Journal of Neural Transmission

, Volume 119, Issue 2, pp 211–223 | Cite as

Kynurenines and intestinal neurotransmission: the role of N-methyl-d-aspartate receptors

  • József Kaszaki
  • Dániel Érces
  • Gabriella Varga
  • Andrea Szabó
  • László Vécsei
  • Mihály Boros
Basic Neurosciences, Genetics and Immunology - Review article

Abstract

Gastrointestinal neuroprotection involves the net effect of many mechanisms which protect the enteral nervous system and its cells from death, dysfunction or degeneration. Neuroprotection is also a therapeutic strategy, aimed at slowing or halting the progression of primary neuronal loss following acute or chronic diseases. The neuroprotective properties of a compound clearly have implications for an understanding of the mechanism of dysfunctions and for therapeutic approaches in a number of gastrointestinal diseases.

This paper focused on the roles of glutamate and N-methyl-d-aspartate (NMDA) receptors in the intrinsic neuronal control of gastrointestinal motility; the consequences of inflammation on gastrointestinal motility changes; and the involvement of tryptophan metabolites (especially kynurenic acid) in the regulatory function of the enteral nervous system and the modulation of the inflammatory response. Common features in the mechanisms of action, illustrative evidence from animal models, and experimental neuroprotective therapies making use of the currently available possibilities are also discussed.

Overall, the evidence suggests that gastrointestinal neuroprotection against inflammation and glutamate-induced neurotoxicity may be mediated synergistically through the blockade of NMDA receptors and the inhibition of neuronal nitric oxide synthase activity and xanthine oxidoreductase-dependent superoxide production. These components are likewise significant factors in the pathomechanism of gastrointestinal inflammatory diseases and inflammation-linked motility alterations. Inhibition of the enteric NMDA receptors by kynurenic acid or its analogues may provide a novel option via which to influence intestinal hypermotility and inflammatory processes simultaneously.

Keywords

Intestinal motility N-methyl-d-aspartate receptors Inflammation Kynurenic acid 

References

  1. Bari F, Nagy K, Guidetti P, Schwarcz R, Busija DW, Domoki F (2006) Kynurenic acid attenuates NMDA-induced pial arteriolar dilation in newborn pigs. Brain Res 1069:39–46. doi:10.1016/j.brainres.2005.11.033 PubMedCrossRefGoogle Scholar
  2. Barth MC, Ahluwalia N, Anderson TJ, Hardy GJ, Sinha S, Alvarez-Cardona JA, Pruitt IE, Rhee EP, Colvin RA, Gerszten RE (2009) Kynurenic acid triggers firm arrest of leukocytes to vascular endothelium under flow conditions. J Biol Chem 284:19189–19195. doi:10.1074/jbc.M109.024042 PubMedCrossRefGoogle Scholar
  3. Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA (1990) Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci USA 87:1620–1624PubMedCrossRefGoogle Scholar
  4. Bolton SJ, Perry VH (1998) Differential blood–brain barrier breakdown and leucocyte recruitment following excitotoxic lesions in juvenile and adult rats. Exp Neurol 154:231–240. doi:10.1006/exnr.1998.6927 PubMedCrossRefGoogle Scholar
  5. Boughton-Smith NK (1994) Pathological and therapeutic implications for nitric oxide in inflammatory bowel disease. J R Soc Med 87:312–314PubMedGoogle Scholar
  6. Choi DW, Koh JY, Peters S (1988) Pharmacology of glutamate neurotoxicity in cortical cell culture: attenuation by NMDA antagonists. J Neurosci 8:185–196PubMedGoogle Scholar
