Journal of Neural Transmission

, Volume 118, Issue 11, pp 1621–1639 | Cite as

Neurocognitive-genetic and neuroimaging-genetic research paradigms in schizophrenia and bipolar disorder

  • Yoanna Arlina Kurnianingsih
  • Carissa Nadia Kuswanto
  • Roger S. McIntyre
  • Anqi Qiu
  • Beng Choon Ho
  • Kang Sim
Biological Psychiatry - Review article


Studies examining intermediate phenotypes such as neurocognitive and neuroanatomical measures along with susceptibility genes are important for improving our understanding of the neural basis of schizophrenia (SZ) and bipolar disorder (BD). In this paper, we review extant studies involving neurocognitive-genetic and neuroimaging-genetic perspectives and particularly related to catechol-O-methyltransferase (COMT), brain-derived neurotrophic factor (BDNF) and neuregulin-1 (NRG1) genes in SZ and BD. In terms of neurocognitive-genetic investigations, COMT and BDNF are the two most studied candidate genes especially in patients with SZ. Whereas BDNF Met carriers perform worse on verbal working memory, problem solving and visuo-spatial abilities, COMT Met carriers perform better in working memory, attention, executive functioning with evidence of genotype by diagnosis interactions including high-risk individuals. In terms of genetic-structural MRI studies, patients with SZ are found to have reductions in the frontal, temporal, parietal cortices, and limbic regions, which are associated with BDNF, COMT, and NRGI genes. Genetic-functional MRI studies in psychotic disorders are sparse, especially with regard to BD. These neurocognitive and neuroimaging findings are associated with genes which are implicated in functional pathways related to neuronal signaling, inter-neuronal communication and neuroplasticity.


Schizophrenia Bipolar disorder Genetic Neuroimaging Neurocognitive 


  1. Addington AM, Gornick MC, Shaw P, Seal J, Gogtay N, Greenstein D, Clasen L, Coffey M, Gochman P, Long R, Rapoport JL (2007) Neuregulin 1 (8p12) and childhood-onset schizophrenia: susceptibility haplotypes for diagnosis and brain developmental trajectories. Mol Psychiatry 12:195–205PubMedCrossRefGoogle Scholar
  2. Agartz I, Sedvall GC, Terenius L, Kulle B, Frigessi A, Hall H, Jonsson EG (2006) BDNF gene variants and brain morphology in schizophrenia. Am J Med Genet B 141:513–523CrossRefGoogle Scholar
  3. Akil M, Kolachana BS, Rothmond DA, Hyde TM, Weinberger DR, Kleinman JE (2003) Catechol-O-methyltransferase genotype and dopamine regulation in the human brain. J Neurosci 23:2008–2013PubMedGoogle Scholar
  4. Almeida JR, Versace A, Mechelli A, Hassel S, Quevedo K, Kupfer DJ, Phillips ML (2009) Abnormal amygdala-prefrontal effective connectivity to happy faces differentiates bipolar from major depression. Biol Psychiatry 66:451–459PubMedCrossRefGoogle Scholar
  5. Antonova E, Sharma T, Morris R, Kumari V (2004) The relationship between brain structure and neurocognition in schizophrenia: a selective review. Schizophr Res 70:117–145PubMedCrossRefGoogle Scholar
  6. Arnone D, Cavanagh J, Gerber D, Lawrie SM, Ebmeier KP, McIntosh AM (2009) Magnetic resonance imaging studies in bipolar disorder and schizophrenia: meta-analysis. Br J Psychiatry 195:194–201PubMedCrossRefGoogle Scholar
  7. Aston C, Jiang LX, Sokolov BP (2004) Microarray analysis of postmortem temporal cortex from patients with schizophrenia. J Neurosci Res 77:858–866PubMedCrossRefGoogle Scholar
  8. Barley K, Dracheva S, Byne W (2009) Subcortical oligodendrocyte- and astrocyte-associated gene expression in subjects with schizophrenia, major depression and bipolar disorder. Schizophr Res 112:54–64PubMedCrossRefGoogle Scholar
  9. Barnett JH, Smoller JW (2009) The genetics of bipolar disorder. Neuroscience 164:331–343PubMedCrossRefGoogle Scholar
  10. Berrettini WH (2000) Are schizophrenic and bipolar disorders related? A review of family and molecular studies. Biol Psychiatry 48:531–538PubMedCrossRefGoogle Scholar
  11. Bertolino A, Frye M, Callicott JH, Mattay VS, Rakow R, Shelton-Repella J, Post R, Weinberger DR (2003) Neuronal pathology in the hippocampal area of patients with bipolar disorder: a study with proton magnetic resonance spectroscopic imaging. Biol Psychiatry 53:906–913PubMedCrossRefGoogle Scholar
  12. Bertolino A, Rubino V, Sarnbataro F, Blasi G, Latorre V, Fazio L, Caforio G, Petruzzella V, Kolachana B, Hariri A, Meyer-Lindenberg A, Nardini M, Weinberger DR, Scarabino T (2006) Prefrontal-hippocampal coupling during memory processing is modulated by COMT Val158met genotype. Biol Psychiatry 60:1250–1258PubMedCrossRefGoogle Scholar
