Journal of Neural Transmission

, Volume 118, Issue 11, pp 1547–1557

Valeriana officinalis ameliorates vacuous chewing movements induced by reserpine in rats

  • Romaiana Picada Pereira
  • Roselei Fachinetto
  • Alessandro de Souza Prestes
  • Caroline Wagner
  • Jéssie Haigert Sudati
  • Aline Augusti Boligon
  • Margareth Linde Athayde
  • Vera Maria Morsch
  • João Batista Teixeira Rocha
Basic Neurosciences, Genetics and Immunology - Original Article
  • 225 Downloads

Abstract

Oral movements are associated with important neuropathologies as Parkinson’s disease and tardive dyskinesia. However, until this time, there has been no known efficacious treatment, without side effects, for these disorders. Thus, the aim of the present study was to investigate the possible preventive effects of V. officinalis, a phytotherapic that has GABAergic and antioxidant properties, in vacuous chewing movements (VCMs) induced by reserpine in rats. Adult male rats were treated with reserpine (1 mg/kg, s.c.) and/or with V. officinalis (in the drinking water, starting 15 days before the administration of the reserpine). VCMs, locomotor activity and oxidative stress measurements were evaluated. Furthermore, we carried out the identification of valeric acid and gallic acid by HPLC in the V. officinalis tincture. Our findings demonstrated that reserpine caused a marked increase on VCMs and the co-treatment with V. officinalis was able to reduce the intensity of VCM. Reserpine did not induce oxidative stress in cerebral structures (cortex, hippocampus, striatum and substantia nigra). However, a significant positive correlation between DCF-oxidation (an estimation of oxidative stress) in the cortex and VCMs (p < 0.05) was observed. Moreover, a negative correlation between Na+K+-ATPase activity in substantia nigra and the number of VCMs was observed (p < 0.05). In conclusion, V. officinalis had behavioral protective effect against reserpine-induced VCMs in rats; however, the exact mechanisms that contributed to this effect have not been completely understood.

Keywords

Oral dyskinesia Parkinson’s disease Reserpine Vacuous chewing movements Valeriana officinalis 