  7. Christmas DM, Badawy AA, Hince D, Davies SJ, Probert C, Creed T, Smithson J, Afzal M, Nutt DJ, Potokar JP (2010) Increased serum free tryptophan in patients with diarrhea-predominant irritable bowel syndrome. Nutr Res 30:678–688. doi:10.1016/j.nutres.2010.09.009 PubMedCrossRefGoogle Scholar
  8. Ciorba MA, Bettonville EE, McDonald KG, Metz R, Prendergast GC, Newberry RD, Stenson WF (2010) Induction of IDO-1 by immunostimulatory DNA limits severity of experimental colitis. J Immunol 184:3907–3916. doi:10.4049/jimmunol.0900291 PubMedCrossRefGoogle Scholar
  9. Cosentino M, Marino F, De Ponti F, Giaroni C, Somaini L, Leoni O, Lecchini S, Frigo G (1995) Tonic modulation of neurotransmitter release in the guinea-pig myenteric plexus: effect of mu and kappa opioid receptor blockade and of chronic sympathetic denervation. Neurosci Lett 194:185–188. doi:10.1016/0304-3940(95)11757-N PubMedCrossRefGoogle Scholar
  10. Costa M, Brookes SJH, Steele PA, Gibbins I, Burcher E, Kandiah CJ (1996) Neurochemical classification of myenteric neurones in the guinea-pig ileum. Neuroscience 75:949–967. doi:10.1016/0306-4522(96)00275-8 PubMedCrossRefGoogle Scholar
  11. Coutinho SV, Meller ST, Gebhart GF (1996) Intracolonic zymosan produces visceral hyperalgesia in the rat that is mediated by spinal NMDA and non-NMDA receptors. Brain Res 736:7–15. doi:10.1016/0006-8993(96)00661-0 PubMedCrossRefGoogle Scholar
  12. Coyle JT, Puttfarcken P (1993) Oxidative stress, glutamate, and neurodegenerative disorders. Science 262:689–695. doi:10.1126/science.7901908 PubMedCrossRefGoogle Scholar
  13. Cull-Candy S, Brickley S, Farrant M (2001) NMDA receptor subunits: diversity, development and disease. Curr Opin Neurobiol 11:327–335. doi:10.1016/S0959-4388(00)00215-4 PubMedCrossRefGoogle Scholar
  14. Davenport WW (1978) A digest of digestion. Year Book Medical Publishers, ChicagoGoogle Scholar
  15. Ekblad E, Alm P, Sundler F (1994) Distribution, origin and projections of nitric oxide synthase-containing neurones in gut and pancreas. Neuroscience 63:233–248. doi:10.1016/0306-4522(94)90019-1 PubMedCrossRefGoogle Scholar
  16. Faden AI, Demediuk P, Panter SS, Vink R (1989) The role of excitatory amino acids and NMDA receptors in traumatic brain injury. Science 244:798–800. doi:10.1126/science.2567056 PubMedCrossRefGoogle Scholar
  17. Forrest CM, Youd P, Kennedy A, Gould SR, Darlington LG, Stone TW (2002) Purine, kynurenine, neopterin and lipid peroxidation levels in inflammatory bowel disease. J Biomed Sci 9:436–442. doi:10.1007/BF02256538 PubMedCrossRefGoogle Scholar
  18. Furness JB (2000) Types of neurones in the enteric nervous system. J Auton Nerv Syst 81:87–96. doi:10.1016/S0165-1838(00)00127-2 PubMedCrossRefGoogle Scholar
  19. Furness JB (2006) The enteric nervous system. Blackwell, OxfordGoogle Scholar
  20. Furness JB (2008) The enteric nervous system: normal functions and enteric neuropathies. Neurogastroenterol Motil 20:32–38. doi:10.1111/j.1365-2982.2008.01094.x PubMedCrossRefGoogle Scholar
  21. Furness JB, Young HM, Pompolo S, Bornstein JC, Kunze WAA, McConalogue K (1995) Plurichemical transmission and chemical coding of neurones in the digestive tract. Gastroenterology 108:554–563. doi:10.1016/0016-5085(95)90086-1 PubMedCrossRefGoogle Scholar
  22. Furness JB, Kunze WA, Bertrand PP, Clerc N, Bornstein JC (1998) Intrinsic primary afferent neurones of the intestine. Prog Neurobiol 54:1–18. doi:10.1016/S0301-0082(97)00051-8 PubMedCrossRefGoogle Scholar