  13. Bielau H, Trubner K, Krell D, Agelink MW, Bernstein HG, Stauch R, Mawrin C, Danos P, Gerhard L, Bogerts B, Baumann B (2005) Volume deficits of subcortical nuclei in mood disorders—a postmortem study. Eur Arch Psychiatry Clin Neurosci 255:401–412PubMedCrossRefGoogle Scholar
  14. Bilder RM, Volavka J, Czobor P, Malhotra AK, Kennedy JL, Ni XQ, Goldman RS, Hoptman MJ, Sheitman B, Lindenmayer JP, Citrome L, McEvoy JP, Kunz M, Chakos M, Cooper TB, Lieberman JA (2002) Neurocognitive correlates of the COMT Val (158)Met polymorphism in chronic schizophrenia. Biol Psychiatry 52:701–707PubMedCrossRefGoogle Scholar
  15. Bramon E, Sham PC (2001) The common genetic liability between schizophrenia and bipolar disorder: a review. Curr Psychiatry Rep 3:332–337PubMedCrossRefGoogle Scholar
  16. Bueller JA, Aftab M, Sen S, Gomez-Hassan D, Burmeister M, Zubieta JK (2006) BDNF val(66) met allele is associated with reduced hippocampal volume in healthy subjects. Biol Psychiatry 59:812–815PubMedCrossRefGoogle Scholar
  17. Burdick KE, Funke B, Goldberg JF, Bates JA, Jaeger J, Kucherlapati R, Malhotra AK (2007) COMT genotype increases risk for bipolar I disorder and influences neurocognitive performance. Bipolar Disord 9:370–376PubMedCrossRefGoogle Scholar
  18. Callicott JH, Straub RE, Pezawas L, Egan MF, Mattay VS, Hariri AR, Verchinski BA, Meyer-Lindenberg A, Balkissoon R, Kolachana B, Goldberg TE, Weinberger DR (2005) Variation in DISC1 affects hippocampal structure and function and increases risk for schizophrenia. Proc Natl Acad Sci USA 102:8627–8632PubMedCrossRefGoogle Scholar
  19. Cannon TD, Hennah W, van Erp TGM, Thompson PM, Lonnqvist J, Huttunen M, Gasperoni T, Tuulio-Henriksson A, Pirkola T, Toga AW, Kaprio J, Mazziotta J, Peltonen L (2005) Association of DISC1/TRAX haplotypes with schizophrenia, reduced prefrontal grey matter, and impaired short- and long-term memory. Arch Gen Psychiatry 62:1205–1213PubMedCrossRefGoogle Scholar
  20. Cardno AG, Marshall EJ, Coid B, Macdonald AM, Ribchester TR, Davies NJ, Venturi P, Jones LA, Lewis SW, Sham PC, Gottesman II, Farmer AE, McGuffin P, Reveley AM, Murray RM (1999) Heritability estimates for psychotic disorders: the Maudsley Twin psychosis series. Arch Gen Psychiatry 56:162–168PubMedCrossRefGoogle Scholar
  21. Carlsson A, Waters N, Holm-Waters S, Tedroff J, Nilsson M, Carlsson ML (2001) Interactions between monoamines, glutamate, and GABA in schizophrenia: new evidence. Annu Rev Pharmacol Toxicol 41:237–260PubMedCrossRefGoogle Scholar
  22. Chan RC, Chen RY, Chen EY, Hui TC, Cheung EF, Cheung HK, Sham P, Li T, Collier D (2005) The differential clinical neurocognitive profiles of COMT SNP rs165599 genotypes in schizophrenia. J Int Neuropsychol Soc 11:202–204PubMedCrossRefGoogle Scholar
  23. Chen JS, Lipska BK, Halim N, Ma QD, Matsumoto M, Melhem S, Kolachana BS, Hyde TM, Herman MM, Apud J, Egan MF, Kleinman JE, Weinberger DR (2004) Functional analysis of genetic variation in catechol-o-methyltransferase (COMT): effects on mRNA, protein, and enzyme activity in postmortem human brain. Am J Hum Genet 75:807–821PubMedCrossRefGoogle Scholar
  24. Chepenik LG, Fredericks C, Papademetris X, Spencer L, Lacadie C, Wang F, Pittman B, Duncan JS, Staib LH, Duman RS, Gelernter J, Blumberg HP (2009) Effects of the brain-derived neurotrophic growth factor Val66Met variation on hippocampus morphology in bipolar disorder. Neuropsychopharmacology 34:944–951PubMedCrossRefGoogle Scholar
  25. Chung S, Chung HY, Jung J, Chang JK, Hong JP (2009) Association among aggressiveness, neurocognitive function, and the Val66Met polymorphism of brain-derived neurotrophic factor gene in male schizophrenic patients. Compr Psychiatry 51:367–372PubMedCrossRefGoogle Scholar
  26. Conklin HM, Curtis CE, Katsanis J, Iacono WG (2000) Verbal working memory impairment in schizophrenia patients and their first-degree relatives: evidence from the digit span task. Am J Psychiatry 157:275–277PubMedCrossRefGoogle Scholar
  27. Craddock N, O’Donovan MC, Owen MJ (2009) Psychosis genetics: modeling the relationship between schizophrenia, bipolar disorder, and mixed (or “schizoaffective”) psychoses. Schizophr Bull 35:482–490PubMedCrossRefGoogle Scholar