Abbreviations

Tardive dyskinesia

TD

Parkinson’s disease

PD

Vacuous chewing movements

VCMs

Orofacial dyskinesia

OD

Monoaminoxidase

MAO

Valeriana officinalis

V. officinalis

Reactive oxygen species

ROS

2′,7′-Dichlorodihydrofluorescein diacetate

DCFH-DA

Thiobarbituric acid reactive substances

TBARS

References

  1. Abílio VC, Vera JAR Jr, Ferreira LSM, Duarte CRM, Carvalho RC, Grassl C, Martins CR, Torres-Leite D, Bignotto M, Tufik S, Ribeiro R de A, Frussa-Filho R (2002) Effects of melatonin on orofacial movements in rats. Psychopharmacology 161:340–347PubMedCrossRefGoogle Scholar
  2. Abílio VC, Araujo CCS, Bergamo M, Calvente PRV, D’Almeida V, Ribeiro R de A, Frussa-Filho R (2003) Vitamin E attenuates reserpine induced oral dyskinesia and striatal GSSG/GSH ratio enhancement in rats. Prog Neuropsychopharmacol Biol Psychiatry 27:109–114PubMedCrossRefGoogle Scholar
  3. Abílio VC, Silva RH, Carvalho RC, Grassl C, Calzavara MB, Registro S, D’Almeida V, Ribeiro R de A, Frussa-Filho R (2004) Important role of striatal catalase in aging- and reserpine-induced oral dyskinesia. Neuropharmacology 47:263–272PubMedCrossRefGoogle Scholar
  4. Abourashed EA, Koetter U, Brattstrom A (2004) In vitro binding experiments with a Valerian, hops and their fixed combination extract (Ze91019) to selected central nervous system receptors. Phytomedicine 11:633–638PubMedCrossRefGoogle Scholar
  5. Aguiar AS Jr, Araújo AL, da-Cunha TR, Speck AE, Ignácio ZM, De-Mello N, Prediger RDS (2009) Physical exercise improves motor and short-term social memory déficits in reserpinized rats. Brain Res Bull 79:452–457PubMedCrossRefGoogle Scholar
  6. Aisen P, Wessling-Resnick M, Leibold EA (1999) Iron metabolism. Curr Opin Chem Biol 3:200–206PubMedCrossRefGoogle Scholar
  7. Andreassen OA, Jorgensen HA (2000) Neurotoxicity associated with neuroleptic induced oral dyskinesias in rats. Implications for tardive dyskinesia? Prog Neurobiol 61:525–541Google Scholar
  8. Araujo NP, Abílio VC, Silva RH, Pereira RC, Carvalho RC, Gonzalez C, Bellot RG, Castro JPMV, Fukushiro DF, Rodrigues MSD, Chinen CC, Frussa-Filho R (2005) Effects of topiramate on oral dyskinesia induced by reserpine. Brain Res Bull 64:331–337CrossRefGoogle Scholar
  9. Arreguin S, Nelson P, Padway S, Shirazi M, Pierpont C (2009) Dopamine complexes of iron in the etiology and pathogenesis of Parkinson’s disease. J Inorg Biochem 103:87–93PubMedCrossRefGoogle Scholar
  10. Ban JY, Nguyen TTH, Lee HJ, Cho SO, Ju HS, Kim JY, Bae KH, Song KS, Seong YH (2008) Neuroprotective properties of gallic acid from Sanguisorbae radix on amyloid β protein (25–35)-induced toxicity in cultured rat cortical. Neurons Biol Pharm Bull 31:149–153CrossRefGoogle Scholar
  11. Baskin P, Salamone J (1993) Vacuous jaw movements in rats induced by acute reserpine administration: interactions with different doses of apomorphine. Pharmacol Biochem Behav 46:793–797PubMedCrossRefGoogle Scholar
  12. Bilska A, Dubiel M (2007) Alpha-lipoic acid differently affects the reserpine-induced oxidative stress in the striatum and prefrontal cortex of rat brain. Neuroscience 146:1758–1771PubMedCrossRefGoogle Scholar
  13. Bove J, Prou D, Perier C, Przedborski S (2005) Toxin-induced models of Parkinson’s disease. NeuroRx 2:484–494PubMedCrossRefGoogle Scholar
  14. Broadhurst PL (1960) Experiments in psychogenetics. In: Eysenk HJ (ed). Experiments in personality. Routledge & Kegan Paul, London, p 76Google Scholar