  23. Furness JB, Jones C, Nurgali K, Clerc N (2004) Intrinsic primary afferent neurones and nerve circuits within the intestine. Prog Neurobiol 72:143–164. doi:10.1016/j.pneurobio.2003.12.004 PubMedCrossRefGoogle Scholar
  24. Giaroni C, Zanetti E, Chiaravalli AM, Albarello L, Dominioni L, Capella C, Lecchini S, Frigo G (2003) Evidence for a glutamatergic modulation of the cholinergic function in the human enteric nervous system via NMDA receptors. Eur J Pharmacol 476:63–69. doi:10.1016/S0014-2999(03)02147-2 PubMedCrossRefGoogle Scholar
  25. Grundy D, Schemann M (2005) Enteric nervous system. Curr Opin Gastroenterol 21:176–182PubMedCrossRefGoogle Scholar
  26. Gurung YB, Shimizu Y, Shiina T, Mahmoud ME, Saito S, Takewaki T (2007) Impairment and restoration of spontaneous contractile activity of longitudinal smooth muscles in the TNBS-inflamed hamster distal colon. Biomed Res 28:301–308. doi:10.2220/biomedres.28.301 PubMedCrossRefGoogle Scholar
  27. Hebeiss K, Kilbinger H (1996) Differential effects of nitric oxide donors on basal and electrically evoked release of acetylcholine from guinea-pig myenteric neurones. Br J Pharmacol 118:2073–2078PubMedGoogle Scholar
  28. Hellström PM, Al-Saffar A, Ljung T, Theodorsson E (1997) Endotoxin actions on myoelectric activity, transit, and neuropeptides in the gut. Role of nitric oxide. Dig Dis Sci 42:1640–1651. doi:10.1023/A:1018897028463 PubMedCrossRefGoogle Scholar
  29. Herbert A, Ng H, Jessup W, Kockx M, Cartland S, Thomas SR, Hogg PJ, Wargon O (2011) Hypoxia regulates the production and activity of glucose transporter-1 and indoleamine 2,3-dioxygenase in monocyte-derived endothelial-like cells: possible relevance to infantile haemangioma pathogenesis. Br J Dermatol 164:308–315. doi:10.1111/j.1365-2133.2010.10086.x PubMedCrossRefGoogle Scholar
  30. Heyes MP, Lackner A (1990) Increased cerebrospinal fluid quinolinic acid, kynurenic acid, and l-kynurenine in acute septicemia. J Neurochem 55:338–341. doi:10.1111/j.1471-4159.1990.tb08857.x PubMedCrossRefGoogle Scholar
  31. Heyes MP, Brew BJ, Saito K, Quearry BJ, Price RW, Lee K, Bhalla RB, Der M, Markey SP (1992) Inter-relationships between quinolinic acid, neuroactive kynurenines, neopterin and beta 2-microglobulin in cerebrospinal fluid and serum of HIV-1-infected patients. J Neuroimmunol 40:71–80. doi:10.1016/0165-5728(92)90214-6 PubMedCrossRefGoogle Scholar
  32. Hosseini JM, Goldhill JM, Bossone C, Piñeiro-Carrero V, Shea-Donohue T (1999) Progressive alterations in circular smooth muscle contractility in TNBS-induced colitis in rats. Neurogastroenterol Motil 11:347–356. doi:10.1046/j.1365-2982.1999.00165.x PubMedCrossRefGoogle Scholar
  33. Jones M, Dilley JB, Drossmann D, Crowell MD (2006) Brain–gut connections in functional GI disorders: anatomic and physiologic relationships. Neurogastroenterol Motil 18:91–103. doi:10.1111/j.1365-2982.2005.00730.x PubMedCrossRefGoogle Scholar
  34. Jung ID, Lee CM, Jeong YI, Lee JS, Park WS, Han J, Park YM (2007) Differential regulation of indoleamine 2,3-dioxygenase by lipopolysaccharide and interferon gamma in murine bone marrow derived dendritic cells. FEBS Lett 581(7):1449–1456 doi:10.1016/j.febslet.2007.02.073 Google Scholar
  35. Jung ID, Lee MG, Chang JH, Lee JS, Jeong YI, Lee CM, Park WS, Han J, Seo SK, Lee SY, Park YM (2009) Blockade of indoleamine 2, 3-dioxygenase protects mice against lipopolysaccharide-induced endotoxin shock. J Immunol 182:3146–3154. doi:10.4049/jimmunol.0803104 PubMedCrossRefGoogle Scholar