  28. Crespo-Facorro B, Roiz-Santiáñez R, Pelayo-Terán JM, Pérez-Iglesias R, Carrasco-Marín E, González-Mandly A, Jorge R, Vázquez-Barquero JL (2007) Low-activity allele of catechol-O-methyltransferase (COMTL) is associated with increased lateral ventricles in patients with first episode non-affective psychosis. Prog Neuropsychopharmacol Biol Psychiatry 31:1514–1518PubMedCrossRefGoogle Scholar
  29. Dempster E, Toulopoulou T, McDonald C, Bramon E, Walshe M, Filbey F, Wickham H, Sham PC, Murray RM, Collier DA (2005) Association between BDNF Val(66)Met genotype and episodic memory. Am J Med Genet B 134B:73–75CrossRefGoogle Scholar
  30. Depp CA, Moore DJ, Sitzer D, Palmer BW, Eyler LT, Roesch S, Lebowitz BD, Jeste DV (2007) Neurocognitive impairment in middle-aged and older adults with bipolar disorder: comparison to schizophrenia and normal comparison subjects. J Affect Disord 101:201–209PubMedCrossRefGoogle Scholar
  31. Diamond A, Briand L, Fossella J, Gehlbach L (2004) Genetic and neurochemical modulation of prefrontal cognitive functions in children. Am J Psychiatry 161:125–132PubMedCrossRefGoogle Scholar
  32. Diaz-Asper CM, Goldberg TE, Kolachana BS, Straub RE, Egan MF, Weinberger DR (2008) Genetic variation in catechol-O-methyltransferase: effects on working memory in schizophrenic patients, their siblings, and healthy controls. Biol Psychiatry 63:72–79PubMedCrossRefGoogle Scholar
  33. Dutt A, McDonald C, Dempster E, Prata D, Shaikh M, Williams I, Schulze K, Marshall N, Walshe M, Allin M, Collier D, Murray R, Bramon E (2009) The effect of COMT, BDNF, 5-HTT, NRGI and DTNBP1 genes on hippocampal and lateral ventricular volume in psychosis. Psychol Med 39:1783–1797PubMedCrossRefGoogle Scholar
  34. Egan MF, Goldberg TE, Kolachana BS, Callicott JH, Mazzanti CM, Straub RE, Goldman D, Weinberger DR (2001) Effect of COMT Val(108/158) Met genotype on frontal lobe function and risk for schizophrenia. Proc Natl Acad Sci USA 98:6917–6922PubMedCrossRefGoogle Scholar
  35. Egan MF, Kojima M, Callicott JH, Goldberg TE, Kolachana BS, Bertolino A, Zaitsev E, Gold B, Goldman D, Dean M, Lu B, Weinberger DR (2003) The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell 112:257–269PubMedCrossRefGoogle Scholar
  36. Ehrlich S, Morrow EM, Roffman JL, Wallace SR, Naylor M, Bockholt HJ, Lundquist A, Yendiki A, Ho BC, White T, Manoach DS, Clark VP, Calhoun VD, Gollub RL, Holt DJ (2010) The COMT Val108/158Met polymorphism and medial temporal lobe volumetry in patients with schizophrenia and healthy adults. Neuroimage 53:992–1000PubMedCrossRefGoogle Scholar
  37. Fischl B, Dale AM (2000) Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Natl Acad Sci USA 97:11050–11055PubMedCrossRefGoogle Scholar
  38. Goldberg TE, Torrey EF, Gold JM, Ragland JD, Bigelow LB, Weinberger DR (1993) Learning and memory in monozygotic twins discordant for schizophrenia. Psychol Med 23:71–85PubMedCrossRefGoogle Scholar
  39. Goldberg TE, Egan MF, Gscheidle T, Coppola R, Weickert T, Kolachana BS, Goldman D, Weinberger DR (2003) Executive subprocesses in working memory: relationship to catechol-O-methyltransferase Val158Met genotype and schizophrenia. Arch Gen Psychiatry 60:889–896PubMedCrossRefGoogle Scholar
  40. Gottesman II, Gould TD (2003) The endophenotype concept in psychiatry: etymology and strategic intentions. Am J Psychiatry 160:636–645PubMedCrossRefGoogle Scholar
  41. Gruber O, Falkai P, Schneider-Axmann T, Schwab SG, Wagner M, Maier W (2008) Neuregulin-1 haplotype HAP(ICE) is associated with lower hippocampal volumes in schizophrenic patients and in non-affected family members. J Psychiatr Res 43:1–6PubMedCrossRefGoogle Scholar
  42. Hall J, Whalley HC, Job DE, Baig BJ, McIntosh AM, Evans KL, Thomson PA, Porteous DJ, Cunningham-Owens DG, Johnstone EC, Lawrie SM (2006) A neuregulin 1 variant associated with abnormal cortical function and psychotic symptoms. Nat Neurosci 9:1477–1478PubMedCrossRefGoogle Scholar
  43. Hariri AR, Goldberg TE, Mattay VS, Kolachana BS, Callicott JH, Egan MF, Weinberger DR (2003) Brain-derived neurotrophic factor val(66)met polymorphism affects human memory-related hippocampal activity and predicts memory performance. J Neurosci 23:6690–6694PubMedGoogle Scholar
  44. Harris SE, Wright AF, Hayward C, Starr JM, Whalley LJ, Deary IJ (2005) The functional COMT polymorphism, Val158Met, is associated with logical memory and the personality trait intellect/imagination in a cohort of healthy 79 year olds. Neurosci Lett 385:1–6PubMedCrossRefGoogle Scholar
  45. Harrison PJ, Weinberger DR (2005) Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence. Mol Psychiatry 10:40–68PubMedCrossRefGoogle Scholar