  15. Burger ME, Audrei A, Callegari L, Athayde FR, Nogueira CW, Zeni G, Rocha JBT (2003) Ebselen attenuates reserpine-induced orofacial dyskinesia and oxidative stress in rat striatum. Prog Neuropsychopharmacol Biol Psychiatry 27:135–140PubMedCrossRefGoogle Scholar
  16. Burger ME, Fachinetto R, Calegari L, Paixão MW, Braga AL, Rocha JBT (2004) Effects on age on orofacial dyskinesia reserpine-induced and possible protection of diphenyl-diselenide. Brain Res Bull 64:339–345PubMedCrossRefGoogle Scholar
  17. Burger ME, Fachineto R, Alves A, Callegari L, Rocha JBT (2005a) Acute reserpine and subchronic haloperidol treatments change synaptosomal brain glutamate uptake and elicit orofacial dyskinesia in rats. Brain Res 1031:202–210PubMedCrossRefGoogle Scholar
  18. Burger ME, Fachineto R, Zeni G, Rocha JBT (2005b) Ebselen attenuates haloperidol induced orofacial dyskinesia and oxidative stress in rat brain. Pharmacol Biochem Behav 81:608–615PubMedCrossRefGoogle Scholar
  19. Busanello A, Peroza LR, Farias LE, Burger ME, Barreto KP, Barbosa NBV, Fachinetto R (2011) Resveratrol protects against a model of vacuous chewing movements induced by reserpine in mice. Behav Pharmacol 22:71–75Google Scholar
  20. Carvalho RC, Silva RH, Abílio VC, Barbosa PN, Frussa-Filho R (2003) Antydiskinetic effects of risperidone on animal models of tardive dyskinesia in mice. Brain Res Bull 60:115–124PubMedCrossRefGoogle Scholar
  21. Castro JPMV, Frussa-Filho R, Fukushiro DF, Silva RH, Medrano WA, Ribeiro R de A, Abílio VC (2006) Effects of baclofen on reserpine-induced vacuous chewing movements in mice. Brain Res Bull 68:436–441PubMedCrossRefGoogle Scholar
  22. Cavadas C, Araujo I, Cotrim MD, Amaral T, Cunha AP, Macedo T, Ribeiro CF (1995) In vitro study on the interaction of Valeriana officinalis L. extracts and their amino acids on GABAA receptor in rat brain. Arzneimittelforschung 45:753–755PubMedGoogle Scholar
  23. Dekeyser J (1991) Excitotoxic mechanisms may be involved in the pathophysiology of tardive-dyskinesia. Clin Neuropharmacol 14:562–565CrossRefGoogle Scholar
  24. Donaire AM, Gil-Saladie D (2001) Progressive primary aphasia associated with corticobasal degeneration. Rev Neurol 32:1051–1054PubMedGoogle Scholar
  25. Egan ME, Apud J, Wyatt RJ (1997) Treatment of tardive dyskinesia. Schizophr Bul 23:583–609Google Scholar
  26. Fachinetto R, Villarinho JG, Wagner C, Pereira RP, Puntel RL, Paixão MW, Braga AL, Calixto JB, Rocha JBT, Ferreira J (2007a) Diphenyl diselenide decreases the prevalence of vacuous chewing movements induced by fluphenazine in rats. Psychopharmacology 194:423–432PubMedCrossRefGoogle Scholar
  27. Fachinetto R, Villarinho JG, Wagner C, Pereira RP, Ávila DS, Burger ME, Calixto JB, Rocha JBT, Ferreira J (2007b) Valeriana officinalis does not alter the orofacial dyskinesia induced by haloperidol in rats: role of dopamine transporter. Prog Neuropsychopharmacol Biol Psychiatry 31:1478–1486PubMedCrossRefGoogle Scholar
  28. Faria RR, Abílio VC, Grassl C, Chinen CC, Ribeiro LT, Castro JPMV, Fukushiro DF, Dutra-Rodrigues MS, Zanier-Gomes PH, Registro S, Carvalho RC, D’Almeida V, Silva RH, Ribeiro R de A, Frussa-Filho R (2005) Beneficial effects of vitamin C and vitamin E on reserpine induced oral dyskinesia in rats: critical role of striatal catalase activity. Neuropharmacology 48:993–1001PubMedCrossRefGoogle Scholar
  29. Fibiger HC, Lloyd KG (1984) Neurobiological substrates of tardive-dyskinesia––the GABA hypothesis. Trends Neurosci 7:462–464CrossRefGoogle Scholar
  30. Fiske CF, Subbarow Y (1925) The colorimetric determination of phosphorus. J Biol Chem 66:375–400Google Scholar