  36. Kalff JC, Turler A, Schwarz NT, Schraut WH, Lee KKW, Tweardy DJ, Billiar TR, Simmons RL, Bauer AJ (2003) Intra-abdominal activation of a local inflammatory response within the human muscularis externa during laparotomy. Ann Surg 237:301–315. doi:10.1097/01.SLA.0000055742.79045.7E PubMedGoogle Scholar
  37. Kaszaki J, Budai D, Őry Z, Nagy S, Petri G (1987) Examination of cholinerg mechanisms in experimental mechanical ileus. Kísérletes Orvostudomány (in Hungarian) 3:302–310Google Scholar
  38. Kaszaki J, Palásthy Z, Érczes D, Rácz A, Torday C, Varga G, Vécsei L, Boros M (2008) Kynurenic acid inhibits intestinal hypermotility and xanthine oxidase activity during experimental colon obstruction in dogs. Neurogastroenterol Motil 20:53–62 doi:10.1111/j.1365-2982.2007.00989.x Google Scholar
  39. Kawasaki H, Morooka T, Shimohama S, Kimura J, Hirano T, Gotoh Y, Nishida E (1997) Activation and involvement of p38 mitogen-activated protein kinase in glutamate-induced apoptosis in rat cerebellar granule cells. J Biol Chem 272:18518–18521. doi:10.1074/jbc.272.30.18518 PubMedCrossRefGoogle Scholar
  40. Kessler M, Terramani T, Lynch G, Baudry M (1989) A glycine site associated with N-methyl-d-aspartic acid receptors: characterization and identification of a new class of antagonists. J Neurochem 52:1319–1328. doi:10.1111/j.1471-4159.1989.tb01881.x PubMedCrossRefGoogle Scholar
  41. Keszthelyi D, Troost FJ, Masclee AAM (2009) Understanding the role of tryptophan and serotonin metabolism in gastrointestinal function. Neurogastroenterol Motil 21:1239–1249. doi:10.1111/j.1365-2982.2009.01370.x PubMedCrossRefGoogle Scholar
  42. Kirchgessner AL (2001) Glutamate in the enteric nervous system. Curr Opin Pharmacol 1:591–596. doi:10.1016/S1471-4892(01)00101-1 PubMedCrossRefGoogle Scholar
  43. Kirchgessner AL, Liu MT, Alcantara F (1997) Excitotoxicity in the enteric nervous system. J Neurosci 17:8804–8816PubMedGoogle Scholar
  44. Kiss C, Vécsei L (2005) Neuroprotection and the kynurenine system. In: Vécsei L (ed) Kynurenines in the brain: from experiment to clinics. Nova Sciences Publishers, New York, pp 173–191Google Scholar
  45. Klivényi P, Toldi J, Vécsei L (2004) Kynurenines in neurdegenerative disorders: therapeutic consideration. In: Vécsei L (ed) Frontiers in Clinical Neuroscience: Neurodegeneration and neuroprotection. Adv Exp Med Biol 541 Kluwer, New York, pp169–183Google Scholar
  46. Knyihár-Csillik E, Mihály A, Krisztin-Peva B, Robotka H, Szatmári I, Fülöp F, Toldi J, Csillik B, Vécsei L (2008) The kynurenate analog SZR-72 prevents the nitroglycerol-induced increase of c-fos immunoreactivity in the rat caudal trigeminal nucleus: Comparative studies of the effects of SZR-72 and kynurenic acid. Neurosci Res 61:429–432. doi:10.1016/j.neures.2008.04.009 PubMedCrossRefGoogle Scholar
  47. Kohjitani A, Funahashi M, Miyawaki T, Hanazaki M, Matsuo R, Shimada M (2005) Peripheral N-methyl-d-aspartate receptors modulate nonadrenergic noncholinergic jower esophageal sphincter relaxation in rabbits. Anesth Analg 101:1681–1688. doi:10.1213/01.ANE.0000184137.37687.B7 PubMedCrossRefGoogle Scholar
  48. Kornhuber J, Mack-Burkhardt F, Riederer P, Hebenstreit GF, Reynolds GP, Andrews HB, Beckmann H (1989) [3H]MK-801 binding sites in postmortem brain regions of schizophrenic patients. J Neural Transm 77(2–3):231–236PubMedCrossRefGoogle Scholar