  46. Hashimoto R, Moriguchi Y, Yamashita F, Mori T, Nemoto K, Okada T, Hori H, Noguchi H, Kunugi H, Ohnishi T (2008) Dose-dependent effect of the Val66Met polymorphism of the brain-derived neurotrophic factor gene on memory-related hippocampal activity. Neurosci Res 61:360–367PubMedCrossRefGoogle Scholar
  47. Heckers S (1997) Neuropathology of schizophrenia: cortex, thalamus, basal ganglia, and neurotransmitter-specific projection systems. Schizophr Bull 23:403–421PubMedGoogle Scholar
  48. Heinrichs RW, Zakzanis KK (1998) Neurocognitive deficit in schizophrenia: a quantitative review of the evidence. Neuropsychology 12:426–445PubMedCrossRefGoogle Scholar
  49. Ho BC, Wassink TH, O’Leary DS, Sheffield VC, Andreasen NC (2005) Catechol-O-methyl transferase Val(158)Met gene polymorphism in schizophrenia: working memory, frontal lobe MRI morphology and frontal cerebral blood flow. Mol Psychiatry 10:287–298CrossRefGoogle Scholar
  50. Ho BC, Milev P, O’Leary DS, Librant A, Andreasen NC, Wassink TH (2006) Cognitive and magnetic resonance imaging brain morphometric correlates of brain-derived neurotrophic factor Val66Met gene polymorphism in patients with schizophrenia and healthy volunteers. Arch Gen Psychiatry 63:731–740PubMedCrossRefGoogle Scholar
  51. Ho BC, Andreasen NC, Dawson JD, Wassink TH (2007) Association between brain-derived neurotrophic factor val66met gene polymorphism and progressive brain volume changes in schizophrenia. Am J Psychiatry 164:1890–1899PubMedCrossRefGoogle Scholar
  52. Jaaro-Peled H, Hayashi-Takagi A, Seshadri S, Kamiya A, Brandon NJ, Sawa A (2009) Neurodevelopmental mechanisms of schizophrenia: understanding disturbed postnatal brain maturation through neuregulin-1-ErbB4 and DISC1. Trends Neurosci 32:485–495PubMedCrossRefGoogle Scholar
  53. Kircher T, Krug A, Markov V, Whitney C, Krach S, Zerres K, Eggermann T, Stocker T, Shah NJ, Treutlein J, Nothen MM, Becker T, Rietschel M (2009a) Genetic variation in the schizophrenia-risk gene neuregulin 1 correlates with brain activation and impaired speech production in a verbal fluency task in healthy individuals. Hum Brain Mapp 30:3406–3416PubMedCrossRefGoogle Scholar
  54. Kircher T, Thienel R, Wagner M, Reske M, Habel U, Kellermann T, Frommann I, Schwab S, Wölwer W, von Wilmsdorf M, Braus DF, Schmitt A, Rapp A, Stöcker T, Shah NJ, Henn FA, Sauer H, Gaebel W, Maier W, Schneider F (2009b) Neuregulin 1 ICE-single nucleotide polymorphism in first episode schizophrenia correlates with cerebral activation in fronto-temporal areas. Eur Arch Psychiatry Clin Neurosci 259:72–79PubMedCrossRefGoogle Scholar
  55. Koolschijn PC, Haren NE, Bakker SC, Hoogendoorn MLC, Pol HEH, Kahn RS (2009) Effects of brain-derived neurotrophic factor Val66Met polymorphism on hippocampal volume change in schizophrenia. Hippocampus 20:1010–1017CrossRefGoogle Scholar
  56. Krug A, Markov V, Leube D, Zerres K, Eggermann T, Nothen MM, Skowronek MH, Rietschel M, Kircher T (2008) Genetic variation in the schizophrenia-risk gene neuregulin1 correlates with personality traits in healthy individuals. Eur Psychiatry 23:344–349PubMedCrossRefGoogle Scholar
  57. Laruelle M (2000) The role of endogenous sensitization in the pathophysiology of schizophrenia: implications from recent brain imaging studies. Brain Res Rev 31:371–384PubMedCrossRefGoogle Scholar
  58. Law AJ, Weickert CS, Hyde TM, Kleinman JE, Harrison PJ (2004) Neuregulin-1 (NRG-1) mRNA and protein in the adult human brain. Neuroscience 127:125–136PubMedCrossRefGoogle Scholar
  59. Lawrie SM, Hall J, McIntosh AM, Cunningham-Owens DG, Johnstone EC (2008) Neuroimaging and molecular genetics of schizophrenia: pathophysiological advances and therapeutic potential. Br J Pharmacol 153:S120–S124PubMedCrossRefGoogle Scholar
  60. Lichtenstein P, Yip BH, Bjork C, Pawitan Y, Cannon TD, Sullivan PF, Hultman CM (2009) Common genetic determinants of schizophrenia and bipolar disorder in Swedish families: a population-based study. Lancet 373:234–239PubMedCrossRefGoogle Scholar
  61. Lipska BK, Khaing ZZ, Weickert CS, Weinberger DR (2001) BDNF mRNA expression in rat hippocampus and prefrontal cortex: effects of neonatal ventral hippocampal damage and antipsychotic drugs. Eur J Neurosci 14:135–144PubMedCrossRefGoogle Scholar
  62. Liu Y, Ford B, Mann MA, Fischbach GD (2001) Neuregulins increase alpha 7 nicotinic acetylcholine receptors and enhance excitatory synaptic transmission in GABAergic interneurons of the hippocampus. J Neurosci 21:5660–5669PubMedGoogle Scholar