  31. Fugh-Berman A, Cott JM (1999) Dietary supplements and natural products as psychotherapeutic agents. Psychosom Med 61:712–728PubMedGoogle Scholar
  32. Gao XM, Kakigi T, Friedman MB, Tamminga CA (1994) Tiagabine inhibits haloperidol-induced oral dyskinesias in rats. J Neural Transm Gen Sect 95:63–69PubMedCrossRefGoogle Scholar
  33. Houghton PJ (1999) The scientific basis for the reputed activity of valerian. J Pharm Pharmacol 51:505–512PubMedCrossRefGoogle Scholar
  34. Jicha GA, Salomone JD (1991) Vacuous jaw movements and feeding deficits in rats with ventrolateral striatal dopamine depletion: possible relation to parkinsonian symptoms. J Neurosci 11:3822–3829PubMedGoogle Scholar
  35. Kaneda H, Shirakawa O, Dale J, Goodman L, Bachus SE, Tamminga CA (1992) Co-administration of progabide inhibits haloperidol-induced oral dyskinesias in rats. Eur J Pharmacol 121:43–49CrossRefGoogle Scholar
  36. Kulkarni SK, Dhir A (2008) Withania somnifera: an Indian ginseng. Prog Neuropsychopharmacol Biol Psychiatry 32:1093–1105PubMedCrossRefGoogle Scholar
  37. Levine RL, Garland D, Oliver CN, Amici A, Climent I, Lenz AG et al (1990) Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol 86:464–478CrossRefGoogle Scholar
  38. Llorca PM, Chereau I, Bayle FJ, Lancon C (2002) Tardive dyskinesia and antipsychotics: a review. Eur Psychiatry 17:129–138PubMedCrossRefGoogle Scholar
  39. Lohr JB, Kuczenski R, Niculescu AB (2003) Oxidative mechanisms and tardive dyskinesia. CNS Drugs 17:47–62PubMedCrossRefGoogle Scholar
  40. Malva JO, Santos S, Macedo T (2004) Neuroprotective properties of Valeriana officinalis extracts. Neurotox Res 6:131–140PubMedCrossRefGoogle Scholar
  41. McCabe S (2002) Complimentary herbal and alternative drugs in clinical practice. Perspect Psychiatr Care 38:98–107PubMedCrossRefGoogle Scholar
  42. Mennini T, Bernasconi P, Bombardelli E, Morazzoni P (1993) In vitro study on the interaction of extracts and pure compounds from Valeriana officinalis roots with GABA, benzodiazepine and barbiturate receptors in rat brain. Fitoterapia 64:291–300Google Scholar
  43. Morazzoni P, Bombardelli E (1995) Valeriana offcinalis: traditional use and recent evaluation of activity. Fitoterapia 66:99–112Google Scholar
  44. Morselli PL, Fournier V, Bossi L, Musch B (1985) Clinical activity of GABA agonists in neuroleptic- and l-dopa-induced dyskinesia. Psychopharmacology 2:128–136Google Scholar
  45. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assay. J Immunol Methods 16:55–63CrossRefGoogle Scholar
  46. Naidu PS, Singh A, Kulkarni SK (2004) Reversal of reserpine-induced orofacial dyskinesia and cognitive dysfunction by quercetin. Pharmacology 70:59–67PubMedCrossRefGoogle Scholar
  47. Naidu PS, Singh A, Kulkarni SK (2006) Effect of Withania somnifera root extract on reserpine-induced orofacial dyskinesia and cognitive dysfunction. Phytother Res 20:140–146PubMedCrossRefGoogle Scholar
  48. Neisewander JL, Lucki I, Mcgonigle P (1991) Neurochemical changes associated with the persistence of spontaneous oral dyskinesia in rats following chronic reserpine treatment. Brain Res 558:27–35PubMedCrossRefGoogle Scholar
  49. Neisewander JL, Castañeda E, Davis DA (1994) Dose-dependent differences in the development of reserpine-induced oral dyskinesia in rats: support for a model of tardive dyskinesia. Psychopharmacology 116:79–84PubMedCrossRefGoogle Scholar
  50. Ohkawa H, Ohishi H, Yagi K (1979) Assay for lipid peroxide in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358PubMedCrossRefGoogle Scholar
