunol 7:817–823PubMedCrossRefGoogle Scholar
  82. Quinn K, Henriques M, Parker T, Slutsky AS, Zhang H (2008) Human neutrophil peptides: a novel potential mediator of inflammatory. Am J Physiol Heart Circ Physiol 295:1817–1824CrossRefGoogle Scholar
  83. Raison CL, Dantzer R, Kelley KW, Lawson MA, Woolwine BJ, Vogt G, Spivey JR, Saito K, Miller AH (2010) CSF concentrations of brain tryptophan and kynurenines during immune stimulation with IFN-alpha: relationship to CNS immune responses and depression. Mol Psychiatry 15:393–403PubMedCrossRefGoogle Scholar
  84. Raitala A, Pertovaara M, Karjalainen J, Oja SS, Hurme M (2005) Association of interferon-gamma +874(T/A) single nucleotide polymorphism with the rate of tryptophan catabolism in healthy individuals. Scand J Immunol 61:387–390PubMedCrossRefGoogle Scholar
  85. Riedel M, Spellmann I, Schwarz MJ, Strassnig M, Sikorski C, Moller HJ, Muller N (2007) Decreased T cellular immune response in schizophrenic patients. J Psychiatr Res 41:3–7PubMedCrossRefGoogle Scholar
  86. Robinson CM, Hale PT, Carlin JM (2005) The role of IFN-gamma and TNF-alpha-responsive regulatory elements in the synergistic induction of indoleamine dioxygenase. J Interferon Cytokine Res 25:20–30PubMedCrossRefGoogle Scholar
  87. Robotka H, Toldi J, Vécsei L (2008) l-kynurenine: metabolism and mechanism of neuroprotection. Future Neurol 3:169–188CrossRefGoogle Scholar
  88. Romagnani S (1999) Th1/Th2 cells. Inflamm Bowel Dis 5:285–294PubMedCrossRefGoogle Scholar
  89. RouasFreiss N, Goncalves RMB, Menier C, Dausset J, Carosella ED (1997) Direct evidence to support the role of HLA-G in protecting the fetus from maternal uterine natural killer cytolysis. Proc Natl Acad Sci USA 94:11520–11525CrossRefGoogle Scholar
  90. Rubtsov YP, Rudensky AY (2007) TGF beta signalling in control of T-cell-mediated self-reactivity. Nat Rev Immunol 7:443–453PubMedCrossRefGoogle Scholar
  91. Sarkar SA, Wong R, Hackl SI, Moua O, Gill RG, Wiseman A, Davidson HW, Hutton JC (2007) Induction of indoleamine 2, 3-dioxygenase by interferon-gamma in human islets. Diabetes 56:72–79PubMedCrossRefGoogle Scholar
  92. Sas K, Robotka H, Toldi J, Vecsei L (2007) Mitochondria, metabolic disturbances, oxidative stress and the kynurenine system, with focus on neurodegenerative disorders. J Neurol Sci 257:221–239PubMedCrossRefGoogle Scholar
  93. Schwarcz R, Pellicciari R (2002) Manipulation of brain kynurenines: glial targets, neuronal effects, and clinical opportunities. J Pharmacol Exp Ther 303:1–10PubMedCrossRefGoogle Scholar
  94. Schwarcz R, Whetsell WO, Mangano RM (1983) Quinolinic acid—an endogenous metabolite that produces axon-sparing lesions in rat-brain. Science 219:316–318PubMedCrossRefGoogle Scholar
  95. Song H, Park H, Kim Y-S, Kim KD, Lee H-K, Cho D-H, Yang J-W, Hur DY (2011) l-kynurenine-induced apoptosis in human NK cells is mediated by reactive oxygen species. Int Immunopharmacol. doi: 10.1016/j.intimp.2011.02.005
  96. Steckel NK, Koldehoff M, Beelen DW, Elmaagacli AH (2005) Indoleamine 2, 3-dioxygenase expression in monocytes of healthy nonpregnant women after induction with human choriongonadotropine. Scand J Immunol 61:213–214PubMedCrossRefGoogle Scholar
  97. Stone TW (1993) Neuropharmacology of quinolinic and kynurenic acids. Pharmacol Rev 45:309–379PubMedGoogle Scholar
  98. Stone TW (2000) Development and therapeutic potential of kynurenic acid and kynurenine derivatives for neuroprotection. Trends Pharmacol Sci 21:149–154PubMedCrossRefGoogle Scholar
  99. Stone TW (2001) Kynurenines in the CNS: from endogenous obscurity to therapeutic importance. Progr Neurobiol 64:185–218CrossRefGoogle Scholar
  100. Stone TW (2007) Kynurenic acid blocks nicotinic synaptic transmission to hippocampal interneurons in young rats. Eur J Neurosci 25:2656–2665PubMedCrossRefGoogle Scholar
  101. Stone TW, Darlington LG (2002) Endogenous kynurenines as targets for drug discovery and development. Nat Rev Drug Discov 1:609–620PubMedCrossRefGoogle Scholar
  102. Stone TW, Perkins MN (1981) Quinolinic acid—a potent endogenous excitant at amino-acid receptors in CNS. Eur J Pharmacol 72:411–412PubMedCrossRefGoogle Scholar
  103. Sundén-Cullberg J, Norrby-Teglund A, Treutiger CJ (2006) The role of high mobility group box-1 protein in severe sepsis. Curr Opin Infect Dis 19:231–236PubMedCrossRefGoogle Scholar