  63. Lotta T, Vidgren J, Tilgmann C, Ulmanen I, Melen K, Julkunen I, Taskinen J (1995) Kinetics of human soluble and membrane-bound catechol-O-methyltransferase: a revised mechanism and description of the thermolabile variant of the enzyme. Biochemistry 34:4202–4210PubMedCrossRefGoogle Scholar
  64. Lu B (2003) Pro-region of neurotrophins: role in synaptic modulation. Neuron 39:735–738PubMedCrossRefGoogle Scholar
  65. MacDonald AW, Schulz SC (2009) What we know: findings that every theory of schizophrenia should explain. Schizophr Bull 35:493–508PubMedCrossRefGoogle Scholar
  66. Makris N, Biederman J, Valera EM, Bush G, Kaiser J, Kennedy DN, Caviness VS, Faraone SV, Seidman LJ (2007) Cortical thinning of the attention and executive function networks in adults with attention-deficit/hyperactivity disorder. Cereb Cortex 17:1364–1375PubMedCrossRefGoogle Scholar
  67. Manoach DS, Gollub RL, Benson ES, Searl MM, Goff DC, Halpern E, Saper CB, Rauch SL (2000) Schizophrenic subjects show aberrant fMRI activation of dorsolateral prefrontal cortex and basal ganglia during working memory performance. Biol Psychiatry 48:99–109PubMedCrossRefGoogle Scholar
  68. Mata I, Perez-Iglesias R, Roiz-Santianez R, Tordesillas-Gutierrez D, Gonzalez-Mandly A, Vazquez-Barquero JL, Crespo-Facorro B (2009a) A neuregulin 1 variant is associated with increased lateral ventricle volume in patients with first-episode schizophrenia. Biol Psychiatry 65:535–540PubMedCrossRefGoogle Scholar
  69. Mata I, Perez-Iglesias R, Roiz-Santiañez R, Tordesillas-Gutierrez D, Gonzalez-Mandly A, Berja A, Vazquez-Barquero JL, Crespo-Facorro B (2009b) Additive effect of NRGI and DISC1 genes on lateral ventricle enlargement in first episode schizophrenia. Neuroimage 53:1016–1022PubMedCrossRefGoogle Scholar
  70. Matsumoto M, Weickert CS, Akil M, Lipska BK, Hyde TM, Herman MM, Kleinman JE, Weinberger DR (2003) Catechol O-methyltransferase mRNA expression in human and rat brain: evidence for a role in cortical neuronal function. Neuroscience 116:127–137PubMedCrossRefGoogle Scholar
  71. McDonald C, Grech A, Touopoulou T, Schulze K, Chapple B, Sham P, Walshe M, Sharma T, Sigmundsson T, Chitnis X, Murray RM (2002) Brain volumes in familial and non-familial schizophrenic probands and their unaffected relatives. Am J Med Genet 114:616–625PubMedCrossRefGoogle Scholar
  72. McDonald C, Bullmore ET, Sham PC, Chitnis X, Wickham H, Bramon E, Murray RM (2004) Association of genetic risks for schizophrenia and bipolar disorder with specific and generic brain structural endophenotypes. Arch Gen Psychiatry 61:974–984PubMedCrossRefGoogle Scholar
  73. McGuffin P, Rijsdijk F, Andrew M, Sham P, Katz R, Cardno A (2003) The heritability of bipolar affective disorder and the genetic relationship to unipolar depression. Arch Gen Psychiatry 60:497–502PubMedCrossRefGoogle Scholar
  74. McIntosh AM, Baig BJ, Hall J, Job D, Whalley HC, Lymer GKS, William T, Moorhead J, Owens DGC, Miller P, Porteous D, Lawrie SM, Johnstone EC (2007a) Relationship of catechol-O-methyltransferase variants to brain structure and function in a population at high risk of psychosis. Biol Psychiatry 61:1127–1134PubMedCrossRefGoogle Scholar
  75. McIntosh A, Moorhead T, McKirdy J, Sussmann J, Hall J, Johnstone E, Lawrie S (2007b) Temporal grey matter reductions in bipolar disorder are associated with the BDNF Val(66)Met polymorphism. Mol Psychiatry 12:902–903PubMedCrossRefGoogle Scholar
  76. Mechelli A, Prata DP, Fu CHY, Picchioni M, Kane F, Kalidindi S, McDonald C, Demjaha A, Kravariti E, Toulopoulou T, Murray R, Collier DA, McGuire PK (2008) The effects of neuregulin1 on brain function in controls and patients with schizophrenia and bipolar disorder. Neuroimage 42:817–826PubMedCrossRefGoogle Scholar
  77. Mechelli A, Viding E, Pettersson-Yeo W, Tognin S, McGuire PK (2009) Genetic variation in neuregulin1 is associated with differences in prefrontal engagement in children. Hum Brain Mapp 30:3934–3943PubMedCrossRefGoogle Scholar
  78. Mendrek A, Kiehl KA, Smith AM, Irwin D, Forster BB, Liddle PF (2005) Dysfunction of a distributed neural circuitry in schizophrenia patients during a working-memory performance. Psychol Med 35:187–196PubMedCrossRefGoogle Scholar
  79. Meyer-Lindenberg A, Weinberger DR (2006) Intermediate phenotypes and genetic mechanisms of psychiatric disorders. Nat Rev Neurosci 7:818–827PubMedCrossRefGoogle Scholar