  51. Oliveira DM, Barreto G, De Andrade DEV, Saraceno E, Aon-Bertolino L, Capani F, El Bacha RS, Giraldez LD (2009) Cytoprotective effect of Valeriana officinalis extract on an in vitro experimental model of Parkinson disease. Neurochem Res 34:215–220CrossRefGoogle Scholar
  52. Ortiz JG, Nieves-Natal J, Chavez P (1999) Effects of Valeriana officinalis extracts on [3H]flunitrazepam binding, synaptosomal [3H]GABA uptake, and hippocampal [3H]GABA release. Neurochem Res 24:1373–1378Google Scholar
  53. Paille V, Brachet P, Damier P (2004a) Role of nigral lesion in the genesis of dyskinesias in a rat model of Parkinson’s disease. Neuroreport 15:561–564PubMedCrossRefGoogle Scholar
  54. Paille V, Brachet P, Damier P (2004b) Role of nigral lesion in the genesis of dyskinesias in a rat model of Parkinson’s disease. Neuroreport 15:561–564PubMedCrossRefGoogle Scholar
  55. Peixoto MF, Abílio VC, Silva RH, Frussa-Filho R (2003) Effects of valproic acid on an animal model of tardive dyskinesia. Behav Brain Res 142:229–233PubMedCrossRefGoogle Scholar
  56. Peixoto MF, Araujo NP, Silva RH, Castro JPMV, Fukushiro DF, Faria RR, Zanier-Gomes PH, Medrano WA, Frussa-Filho R, Abílio VC (2005) Effects of gabaergic drugs on reserpine-induced oral dyskinesia. Behav Brain Res 160:51–59PubMedCrossRefGoogle Scholar
  57. Pereira RP, Fachinetto R, Prestes AS, Puntel RL, Silva GNS, Heinzmann BM, Boschetti TK, Athayde ML, Burger ME, Morel AF, Morsh VM, Rocha JBT (2009) Antioxidant effects of different extracts from Melissa officinalis, Matricaria recutita and Cymbopogon citrates. Neurochem Res 34:973–983PubMedCrossRefGoogle Scholar
  58. Pérez-Severiano P, Rodríguez-Pérez M, Pedraza-Chaverrí J, Maldonado PD, Medina-Campos ON, Ortíz-Plata A, Sánchez-García A, Villeda-Hernández J, Galván-Arzate S, Aguilera P, Santamaría A (2004) S-Allylcysteine, a garlic-derived antioxidant, ameliorates quinolinic acid-induced neurotoxicity and oxidative damage in rats. Neurochem Int 45:1175–1183PubMedCrossRefGoogle Scholar
  59. Qian ZM, Wang Q, Pu Y (1997) Brain iron and neurological disorders. Chin Med J 110:455–458PubMedGoogle Scholar
  60. Raghavendra V, Naidu PS, Kulkarni SK (2001) Reversal of reserpine induced vacuous chewing movements in rats by melatonin: involvement of peripheral benzodiazepine receptors. Brain Res 904:149–152PubMedCrossRefGoogle Scholar
  61. Salamone JD, Baskin P (1996) Vacuous jaw movements induced by acute reserpine and low-dose apomorphine: possible mode of parkinsonian tremor. Pharmacol Biochem Behav 53:179–183PubMedCrossRefGoogle Scholar
  62. Santos MS, Ferreira F, Cunha AP, Carvalho AP, Macedo T (1994) An aqueous extract of valerian influences the transport of GABA in synaptosomes. Planta Med 60:278–279Google Scholar
  63. Smythies J (1999) The neurotoxicity of glutamate, dopamine, iron and reactive oxygen species: functional interrelationship in health and disease. Neurotoxicol Res 1:27–39CrossRefGoogle Scholar
  64. Sudati JH, Fachinetto R, Pereira RP, Boligon AA, Athayde ML, Soares FA, Barbosa NBV, Rocha JBT (2009) In vitro antioxidant activity of Valeriana officinalis against different neurotoxic agents. Neurochem Res 34:1372–1379PubMedCrossRefGoogle Scholar
  65. Swaiman KF (1991) Hallervorden-Spatz and brain iron metabolism. Arch Neurol 48:1285–1293PubMedGoogle Scholar
  66. Tabach R, Rodrigues E, Carlini EA (2009) Preclinical toxicological assessment of a phytotherapeutic product––CPV (based on dry extracts of Crataegus oxyacantha L., Passiflora incarnata L., and Valeriana officinalis L.). Phytotherapy Res 23:33–40CrossRefGoogle Scholar
