Journal of Neural Transmission

, 118:1641 | Cite as

The neuroprotective effect of two statins: simvastatin and pravastatin on a streptozotocin-induced model of Alzheimer’s disease in rats

  • Ana Carolina Tramontina
  • Krista Minéia Wartchow
  • Letícia Rodrigues
  • Regina Biasibetti
  • André Quincozes-Santos
  • Larissa Bobermin
  • Francine Tramontina
  • Carlos-Alberto Gonçalves
Dementias - Original Article


Astrocytes play a fundamental role in glutamate metabolism by regulating the extracellular levels of glutamate and intracellular levels of glutamine. They also participate in antioxidant defenses, due to the synthesis of glutathione, coupled to glutamate metabolism. Although the cause of Alzheimer’s disease (AD) remains elusive, some changes in neurochemical parameters, such as glutamate uptake, glutamine synthetase activity and glutathione have been investigated in this disease. A possible neuroprotective effect of two statins, simvastatin and pravastatin (administered p.o.), was evaluated using a model of dementia, based on the intracerebroventricular (ICV) administration of streptozotocin (STZ), and astrocyte parameters were determined. We confirmed a cognitive deficit in rats submitted to ICV-STZ, and a prevention of this deficit by statin administration. Moreover, both statins were able to prevent the decrease in glutathione content and glutamine synthetase activity in this model of AD. Interestingly, simvastatin increased per se glutamate uptake activity, while both statins increased glutamine synthetase activity per se. These results support the idea that these drugs could be effective for the prevention of alterations observed in the STZ dementia model and may contribute to reduce the cognitive impairment and brain damage observed in AD patients.


Astrocyte Glutamate Dementia Statins Streptozotocin 



This work was supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), FINEP/Rede IBN 01.06.0842-00 and INCT-National Institute of Science and Technology for Excitotoxicity and Neuroprotection.