  80. Minzenberg MJ, Laird AR, Thelen S, Carter CS, Glahn DC (2009) Meta-analysis of 41 functional neuroimaging studies of executive function in schizophrenia. Arch Gen Psychiatry 66:811–822PubMedCrossRefGoogle Scholar
  81. Mirakhur A, Moorhead TWJ, Stanfield AC, McKirdy J, Sussmann JED, Hall J, Lawrie SM, Johnstone EC, McIntosh AM (2009) Changes in gyrification over 4 years in bipolar disorder and their association with the brain-derived neurotrophic factor valine(66) methionine variant. Biol Psychiatry 66:293–297PubMedCrossRefGoogle Scholar
  82. Montag C, Weber B, Fliessbach K, Elger C, Reuter M (2009) The BDNF Val66Met polymorphism impacts parahippocampal and amygdala volume in healthy humans: incremental support for a genetic risk factor for depression. Psychol Med 39:1831–1839PubMedCrossRefGoogle Scholar
  83. Moron JA, Brockington A, Wise RA, Rocha BA, Hope BT (2002) Dopamine uptake through the norepinephrine transporter in brain regions with low levels of the dopamine transporter: evidence from knock-out mouse lines. J Neurosci 22:389–395PubMedGoogle Scholar
  84. Morse JK, Wiegand SJ, Anderson K, You YM, Cai N, Carnahan J, Miller J, Distefano PS, Altar CA, Lindsay RM, Alderson RF (1993) Brain-derived neutrophic factor (BDNF) prevents the degeneration of medial septal cholinergic neurons following fimbria transection. J Neurosci 13:4146–4156PubMedGoogle Scholar
  85. Murer MG, Yan Q, Raisman-Vozari R (2001) Brain-derived neurotrophic factor in the control human brain, and in Alzheimer’s disease and Parkinson’s disease. Prog Neurobiol 63:71–124PubMedCrossRefGoogle Scholar
  86. Murray RM, Sham P, Van Os J, Zanelli J, Cannon M, McDonald C (2004) A developmental model for similarities and dissimilarities between schizophrenia and bipolar disorder. Schizophr Res 71:405–416PubMedCrossRefGoogle Scholar
  87. Nemoto K, Ohnishi T, Mori T, Moriguchi Y, Hashimoto R, Asada T, Kunugi H (2006) The Val66Met polymorphism of the brain-derived neurotrophic factor gene affects age-related brain morphology. Neurosci Lett 397:25–29PubMedCrossRefGoogle Scholar
  88. Nolan KA, Bilder RM, Lachman HM, Volavka J (2004) Catechol O-methyltransferase Val(158)Met polymorphism in schizophrenia: differential effects of Val and Met alleles on cognitive stability and flexibility. Am J Psychiatry 161:359–361PubMedCrossRefGoogle Scholar
  89. Ohnishi T, Hashimoto R, Mori T, Nemoto K, Moriguchi Y, Iida H, Noguchi H, Nakabayashi T, Hori H, Ohmori M, Tsukue R, Anami K, Hirabayashi N, Harada S, Arima K, Saitoh O, Kunugi H (2006) The association between the Val158Met polymorphism of the catechol-O-methyl transferase gene and morphological abnormalities of the brain in chronic schizophrenia. Brain 129:399–410PubMedCrossRefGoogle Scholar
  90. Opgen-Rhein C, Neuhaus AH, Urbanek C, Hahn E, Sander T, Dettling M (2008) Executive attention in schizophrenic males and the impact of COMT Val(108/158)Met genotype on performance on the attention network test. Schizophr Bull 34:1231–1239PubMedCrossRefGoogle Scholar
  91. Owen MJ, Williams NM, O’Donovan MC (2004) The molecular genetics of schizophrenia: findings promise new insights. Mol Psychiatry 9:14–27PubMedCrossRefGoogle Scholar
  92. Palmer BA, Pankratz VS, Bostwick JM (2005) The lifetime risk of suicide in schizophrenia: a reexamination. Arch Gen Psychiatry 62:247–253PubMedCrossRefGoogle Scholar
  93. Palo OM, Antila M, Silander K, Hennah W, Kilpinen H, Soronen P, Tuulio-Henriksson A, Kieseppa T, Partonen T, Lonnqvist J, Peltonen L, Paunio T (2007) Association of distinct allelic haplotypes of DISC1 with psychotic and bipolar spectrum disorders and with underlying cognitive impairments. Hum Mol Genet 16:2517–2528PubMedCrossRefGoogle Scholar
  94. Park S, Holzman PS (1992) Schizophrenics show spatial working memory deficits. Arch Gen Psychiatry 49:975–982PubMedGoogle Scholar
  95. Pezawas L, Verchinski BA, Mattay VS, Callicott JH, Kolachana BS, Straub RE, Egan MF, Meyer-Lindenberg A, Weinberger DR (2004) The brain-derived neurotrophic factor val66met polymorphism and variation in human cortical morphology. J Neurosci 24:10099–10102PubMedCrossRefGoogle Scholar
  96. Phillips ML, Vieta E (2007) Identifying functional neuroimaging biomarkers of bipolar disorder: toward DSM-V. Schizophr Bull 33:893–904PubMedCrossRefGoogle Scholar
  97. Quintana J, Wong T, Ortiz-Portillo E, Kovalik E, Davidson T, Marder SR, Mazziotta JC (2003) Prefrontal-posterior parietal networks in schizophrenia: primary dysfunctions and secondary compensations. Biol Psychiatry 53:12–24PubMedCrossRefGoogle Scholar