  67. Tamminga CA, Crayton JW, Chase TN (1979) Improvement in tardive dyskinesia after muscimol therapy. Arch Gen Psychiatry 36:595–598PubMedGoogle Scholar
  68. Tamminga CA, Thaker GK, Ferraro TN, Hare TA (1983) GABA agonist treatment improves tardive-dyskinesia. Lancet 2:97–98PubMedCrossRefGoogle Scholar
  69. Teixeira AM, Reckziegel P, Muller L, Pereira RP, Roos D, Rocha JBT, Burger ME (2009) Intense exercise potentiates oxidative stress in striatum of reserpine-treated animals. Pharmacol Biochem Behav 92:231–235PubMedCrossRefGoogle Scholar
  70. Thaakur Himabindhu (2009) Effect of alpha lipoic acid on the tardive dyskinesia and oxidative stress induced by haloperidol in rats. J Neural Transm 116:807–814PubMedCrossRefGoogle Scholar
  71. Thevenod F, Friedmann JM (1999) Cadmium-mediated oxidative stress in kidney proximal tubule cells induces degradation of Na+/K+-ATPase through proteasomal and endo-/lysosomal proteolytic pathways. FASEB J 13:1751–1761PubMedGoogle Scholar
  72. Thomas B, Beal MF (2007) Parkinson’s disease. Human Mol Genet 16:R183–R194CrossRefGoogle Scholar
  73. Von der Hude W, Scheutwinkel-Reich M, Braun R, Dittmar W et al (1985) In vitro mutagenicity of valepotriates. Arch Toxicol 56:267–271CrossRefGoogle Scholar
  74. Waddington JL (1990) Spontaneous orofacial movements induced in rodents by very long-term neuroleptic drug administration: phenomenology, pathophysiology and putative relationship to tardive dyskinesia. Psychopharmacology 101:431–447PubMedCrossRefGoogle Scholar
  75. White HS, Brown SD, Skeen GA, Wolf HH, Twyman RE (1997a) The anticonvulsant topiramate displays a unique ability to potentiate GABA-evoked chloride current. Epilepsia 36:S39–S40Google Scholar
  76. White HS, Brown SD, Woodhead JH, Skeen GA, Wolf HH (1997b) Topiramate enhances GABA-mediated chloride flux and GABA-evoked chloride currents in murine brain neurons and increases seizure threshold. Epilepsy Res 28:167–179PubMedCrossRefGoogle Scholar
  77. Wu JW, Hsieh CL, Wang HY, Chen HY (2009) Inhibitory effects of guava (Psidium guajava L.) leaf extracts and its active compounds on the glycation process of protein. Food Chem 113:78–84CrossRefGoogle Scholar
  78. Yan LJ, Traber MG, Packer L (1995) Spectrophotometric method for determination of carbonyls in oxidatively modified apolipoprotein B of human low-density lipoproteins. Anal Biochem 228:349–351PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Romaiana Picada Pereira
    • 1
    • 5
  • Roselei Fachinetto
    • 4
    • 5
  • Alessandro de Souza Prestes
    • 1
  • Caroline Wagner
    • 1
  • Jéssie Haigert Sudati
    • 1
  • Aline Augusti Boligon
    • 2
  • Margareth Linde Athayde
    • 2
  • Vera Maria Morsch
    • 1
  • João Batista Teixeira Rocha
    • 1
    • 3
    • 5
  1. 1.Departamento de Química, Programa de Pós-Graduação em Bioquímica ToxicológicaUniversidade Federal de Santa MariaSanta MariaBrazil
  2. 2.Departamento de Farmácia IndustrialUniversidade Federal de Santa MariaSanta MariaBrazil
  3. 3.Abdus Salam International Centre for Theoretical PhysicsTriesteItaly
  4. 4.Departamento de Fisiologia e Farmacologia, Programa de Pós-Graduação em Farmacologia, and Programa de Pós-Graduação em Bioquímica ToxicológicaUniversidade Federal de Santa MariaSanta MariaBrazil
  5. 5.Centro de Ciências Naturais e Exatas, Programa de Pós-Graduação em Bioquímica ToxicológicaSanta MariaBrazil

Personalised recommendations