  49. Kornhuber J, Bormann J, Hübers M, Rusche K, Riederer P (1991) Effects of the 1-amino-adamantanes at the MK-801-binding site of the NMDA-receptor-gated ion channel: a human postmortem brain study. Eur J Pharmacol 206(4):297–300. doi:10.1016/0922-4106(91)90113-V PubMedCrossRefGoogle Scholar
  50. Kunze WAA, Furness JB (1999) The enteric nervous system and regulation of intestinal motility. Annu Rev Physiol 61:117–142. doi:10.1146/annurev.physiol.61.1.117 PubMedCrossRefGoogle Scholar
  51. Lafon-Cazal M, Pietri S, Culcasi M, Bockaert J (1993) NMDA dependent superoxide production and neurotoxicity. Nature 364:367–535. doi:10.1038/364535a0 CrossRefGoogle Scholar
  52. Lakhan SE, Kirchgessner AL (2010) Neuroinflammation in inflammatory bowel disease. J Neuroinflamm 7:37–49. doi:10.1186/1742-2094-7-37 CrossRefGoogle Scholar
  53. Langley JN (1921) The autonomic nervous system. Heffner, LondonGoogle Scholar
  54. Lee HT, Hennig GW, Fleming NW et al (2007) Septal interstitial cells of Cajal conduct pacemaker activity to excite muscle bundles in human jejunum. Gastroenterology 3:907–917. doi:10.1053/j.gastro.2007.06.024 CrossRefGoogle Scholar
  55. Li J, McRoberts JA, Ennes HS et al (2006) Experimental colitis modulates the functional properties of NMDA receptors in dorsal root ganglia neurones. Am J Physiol Gastrointest Liver Physiol 291:219–228. doi:10.1152/ajpgi.00097 CrossRefGoogle Scholar
  56. Linke N, Bódi N, Resch BE, Fekete É, Bagyánszki M (2008) Developmental pattern of three vesicular glutamate transporters in the myenteric plexus of the human fetal small intestine. Histol Histopathol 23:979–986PubMedGoogle Scholar
  57. Liu MT, Rothstein JD, Gershon MD, Kirchgessner AL (1997) Glutamatergic enteric neurones. J Neurosc 17:4764–4784Google Scholar
  58. Maes M, Mihaylova I, Ruyter MD, Kubera M, Bosmans E (2007) The immune effects of TRYCATs (tryptophan catabolites along the IDO pathway): relevance for depression—and other conditions characterized by tryptophan depletion induced by inflammation. Neuro Endocrinol 28:826–831Google Scholar
  59. Maric D, Liu Q, Grant MG et al (2000) Functional ionotropic glutamate receptors emerge during terminal cell division and early neuronal differentiation of rat neuroepithelial cells. J Neurosci Res 61:652–662. doi:10.1002/1097-4547(20000915)61:6<652:AID-JNR9>3.0.CO;2-J PubMedCrossRefGoogle Scholar
  60. Milusheva EA, Kuneva VI, Itzev DE, Kortezova NI, Sperlagh B, Mizhorkova ZN (2005) Glutamate stimulation of acetylcholine release from myenteric plexus is mediated by endogenous nitric oxide. Brain Res Bull 66:229–234. doi:10.1016/j.brainresbull.2005.05.011 PubMedCrossRefGoogle Scholar
  61. Mizhorkova Z, Batova M, Milusheva M (2001) Participation of endogenous nitric oxide in the effect of hypoxia in vitro on neuro-effector transmission in guinea pig ileum. Brain Res Bull 55:453–458. doi:10.1016/S0361-9230(01)00533-0 PubMedCrossRefGoogle Scholar
  62. Moroni F, Luzzi S, Franchi-Micheli S, Ziletti L (1986) The presence of N-methyl-d-aspartate-type receptors for glutamic acid in the guinea pig myenteric plexus. Neurosci Lett 68:57–62. doi:10.1016/0304-3940(86)90229-6 PubMedCrossRefGoogle Scholar
  63. Neurath MF, Fuss I, Pasparakis M, Alexopoulou L, Haralambous S, Meyer zum Büschenfelde KH, Strober W, Kollias G (1997) Predominant pathogenic role of tumor necrosis factor in experimental colitis in mice. Eur J Immunol 27:1743–1750. doi:10.1002/eji.1830270722 PubMedCrossRefGoogle Scholar
  64. Ozawa S, Kamiya H, Tsuzuki K (1998) Glutamate receptors in the mammalian central nervous system. Prog Neurobiol 54:581–618. doi:10.1016/S0301-0082(97)00085-3 PubMedCrossRefGoogle Scholar