  98. Ragland JD, Yoon J, Minzenberg MJ, Carter CS (2007) Neuroimaging of cognitive disability in schizophrenia: search for a pathophysiological mechanism. Int Rev Psychiatry 19:417–427PubMedCrossRefGoogle Scholar
  99. Roffman JL, Weiss AP, Deckersbach T, Freudenreich O, Henderson DC, Purcell S, Wong DH, Halsted CH, Goff DC (2007) Effects of the methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism on executive function in schizophrenia. Schizophr Res 92:181–188PubMedCrossRefGoogle Scholar
  100. Roffman JL, Weiss AP, Deckersbach T, Freudenreich O, Henderson DC, Wong DH, Halsted CH, Goff DC (2008a) Interactive effects of COMT Val108/158Met and MTHFR C677T on executive function in schizophrenia. Am J Med Genet B 147B:990–995CrossRefGoogle Scholar
  101. Roffman JL, Gollub RL, Calhoun VD, Wassink TH, Weiss AP, Ho BC, White T, Clark VP, Fries J, Andreasen NC, Goff DC, Manoach DS (2008b) MTHFR 677C→T genotype disrupts prefrontal function in schizophrenia through an interaction with COMT 158Val→Met. Proc Natl Acad Sci USA 105:17573–17578PubMedCrossRefGoogle Scholar
  102. Rosa A, Peralta V, Cuesta MJ, Zarzuela A, Serrano F, Martinez-Larrea A, Fananas L (2004) New evidence of association between COMT gene and prefrontal neurocognitive from sibling function in healthy individuals pairs discordant for psychosis. Am J Psychiatry 161:1110–1112PubMedCrossRefGoogle Scholar
  103. Rosa EC, Dickinson D, Apud J, Weinberger DR, Elvevåg B (2010) COMT Val158Met polymorphism, cognitive stability and cognitive flexibility: an experimental examination. Behav Brain Funct 6:53PubMedCrossRefGoogle Scholar
  104. Ross CA, Margolis RL, Reading SAJ, Pletnikov M, Coyle JT (2006) Neurobiology of schizophrenia. Neuron 52:139–153PubMedCrossRefGoogle Scholar
  105. Rybakowski JK, Borkowska A, Czerski PM, Skibinska M, Hauser J (2003) Polymorphism of the brain-derived neurotrophic factor gene and performance on a cognitive prefrontal test in bipolar patients. Bipolar Disord 5:468–472PubMedCrossRefGoogle Scholar
  106. Rybakowski JK, Borkowska A, Skibinska M, Szczepankiewicz A, Kapelski P, Leszczynska-Rodziewica A, Czerski PM, Hauser J (2006) Prefrontal cognition in schizophrenia and bipolar illness in relation to Val66Met polymorphism of the brain-derived neurotrophic factor gene. Psychiatry Clin Neurosci 60:70–76PubMedCrossRefGoogle Scholar
  107. Sato M, Suzuki K, Nakanishi S (2006) Expression profile of BDNF-responsive genes during cerebellar granule cell development. Biochem Biophys Res Commun 341:304–309PubMedCrossRefGoogle Scholar
  108. Schultz CC, Koch K, Wagner G, Roebel M, Schachtzabel C, Gaser C, Nenadic I, Reichenbach JR, Sauer H, Schlosser RGM (2010) Reduced cortical thickness in first episode schizophrenia. Schizophr Res 116:204–209PubMedCrossRefGoogle Scholar
  109. Seamans JK, Yang CR (2004) The principal features and mechanisms of dopamine modulation in the prefrontal cortex. Prog Neurobiol 74:1–57PubMedCrossRefGoogle Scholar
  110. Sesack SR, Hawrylak VA, Matus C, Guido MA, Levey AI (1998) Dopamine axon varicosities in the prelimbic division of the rat prefrontal cortex exhibit sparse immunoreactivity for the dopamine transporter. J Neurosci 18:2697–2708PubMedGoogle Scholar
  111. Sharma T, Antonova L (2003) Cognitive function in schizophrenia—deficits, functional consequences, and future treatment. Psychiatr Clin North Am 26:25–40PubMedCrossRefGoogle Scholar
  112. Shenton ME, Dickey CC, Frumin M, McCarley RW (2001) A review of MRI findings in schizophrenia. Schizophr Res 49:1–52PubMedCrossRefGoogle Scholar
  113. Sherman AD, Davidson AT, Baruah S, Hegwood TS, Waziri R (1991) Evidence of glutamatergic deficiency in schizophrenia. Neurosci Lett 121:77–80PubMedCrossRefGoogle Scholar
  114. Sim K, Cullen T, Ongur D, Heckers S (2006) Testing models of thalamic dysfunction in schizophrenia using neuroimaging. J Neural Transm 113:907–928PubMedCrossRefGoogle Scholar
  115. Steen RG, Mull C, McClure R, Hamer RM, Lieberman JA (2006) Brain volume in first-episode schizophrenia: systematic review and meta-analysis of magnetic resonance imaging studies. Br J Psychiatry 188:510–518PubMedCrossRefGoogle Scholar
  116. Stefansson H, Sigurdsson E, Steinthorsdottir V, Bjornsdottir S, Sigmundsson T, Ghosh S, Brynjolfsson J, Gunnarsdottir S, Ivarsson O, Chou TT, Hjaltason O, Birgisdottir B, Jonsson H, Gudnadottir VG, Gudmundsdottir E, Bjornsson A, Ingvarsson B, Ingason A, Sigfusson S, Hardardottir H, Harvey RP, Lai D, Zhou MD, Brunner D, Mutel V, Gonzalo A, Lemke G, Sainz J, Johannesson G, Andresson T, Gudbjartsson D, Manolescu A, Frigge ML, Gurney ME, Kong A, Gulcher JR, Petursson H, Stefansson K (2002) Neuregulin 1 and susceptibility to schizophrenia. Am J Hum Genet 71:877–892PubMedCrossRefGoogle Scholar