  1. Adamson P, Greenwood J (2003) How do statins control neuroinflammation? Inflamm Res 52:399–403PubMedCrossRefGoogle Scholar
  2. Bandoh T, Mitani H, Niihashi M, Kusumi Y, Kimura M, Ishikawa J, Totsuka T, Sakurai I, Hayashi S (2000) Fluvastatin suppresses atherosclerotic progression, mediated through its inhibitory effect on endothelial dysfunction, lipid peroxidation, and macrophage deposition. J Cardiovasc Pharmacol 35:136–144PubMedCrossRefGoogle Scholar
  3. Barone E, Cenini G, Di Domenico F, Martin S, Sultana R, Mancuso C, Murphy MP, Head E, Butterfield DA (2011) Long-term high-dose atorvastatin decreases brain oxidative and nitrosative stress in a preclinical model of Alzheimer disease: a novel mechanism of action. Pharmacol Res 63:172–180PubMedCrossRefGoogle Scholar
  4. Bosel J, Gandor F, Harms C, Synowitz M, Harms U, Djoufack PC, Megow D, Dirnagl U, Hortnagl H, Fink KB, Endres M (2005) Neuroprotective effects of atorvastatin against glutamate-induced excitotoxicity in primary cortical neurones. J Neurochem 92:1386–1398PubMedCrossRefGoogle Scholar
  5. Browne RW, Armstrong D (1998) Reduced glutathione and glutathione disulfide. Methods Mol Biol 108:347–352PubMedGoogle Scholar
  6. Butterfield DA, Galvan V, Lange MB, Tang H, Sowell RA, Spilman P, Fombonne J, Gorostiza O, Zhang J, Sultana R, Bredesen DE (2010) In vivo oxidative stress in brain of Alzheimer disease transgenic mice: requirement for methionine 35 in amyloid beta-peptide of APP. Free Radic Biol Med 48:136–144PubMedCrossRefGoogle Scholar
  7. Candore G, Bulati M, Caruso C, Castiglia L, Colonna-Romano G, Bona DD, Duro G, Lio D, Matranga D, Pellicano M, Risso C, Scapagnini G, Vasto S (2010) Inflammation, cytokines, immune response, apolipoprotein E, cholesterol, and oxidative stress in Alzheimer disease: therapeutic implications. Rejuvenation Res 13:301–313PubMedCrossRefGoogle Scholar
  8. Canevari L, Clark JB (2007) Alzheimer’s disease and cholesterol: the fat connection. Neurochem Res 32:739–750PubMedCrossRefGoogle Scholar
  9. Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65:1–105PubMedCrossRefGoogle Scholar
  10. dos Santos AQ, Nardin P, Funchal C, de Almeida LM, Jacques-Silva MC, Wofchuk ST, Goncalves CA, Gottfried C (2006) Resveratrol increases glutamate uptake and glutamine synthetase activity in C6 glioma cells. Arch Biochem Biophys 453:161–167PubMedCrossRefGoogle Scholar
  11. Dringen R, Hirrlinger J (2003) Glutathione pathways in the brain. Biol Chem 384:505–516PubMedCrossRefGoogle Scholar
  12. Fassbender K, Simons M, Bergmann C, Stroick M, Lutjohann D, Keller P, Runz H, Kuhl S, Bertsch T, von Bergmann K, Hennerici M, Beyreuther K, Hartmann T (2001) Simvastatin strongly reduces levels of Alzheimer’s disease beta-amyloid peptides Abeta 42 and Abeta 40 in vitro and in vivo. Proc Natl Acad Sci USA 98:5856–5861PubMedCrossRefGoogle Scholar
  13. Gottfried C, Tramontina F, Goncalves D, Goncalves CA, Moriguchi E, Dias RD, Wofchuk ST, Souza DO (2002) Glutamate uptake in cultured astrocytes depends on age: a study about the effect of guanosine and the sensitivity to oxidative stress induced by H(2)O(2). Mech Ageing Dev 123:1333–1340PubMedCrossRefGoogle Scholar
  14. Grunblatt E, Salkovic-Petrisic M, Osmanovic J, Riederer P, Hoyer S (2007) Brain insulin system dysfunction in streptozotocin intracerebroventricularly treated rats generates hyperphosphorylated tau protein. J Neurochem 101:757–770PubMedCrossRefGoogle Scholar
  15. Hoglund K, Blennow K (2007) Effect of HMG-CoA reductase inhibitors on beta-amyloid peptide levels: implications for Alzheimer’s disease. CNS Drugs 21:449–462PubMedCrossRefGoogle Scholar
  16. Jick H, Zornberg GL, Jick SS, Seshadri S, Drachman DA (2000) Statins and the risk of dementia. Lancet 356:1627–1631PubMedCrossRefGoogle Scholar
  17. Kandiah N, Feldman HH (2009) Therapeutic potential of statins in Alzheimer’s disease. J Neurol Sci 283:230–234PubMedCrossRefGoogle Scholar
  18. Kirsch C, Eckert GP, Mueller WE (2003) Statin effects on cholesterol micro-domains in brain plasma membranes. Biochem Pharmacol 65:843–856PubMedCrossRefGoogle Scholar
  19. Kuipers HF, van den Elsen PJ (2007) Immunomodulation by statins: inhibition of cholesterol vs. isoprenoid biosynthesis. Biomed Pharmacother 61:400–407PubMedCrossRefGoogle Scholar