  65. Palásthy Z, Kaszaki J, Lázár J, Nagy S, Boros M (2006) Intestinal nitric oxide synthase activity changes during experimental colon obstruction. Scand J Gastroenterol 41:910–918. doi:10.1080/00365520600548966 PubMedCrossRefGoogle Scholar
  66. Paoletti P, Neyton J (2007) NMDA receptor subunits: function and pharmacology. Curr Opin Pharmacol 7:39–47. doi:10.1016/j.coph.2006.08.011 PubMedCrossRefGoogle Scholar
  67. Parsons CG, Danysz W, Quack G (1999) Memantine is a clinically well tolerated N-methyl-d-aspartate (NMDA) receptor antagonist—a review of preclinical data. Neuropharmacology 38:735–767. doi:10.1016/S0028-3908(99)00019-2 PubMedCrossRefGoogle Scholar
  68. Pellegrin K, Neurauter G, Wirleitner B, Fleming AW, Peterson VM, Fuchs D (2005) Enhanced enzymatic degradation of tryptophan by indoleamine 2, 3-dioxygenase contributes to the tryptophan-deficient state seen after major trauma. Shock 23:209–215PubMedGoogle Scholar
  69. Pou S, Pou WS, Bredt DS, Snyder SH, Rosen GM (1992) Generation of superoxide by purified brain nitric oxide synthase. J Biol Chem 267:24173–24176PubMedGoogle Scholar
  70. Price WG, Ahier GR, Middlemiss ND, Singh L, Tricklebank MD, Wong EHF (1988) In vivo labelling of the NMDA receptor channel complex by [3H]MK-801. Eur J Pharmacol 158:279–282. doi:10.1016/0014-2999(88)90080-5 PubMedCrossRefGoogle Scholar
  71. Qu XW, Wang H, Rozenfeld RA, Huang W, Hsueh W (1999) Type I nitric oxide synthase (NOS) is the predominant NOS in rat small intestine. Regulation by platelet-activating factor. Biochim Biophys Acta 1451:211–217. doi:10.1016/S0167-4889(99)00076-2 PubMedCrossRefGoogle Scholar
  72. Rao SS, Holdsworth CD, Read NW (1988) Symptoms and stool patterns in patients with ulcerative colitis. Gut 29:342–345. doi:10.1136/gut.29.3.342 PubMedCrossRefGoogle Scholar
  73. Sanders KM, Ward SM (2006) Interstitial cells of Cajal: a new perspective on smooth muscle function. J Physiol 576:721–726. doi:10.1113/jphysiol.2006.115279 PubMedCrossRefGoogle Scholar
  74. Sas K, Robotka H, Toldi J, Vécsei L (2007) Mitochondria, metabolic disturbances, oxidative stress and the kynurenine system, with focus on neurodegenerative disorders. J Neurol Sci 257:221–239. doi:10.1016/j.jns.2007.01.033 PubMedCrossRefGoogle Scholar
  75. Sattler R, Tymianski M (2001) Molecular mechanisms of glutamate receptor-mediated excitotoxic neuronal cell death. Mol Neurobiol 24:107–129. doi:10.1385/MN:24:1-3:107 PubMedCrossRefGoogle Scholar
  76. Schefold JC, Zeden JP, Fotopoulou C, von Haehling S, Pschowski R, Hasper D, Volk HD, Schuett C, Reinke P (2009) Increased indoleamine 2,3-dioxygenase (IDO) activity and elevated serum levels of tryptophan catabolites in patients with chronic kidney disease: a possible link between chronic inflammation and uraemic symptoms. Nephrol Dial Transplant 24:1901–1908. doi:10.1093/ndt/gfn739 PubMedCrossRefGoogle Scholar
  77. Schröcksnadel K, Wirleitner B, Winkler C, Fuchs D (2006) Monitoring tryptophan metabolism in chronic immune activation. Clinica Chimica Acta 364:82–90. doi:10.1016/j.cca.2005.06.013 CrossRefGoogle Scholar
  78. Shannon HE, Sawyer BD (1989) Glutamate receptors of the N-methyl-d-aspartate subtype in the myenteric plexus of the guinea pig ileum. J Pharmacol Exp 251:518–523Google Scholar
  79. Simon RP, Young RS, Stout S, Cheng J (1986) Inhibition of excitatory neurotransmission with kynurenate reduces brain edema in neonatal anoxia. Neurosci Lett 71:361–364. doi:10.1016/0304-3940(86)90648-8 PubMedCrossRefGoogle Scholar