  117. Sublette ME, Baca-Garcia E, Parsey RV, Oquendo MA, Rodrigues SM, Galfalvy H, Huang YY, Arango V, Mann JJ (2008) Effect of BDNF val66met polymorphism on age-related amygdala volume changes in healthy subjects. Prog Neuro Psychopharmacol Biol Psychiatry 32:1652–1655CrossRefGoogle Scholar
  118. Szeszko PR, Lipsky R, Mentschel C, Robinson D, Gunduz-Bruce H, Sevy S, Ashtari M, Napolitano B, Bilder RM, Kane JM, Goldman D, Malhotra AK (2005) Brain-derived neurotrophic factor val66met polymorphism and volume of the hippocampal formation. Mol Psychiatry 10:631–636PubMedCrossRefGoogle Scholar
  119. Takahashi T, Suzuki M, Tsunoda M, Maeno N, Kawasaki Y, Zhou SY, Hagino H, Niu L, Tsuneki H, Kobayashi S, Sasaoka T, Seto H, Kurachi M, Ozaki N (2009) The disrupted-in-schizophrenia-1 Ser704Cys polymorphism and brain morphology in schizophrenia. Psychiatry Res Neuroimaging 172:128–135CrossRefGoogle Scholar
  120. Takizawa R, Tochigi M, Kawakubo Y, Marumo K, Sasaki T, Fukuda M, Kasai K (2009) Association between catechol-O-methyltrasferase Val108/158Met genotype and prefrontal hemodynamic response in schizophrenia. PLoS ONE 4:e5495PubMedCrossRefGoogle Scholar
  121. Tsai SJ, Yu YWY, Chen TJ, Chen JY, Liou YJ, Chen MC, Hong CJ (2003) Association study of a functional catechol-O-methyltransferase-gene polymorphism and cognitive function in healthy females. Neurosci Lett 338:123–126PubMedCrossRefGoogle Scholar
  122. Tunbridge EM, Harrison PJ, Weinberger DR (2006) Catechol-O-methyltransferase, cognition, and psychosis: Val(158)Met and beyond. Biol Psychiatry 60:141–151PubMedCrossRefGoogle Scholar
  123. Vita A, De Peri L, Silenzi C, Dieci A (2006) Brain morphology in first-episode schizophrenia: a meta-analysis of quantitative magnetic resonance imaging studies. Schizophr Res 82:75–88PubMedCrossRefGoogle Scholar
  124. Wahlstrom D, White T, Hooper CJ, Vrshek-Schallhorn S, Oetting WS, Brott MJ, Luciana M (2007) Variations in the catechol O-methyltransferase polymorphism and prefrontally guided behaviors in adolescents. Biol Psychiatry 61:626–632PubMedCrossRefGoogle Scholar
  125. Wang F, Jiang TZ, Sun ZG, Teng SL, Luo XG, Zhu ZJ, Zang YF, Zhang HD, Yue WH, Qu M, Lu TL, Hong N, Huang HY, Blumberg HP, Zhang D (2009) Neuregulin 1 genetic variation and anterior cingulum integrity in patients with schizophrenia and healthy controls. J Psychiatry Neurosci 34:181–186PubMedGoogle Scholar
  126. Weinberger DR, Egan MF, Bertolino A, Callicott JH, Mattay VS, Lipska BK, Berman KF, Goldberg TE (2001) Prefrontal neurons and the genetics of schizophrenia. Biol Psychiatry 50:825–844PubMedCrossRefGoogle Scholar
  127. Williams HJ, Owen MJ, O’Donovan MC (2009) Schizophrenia genetics: new insights from new approaches. Br Med Bull 91:61–74PubMedCrossRefGoogle Scholar
  128. Winterer G, Konrad A, Vucurevic G, Musso F, Stoeter P, Dahmen N (2008) Association of 5′ end neuregulin-1 (NRGI) gene variation with subcortical medial frontal microstructure in humans. Neuroimage 40:712–718PubMedCrossRefGoogle Scholar
  129. Zinkstok J, Schmitz N, van Amelsvoort T, Moeton M, Baas F, Linszen D (2008) Genetic variation in COMT and PRODH is associated with brain anatomy in patients with schizophrenia. Genes Brain Behav 7:61–69PubMedGoogle Scholar
  130. Zuliani R, Moorhead TWJ, Job D, McKirdy J, Sussmann JED, Johnstone EC, Lawrie SM, Brambilla P, Hall J, McIntosh AM (2009) Genetic variation in the G72 (DAOA) gene affects temporal lobe and amygdala structure in subjects affected by bipolar disorder. Bipolar Disord 11:621–627PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Yoanna Arlina Kurnianingsih
    • 1
    • 2
  • Carissa Nadia Kuswanto
    • 1
  • Roger S. McIntyre
    • 3
  • Anqi Qiu
    • 4
  • Beng Choon Ho
    • 5
  • Kang Sim
    • 1
  1. 1.Institute of Mental HealthWoodbridge HospitalSingaporeSingapore
  2. 2.School of Biological SciencesNanyang Technological UniversitySingaporeSingapore
  3. 3.University Health Network, University of TorontoTorontoCanada
  4. 4.Department of Bioengineering/Clinical Imaging Research CenterNational University of SingaporeSingaporeSingapore
  5. 5.Department of PsychiatryUniversity of IowaIowa CityUSA

Personalised recommendations