  20. Kurata T, Miyazaki K, Kozuki M, Panin VL, Morimoto N, Ohta Y, Nagai M, Ikeda Y, Matsuura T, Abe K (2011) Atorvastatin and pitavastatin improve cognitive function and reduce senile plaque and phosphorylated tau in aged APP mice. Brain Res 1371:161–170PubMedCrossRefGoogle Scholar
  21. Lannert H, Hoyer S (1998) Intracerebroventricular administration of streptozotocin causes long-term diminutions in learning and memory abilities and in cerebral energy metabolism in adult rats. Behav Neurosci 112:1199–1208PubMedCrossRefGoogle Scholar
  22. Li L, Cao D, Kim H, Lester R, Fukuchi K (2006) Simvastatin enhances learning and memory independent of amyloid load in mice. Ann Neurol 60:729–739PubMedCrossRefGoogle Scholar
  23. Li B, Mahmood A, Lu D, Wu H, Xiong Y, Qu C, Chopp M (2009) Simvastatin attenuates microglial cells and astrocyte activation and decreases interleukin-1beta level after traumatic brain injury. Neurosurgery 65:179–185; discussion 185–176Google Scholar
  24. Liao JK, Laufs U (2005) Pleiotropic effects of statins. Annu Rev Pharmacol Toxicol 45:89–118PubMedCrossRefGoogle Scholar
  25. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275PubMedGoogle Scholar
  26. Maccioni RB, Munoz JP, Barbeito L (2001) The molecular bases of Alzheimer’s disease and other neurodegenerative disorders. Arch Med Res 32:367–381PubMedCrossRefGoogle Scholar
  27. Markesbery WR, Carney JM (1999) Oxidative alterations in Alzheimer’s disease. Brain Pathol 9:133–146PubMedCrossRefGoogle Scholar
  28. Mori T, Paris D, Town T, Rojiani AM, Sparks DL, Delledonne A, Crawford F, Abdullah LI, Humphrey JA, Dickson DW, Mullan MJ (2001) Cholesterol accumulates in senile plaques of Alzheimer disease patients and in transgenic APP(SW) mice. J Neuropathol Exp Neurol 60:778–785PubMedGoogle Scholar
  29. Morris R (1984) Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods 11:47–60PubMedCrossRefGoogle Scholar
  30. Mrak RE, Griffinbc WS (2001) The role of activated astrocytes and of the neurotrophic cytokine S100B in the pathogenesis of Alzheimer’s disease. Neurobiol Aging 22:915–922PubMedCrossRefGoogle Scholar
  31. Nagay Hernandez S, Flores Molina JJ, Ilarraza Lomeli H, Martinez Sanchez C, del Valle Mondragon L, Tenorio Lopez FA, Pastelin Hernandez G (2008) Influence of rosuvastatin in endothelial function and oxidative stress, in patients with acute coronary syndrome. Arch Cardiol Mex 78:379–383PubMedGoogle Scholar
  32. Pasquier F, Boulogne A, Leys D, Fontaine P (2006) Diabetes mellitus and dementia. Diabetes Metab 32:403–414PubMedCrossRefGoogle Scholar
  33. Paxinos (1997) The Rat Nervous System. Academic PressGoogle Scholar
  34. Piermartiri TC, Figueiredo CP, Rial D, Duarte FS, Bezerra SC, Mancini G, de Bem AF, Prediger RD, Tasca CI (2010) Atorvastatin prevents hippocampal cell death, neuroinflammation and oxidative stress following amyloid-beta(1–40) administration in mice: evidence for dissociation between cognitive deficits and neuronal damage. Exp Neurol 226:274–284PubMedCrossRefGoogle Scholar
  35. Ramirez C, Tercero I, Pineda A, Burgos JS (2011) Simvastatin is the statin that most efficiently protects against kainate-induced excitotoxicity and memory impairment. J Alzheimers Dis 24:161–174PubMedGoogle Scholar
  36. Rikitake Y, Liao JK (2005) Rho GTPases, statins, and nitric oxide. Circ Res 97:1232–1235PubMedCrossRefGoogle Scholar
  37. Robinson SR (2001) Changes in the cellular distribution of glutamine synthetase in Alzheimer’s disease. J Neurosci Res 66:972–980PubMedCrossRefGoogle Scholar
  38. Rodrigues L, Biasibetti R, Swarowsky A, Leite MC, Quincozes-Santos A, Quilfeldt JA, Achaval M, Goncalves CA (2009) Hippocampal alterations in rats submitted to streptozotocin-induced dementia model are prevented by aminoguanidine. J Alzheimers Dis 17:193–202PubMedGoogle Scholar
  39. Saheki A, Terasaki T, Tamai I, Tsuji A (1994) In vivo and in vitro blood–brain barrier transport of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors. Pharm Res 11:305–311PubMedCrossRefGoogle Scholar
  40. Saxena G, Singh SP, Agrawal R, Nath C (2008) Effect of donepezil and tacrine on oxidative stress in intracerebral streptozotocin-induced model of dementia in mice. Eur J Pharmacol 581:283–289PubMedCrossRefGoogle Scholar