  80. Sinský M, Donnerer J (1998) Evidence for a neurotransmitter role of glutamate in guinea pig myenteric plexus neurones. Neurosci Lett 258:109–112. doi:10.1016/S0304-3940(98)00866-0 PubMedCrossRefGoogle Scholar
  81. Smith TK, Reed JB, Sanders KM (1987) Origin and propagation of electrical slow waves in circular muscle of canine proximal colon. Am J Physiol 252:C215–C224PubMedGoogle Scholar
  82. Sofic E, Halket J, Przyborowska A, Riederer P, Beckmann H, Sandler M, Jellinger K (1989) Brain quinolinic acid in Alzheimer’s dementia. Eur Arch Psychiatry Neurol Sci 239(3):177–179. doi:10.1007/BF01739651 PubMedCrossRefGoogle Scholar
  83. Stein J, Ries J, Barrett KE (1998) Disruption of intestinal barrier function associated with experimental colitis: possible role of mast cells. Am J Physiol 274:203–209Google Scholar
  84. Stone TW (1993) Neuropharmacology of quinolinic and kynurenic acids. Pharmacol Rev 45:309–379PubMedGoogle Scholar
  85. Tan PH, Yang LC, Chiang PT, Jang JSC, Chung HC, Kuo CH (2008) Inflammation-induced up-regulation of ionotropic glutamate receptor expression in human skin. Br J Anaesth 100:380–384. doi:10.1093/bja/aem398 PubMedCrossRefGoogle Scholar
  86. Taylor MW, Feng GS (1991) Relationship between interferon-gamma, indoleamine 2,3-dioxygenase, and tryptophan catabolism. FASEB J 5:2516–2522PubMedGoogle Scholar
  87. Thomson L, Robinson TL, Lee JCF, Farraway LA, Hughes MJ, Andrews DW, Huizinga JD (1998) Interstitial cells of Cajal generate a rhythmic pacemaker current. Nature Med 4:848–851. doi:10.1038/nm0798-848 CrossRefGoogle Scholar
  88. Tiszlavicz Z, Németh B, Fülöp F, Vécsei L, Tápai K, Ocsovszky I, Mándi Y (2011) Different inhibitory effects of kynurenic acid and a novel kynurenic acid analogue on tumour necrosis factor-α (TNF-α) production by mononuclear cells, HMGB1 production by monocytes and HNP1-3 secretion by neutrophils. Naunyn-Schmied Arch Pharmacol doi:10.1007/s00210-011-0605-2
  89. Törnblom H, Abrahamsson H, Barbara G, Hellström PM, Lindberg G, Nyhlin H, Ohlsson B, Simrèn M, Sjölund K, Sjövall H, Schmidt PT, Ohman L (2005) Inflammation as a cause of functional bowel disorders. Scand J Gastroenterol 40:1140–1148. doi:10.1080/00365520510023657 PubMedCrossRefGoogle Scholar
  90. Torres MI, López-Casado MA, Lorite P, Ríos A (2007) Tryptophan metabolism and indoleamine 2,3-dioxygenase expression in coeliac disease. Clin Exp Immunol 148:419–424. doi:10.1111/j.1365-2249.2007.03365.x PubMedCrossRefGoogle Scholar
  91. Turski L, Turski WA (1993) Towards an understanding of the role of glutamate in neurodegenerative disorders: energy metabolism and neuropathology. Cell Mol Life Sci 49:1064–1072. doi:10.1007/BF01929915 CrossRefGoogle Scholar
  92. Varga G, Érces D, Fazekas B, Fülöp M, Kovács T, Kaszaki J, Fülöp F, Vécsei L, Boros M (2010) N-Methyl-d-aspartate receptor antagonism decreases motility and inflammatory activation in the early phase of acute experimental colitis in the rat. Neurogastroenterol Motil 22:217–225. doi:10.1111/j.1365-2982.2009.01390.x PubMedCrossRefGoogle Scholar
  93. Wang J, Simonavicius N, Wu X, Swaminath G, Reagan J, Tian H, Ling L (2006) Kynurenic acid as a ligand for orphan G protein-coupled receptor GPR35. J Biol Chem 281:22021–22028. doi:10.1074/jbc.M603503200 PubMedCrossRefGoogle Scholar