  104. Swartz KJ, During MJ, Freese A, Beal MF (1990) Cerebral synthesis and release of kynurenic acid: an endogenous antagonist of excitatory amino acid receptors. J Neurosci 10:2965–2973PubMedGoogle Scholar
  105. Terness P, Bauer TM, Rose L, Dufter C, Watzlik A, Simon H, Opelz G (2002) Inhibition of allogeneic T cell proliferation by indoleamine 2, 3-dioxygenase-expressing dendritic cells: mediation of suppression by tryptophan metabolites. J Exp Med 196:447–457PubMedCrossRefGoogle Scholar
  106. Tiszlavicz Z, Németh B, Fülöp F, Vécsei L, Tápai K, Ocsovszky I, Mándi Y. (2011) Different inhibitory effects of kynurenic acid and a novel kynurenic acid analogue on tumour necrosis factor-α (TNF-α) production by mononuclear cells, HMGB1 production by monocytes and HNP1-3 secretion by neutrophils. Naunyn Schmiedebergs Arch Pharmacol. doi: 10.1007/s00210-011-0605-2
  107. Trinchieri G (1989) Biology of natural-killer cells. Adv Immunol 47:187–376PubMedCrossRefGoogle Scholar
  108. Van Gool AR, Verkerk R, Fekkes D, Bannink M, Sleijfer S, Kruit WHJ, van der Holt B, Scharpe S, Eggermont AMM, Stoter G, Hengeveld MW (2008) Neurotoxic and neuroprotective metabolites of kynurenine in patients with renal cell carcinoma treated with interferon-alpha: course and relationship with psychiatric status. Psychiatry Clin Neurosci 62:597–602PubMedCrossRefGoogle Scholar
  109. Vecsei L, Beal MF (1991) Comparative behavioral and neurochemical studies with striatal kainic acid-lesioned or quinolinic acid-lesioned rats. Pharmacol Biochem Behav 39:473–478PubMedCrossRefGoogle Scholar
  110. Vecsei L, Miller J, MacGarvey U, Beal MF (1992) Kynurenine and probenecid inhibit pentylenetetrazol-induced and NMDA-induced seizures and increase kynurenic acid concentrations in the brain. Brain Res Bull 28:233–238PubMedCrossRefGoogle Scholar
  111. Waldhauer I, Steinle A (2008) NK cells and cancer immunosurveillance. Oncogene 27:5932–5943PubMedCrossRefGoogle Scholar
  112. Wang JH, Simonavicius N, Wu XS, Swaminath G, Reagan J, Tian H, Ling L (2006) Kynurenic acid as a ligand for orphan G protein-coupled receptor GPR35. J Biol Chem 281:22021–22028PubMedCrossRefGoogle Scholar
  113. Wichers MC, Maes M (2004) The role of indoleamine 2, 3-dioxygenase (IDO) in the pathophysiology of interferon-alpha-induced depression. J Psychiatry Neurosci 29:11–17PubMedGoogle Scholar
  114. Wirleitner B, Neurauter G, Schrocksnadel K, Frick B, Fuchs D (2003) Interferon-gamma-induced conversion of tryptophan: immunologic and neuropsychiatric aspects. Curr Med Chem 10:1581–1591PubMedCrossRefGoogle Scholar
  115. Wu L, Gabriel CL, Parekh VV, Van Kaer L (2009) Invariant natural killer T cells: innate-like T cells with potent immunomodulatory activities. Tissue Antigens 73:535–545PubMedCrossRefGoogle Scholar
  116. Xu H, Zhang G-X, Ciric B, Rostami A (2008) IDO: a double-edged sword for T(H)1/T(H)2 regulation. Immunol Lett 121:1–6PubMedCrossRefGoogle Scholar
  117. Yadav MC, Burudi EM, Alirezaei M, Flynn CC, Watry DD, Lanigan CM, Fox HS (2007) IFN-gamma-induced IDO and WRS expression in microglia is differentially regulated by IL-4. Glia 55:1385–1396PubMedCrossRefGoogle Scholar
  118. Yamamura T, Sakuishi K, Illes Z, Miyake S (2007) Understanding the behavior of invariant NKT cells in autoimmune diseases. J Neuroimmunol 191:8–15PubMedCrossRefGoogle Scholar
  119. Yang D, Biragyn A, Kwak LW, Oppenheim JJ (2002) Mammalian defensins in immunity: more than just microbicidal. Trends Immunol 23:291–296PubMedCrossRefGoogle Scholar
  120. Zádori D, Klivényi P, Vámos E, Fülöp F, Toldi J, Vécsei L (2009) Kynurenines in chronic neurodegenerative disorders: future therapeutic strategies. J Neural Transm 116:1403–1409PubMedCrossRefGoogle Scholar
  121. Zou JY, Crews FT (2005) TNF alpha potentiates glutamate neurotoxicity by inhibiting glutamate uptake in organotypic brain slice cultures: neuroprotection by NF kappa B inhibition. Brain Res 1034:11–24PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Department of Medical Microbiology and ImmunobiologyUniversity of SzegedSzegedHungary
  2. 2.Department of NeurologyUniversity of SzegedSzegedHungary

Personalised recommendations