  41. Schonbeck U, Libby P (2004) Inflammation, immunity, and HMG-CoA reductase inhibitors: statins as antiinflammatory agents? Circulation 109:II18– II26Google Scholar
  42. Sharma M, Gupta YK (2001) Intracerebroventricular injection of streptozotocin in rats produces both oxidative stress in the brain and cognitive impairment. Life Sci 68:1021–1029PubMedCrossRefGoogle Scholar
  43. Sharma M, Gupta YK (2002) Chronic treatment with trans resveratrol prevents intracerebroventricular streptozotocin induced cognitive impairment and oxidative stress in rats. Life Sci 71:2489–2498PubMedCrossRefGoogle Scholar
  44. Sharma B, Singh N, Singh M (2008) Modulation of celecoxib- and streptozotocin-induced experimental dementia of Alzheimer’s disease by pitavastatin and donepezil. J Psychopharmacol 22:162–171PubMedCrossRefGoogle Scholar
  45. Sierra S, Ramos MC, Molina P, Esteo C, Vazquez JA, Burgos JS (2010) Statins as neuroprotectants: a comparative in vitro study of lipophilicity, blood–brain-barrier penetration, lowering of brain cholesterol, and decrease of neuron cell death. J Alzheimers Dis 23:307–318Google Scholar
  46. Silva MC, Rocha J, Pires CS, Ribeiro LC, Brolese G, Leite MC, Almeida LM, Tramontina F, Ziegler DR, Goncalves CA (2005) Transitory gliosis in the CA3 hippocampal region in rats fed on a ketogenic diet. Nutr Neurosci 8:259–264PubMedCrossRefGoogle Scholar
  47. Silvestrelli G, Lanari A, Parnetti L, Tomassoni D, Amenta F (2006) Treatment of Alzheimer’s disease: from pharmacology to a better understanding of disease pathophysiology. Mech Ageing Dev 127:148–157PubMedCrossRefGoogle Scholar
  48. Stefani M, Liguri G (2009) Cholesterol in Alzheimer’s disease: unresolved questions. Curr Alzheimer Res 6:15–29PubMedCrossRefGoogle Scholar
  49. Terwel D, Prickaerts J, Meng F, Jolles J (1995) Brain enzyme activities after intracerebroventricular injection of streptozotocin in rats receiving acetyl-L-carnitine. Eur J Pharmacol 287:65–71PubMedCrossRefGoogle Scholar
  50. Thomazi AP, Godinho GF, Rodrigues JM, Schwalm FD, Frizzo ME, Moriguchi E, Souza DO, Wofchuk ST (2004) Ontogenetic profile of glutamate uptake in brain structures slices from rats: sensitivity to guanosine. Mech Ageing Dev 125:475–481PubMedCrossRefGoogle Scholar
  51. Vaughan CJ, Delanty N (1999) Neuroprotective properties of statins in cerebral ischemia and stroke. Stroke 30:1969–1973PubMedCrossRefGoogle Scholar
  52. Weinstock M, Shoham S (2004) Rat models of dementia based on reductions in regional glucose metabolism, cerebral blood flow and cytochrome oxidase activity. J Neural Transm 111:347–366PubMedCrossRefGoogle Scholar
  53. M. Weinstock SS (2004) Rat models of dementia based on reductions in regional glucose metabolism, cerebral blood flow and cytochrome oxidase activity. J Nerural TransmissionGoogle Scholar
  54. Wolozin B, Wang SW, Li NC, Lee A, Lee TA, Kazis LE (2007) Simvastatin is associated with a reduced incidence of dementia and Parkinson’s disease. BMC Med 5:20PubMedCrossRefGoogle Scholar
  55. Yoshida M (2003) Potential role of statins in inflammation and atherosclerosis. J Atheroscler Thromb 10:140–144PubMedCrossRefGoogle Scholar
  56. Zacco A, Togo J, Spence K, Ellis A, Lloyd D, Furlong S, Piser T (2003) 3-Hydroxy-3-methylglutaryl coenzyme A reductase inhibitors protect cortical neurons from excitotoxicity. J Neurosci 23:11104–11111PubMedGoogle Scholar
  57. Zipp F, Waiczies S, Aktas O, Neuhaus O, Hemmer B, Schraven B, Nitsch R, Hartung HP (2007) Impact of HMG-CoA reductase inhibition on brain pathology. Trends Pharmacol Sci 28:342–349PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Ana Carolina Tramontina
    • 1
  • Krista Minéia Wartchow
    • 1
  • Letícia Rodrigues
    • 1
  • Regina Biasibetti
    • 1
  • André Quincozes-Santos
    • 1
  • Larissa Bobermin
    • 1
  • Francine Tramontina
    • 2
  • Carlos-Alberto Gonçalves
    • 1
  1. 1.Departamento de BioquímicaInstituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do SulPorto AlegreBrazil
  2. 2.Universidade Estadual do Rio Grande do SulBento GonçalvesBrazil

Personalised recommendations