  94. Wang Y, Liu H, McKenzie G, Witting PK, Stasch JP, Hahn M, Changsirivathanathamrong D, Wu BJ, Ball HJ, Thomas SR, Kapoor V, Celermajer DS, Mellor AL, Keaney JF Jr, Hunt NH, Stocker R (2010) Kynurenine is an endothelium-derived relaxing factor produced during inflammation. Nat Med 16:279–285. doi:10.1038/nm.2092 PubMedCrossRefGoogle Scholar
  95. Ward SM, Sanders KM (2006) Involvement of intramuscular interstitial cells of Cajal in neuroeffector transmission in the gastrointestinal tract. J Physiol 576:675–682. doi:10.1113/jphysiol.2006.117390 PubMedCrossRefGoogle Scholar
  96. Ward SM, Beckett EAH, Wang XY, Baker F, Khoyi M, Sanders KM (2000) Interstitial cells of Cajal mediate cholinergic neurotransmission from enteric motor neurones. J Neurosci 20:1393–1403PubMedGoogle Scholar
  97. Weinberg RJ (1999) Glutamate: an excitatory neurotransmitter in the mammalian CNS. Brain Res Bull 50:353–354. doi:10.1016/S0361-9230(99)00102-1 PubMedCrossRefGoogle Scholar
  98. Wiley JW, Lu YX, Owyang C (1991) Evidence for a glutamatergic neural pathway in the myenteric plexus. Am J Physiol 261:693–700Google Scholar
  99. Wirleitner B, Rudzite V, Neurauter G, Murr C, Kalnins U, Erglis A, Trusinskis K, Fuchs D (2003) Immune activation and degradation of tryptophan in coronary heart disease. Eur J Clin Invest 33:550–554. doi:10.1046/j.1365-2362.2003.01186.x PubMedCrossRefGoogle Scholar
  100. Won KJ, Suzuki T, Hori M, Ozaki H (2006) Motility disorder in experimentally obstructed intestine: relationship between muscularis inflammation and disruption of the ICC network. Neurogastroenterol Motil 18:53–61. doi:10.1111/j.1365-2982.2005.00718.x PubMedCrossRefGoogle Scholar
  101. Wong EH, Kemp JA, Priestley T, Knight AR, Woodruff GN, Iversen LL (1986) The anticonvulsant MK-801 is a potent N-methyl-d-aspartate antagonist. Proc Natl Acad Sci USA 83:7104–7108. doi:10.1073/pnas.83.18.7104 PubMedCrossRefGoogle Scholar
  102. Yamakura T, Shimoji K (1999) Subunit- and site-specific pharmacology of the NMDA receptor channel. Prog Neurobiol 59:279–298. doi:10.1016/S0301-0082(99)00007-6 PubMedCrossRefGoogle Scholar
  103. Yanagida H, Yanase H, Sanders KM, Ward SM (2004) Intestinal surgical resection disrupts electrical rhythmicity, neural responses, and interstitial cell networks. Gastroenterology 127:1748–1759. doi:10.1053/j.gastro.2004.09.053 PubMedCrossRefGoogle Scholar
  104. Yoshida R, Hayaishi O (1978) Induction of pulmonary indoleamine 2,3-dioxygenase by intraperitoneal injection of bacterial lipopolysaccharide. Proc Natl Acad Sci USA 75:3998–4000. doi:10.1073/pnas.75.8.3998 PubMedCrossRefGoogle Scholar
  105. Zeden JP, Fusch G, Holtfreter B, Schefold JC, Reinke P, Domanska G, Haas JP, Gruendling M, Westerholt A, Schuett C (2010) Excessive tryptophan catabolism along the kynurenine pathway precedes ongoing sepsis in critically ill patients. Anaesth Intensive Care 38:307–316PubMedGoogle Scholar
  106. Zhou Q, Caudle RM, Price DD, Del Valle-Pinero AY, Verne GN (2006) Selective up-regulation of NMDA-NR1 receptor expression in myenteric plexus after TNBS induced colitis in rats. Molecular Pain 2:3. doi:10.1186/1744-8069-2-3 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • József Kaszaki
    • 1
  • Dániel Érces
    • 1
  • Gabriella Varga
    • 1
  • Andrea Szabó
    • 1
  • László Vécsei
    • 2
  • Mihály Boros
    • 1
  1. 1.Institute of Surgical Research, Albert Szent-Györgyi Medical and Pharmaceutical CentreUniversity of SzegedSzegedHungary
  2. 2.Department of Neurology, Albert Szent-Györgyi Medical and Pharmaceutical CentreUniversity of SzegedSzegedHungary

Personalised recommendations