Journal of Neural Transmission

, Volume 118, Issue 10, pp 1487–1495 | Cite as

Targeting of the pedunculopontine nucleus by an MRI-guided approach: a cadaver study

  • Ludvic Zrinzo
  • Laurence V. Zrinzo
  • Luke A. Massey
  • John Thornton
  • Harold G. Parkes
  • Mark White
  • Tarek A. Yousry
  • Catherine Strand
  • Tamas Revesz
  • Patricia Limousin
  • Marwan I. Hariz
  • Janice L. Holton
Basic Neurosciences, Genetics and Immunology - Original Article

Abstract

Laboratory evidence suggests that the pedunculopontine nucleus (PPN) plays a central role in the initiation and maintenance of gait. Translational research has led to reports on deep brain stimulation (DBS) of the rostral brainstem in parkinsonian patients. However, initial clinical results appear to be rather variable. Possible factors include patient selection and the wide variability in anatomical location of implanted electrodes. Clinical studies on PPN DBS efficacy would, therefore, benefit from an accurate and reproducible method of stereotactic localization of the nucleus. The present study evaluates the anatomical accuracy of a specific protocol for MRI-guided stereotactic targeting of the PPN in a human cadaver. Imaging at 1.5 and 9.4 T confirmed electrode location in the intended region as defined anatomically by the surrounding fiber tracts. The spatial relations of each electrode track to the nucleus were explored by subsequent histological examination. This confirmed that the neuropil surrounding each electrode track contained scattered large neurons morphologically consistent with those of the subnucleus dissipatus and compactus of the PPN. The results support the accuracy of the described specific MR imaging protocol.

Keywords

Pedunculopontine nucleus MRI Stereotactic Deep brain stimulation 

References

  1. Cooper IS (1969) Involuntary movement disorders; foreword by Macdonald Critchley; medical artist Mary Lorene; medical photographer Rosemarie Spitaleri. Hoeber, New YorkGoogle Scholar
  2. Counelis GJ, Simuni T, Forman MS, Jaggi JL, Trojanowski JQ, Baltuch GH (2003) Bilateral subthalamic nucleus deep brain stimulation for advanced PD: correlation of intraoperative MER and postoperative MRI with neuropathological findings. Mov Disord 18(9):1062–1065. doi:10.1002/mds.10489 PubMedCrossRefGoogle Scholar
  3. Deep-Brain Stimulation for Parkinson’s Disease Study Group (2001) Deep-brain stimulation of the subthalamic nucleus or the pars interna of the globus pallidus in Parkinson’s disease. N Engl J Med 345(13):956–963Google Scholar
  4. DiLorenzo DJ, Jankovic J, Simpson RK, Takei H, Powell SZ (2010) Long-term deep brain stimulation for essential tremor: 12-year clinicopathologic follow-up. Mov Disord 25(2):232–238. doi:10.1002/mds.22935 PubMedCrossRefGoogle Scholar
  5. Elias WJ, Sansur CA, Frysinger RC (2009) Sulcal and ventricular trajectories in stereotactic surgery. J Neurosurg 110(2):201–207. doi:10.3171/2008.7.17625 PubMedCrossRefGoogle Scholar
  6. Ferraye MU, Debu B, Fraix V, Goetz L, Ardouin C, Yelnik J, Henry-Lagrange C, Seigneuret E, Piallat B, Krack P, Le Bas JF, Benabid AL, Chabardes S, Pollak P (2009) Effects of pedunculopontine nucleus area stimulation on gait disorders in Parkinson’s disease. Brain. doi:10.1093/brain/awp229
  7. Foltynie T, Zrinzo L, Martinez-Torres I, Tripoliti E, Petersen E, Holl E, Aviles-Olmos I, Jahanshahi M, Hariz M, Limousin P (2010) MRI-guided STN DBS in Parkinson’s disease without microelectrode recording: efficacy and safety. J Neurol Neurosurg Psychiatry. doi:10.1136/jnnp.2010.205542
  8. Galati S, Scarnati E, Mazzone P, Stanzione P, Stefani A (2008) Deep brain stimulation promotes excitation and inhibition in subthalamic nucleus in Parkinson’s disease. Neuroreport 19(6):661–666. doi:10.1097/WNR.0b013e3282fb78af PubMedCrossRefGoogle Scholar
  9. Garcia-Rill E, Houser CR, Skinner RD, Smith W, Woodward DJ (1987) Locomotion-inducing sites in the vicinity of the pedunculopontine nucleus. Brain Res Bull 18(6):731–738PubMedCrossRefGoogle Scholar
  10. Gaynor LM, Kuhn AA, Dileone M, Litvak V, Eusebio A, Pogosyan A, Androulidakis AG, Tisch S, Limousin P, Insola A, Mazzone P, Di Lazzaro V, Brown P (2008) Suppression of beta oscillations in the subthalamic nucleus following cortical stimulation in humans. Eur J Neurosci 28(8):1686–1695. doi:10.1111/j.1460-9568.2008.06363.x PubMedCrossRefGoogle Scholar
  11. Gross RE, Krack P, Rodriguez-Oroz MC, Rezai AR, Benabid AL (2006) Electrophysiological mapping for the implantation of deep brain stimulators for Parkinson’s disease and tremor. Mov Disord 21(Suppl 14):S259–S283. doi:10.1002/mds.20960 PubMedCrossRefGoogle Scholar
  12. Hariz MI (2002) Safety and risk of microelectrode recording in surgery for movement disorders. Stereotact Funct Neurosurg 78(3–4):146–157. doi:10.1159/000068960 PubMedCrossRefGoogle Scholar
  13. Hirabayashi H, Tengvar M, Hariz MI (2002) Stereotactic imaging of the pallidal target. Mov Disord 17(Suppl 3):S130–S134. doi:10.1002/mds.10154 PubMedCrossRefGoogle Scholar
  14. Holl EM, Petersen EA, Foltynie T, Martinez-Torres I, Limousin P, Hariz MI, Zrinzo L (2010) Improving targeting in image-guided frame-based deep brain stimulation. Neurosurgery 67(2 Suppl Operative):437–447. doi:10.1227/NEU.0b013e3181f7422a PubMedGoogle Scholar
  15. Kleiner-Fisman G, Fisman DN, Sime E, Saint-Cyr JA, Lozano AM, Lang AE (2003) Long-term follow up of bilateral deep brain stimulation of the subthalamic nucleus in patients with advanced Parkinson disease. J Neurosurg 99(3):489–495PubMedCrossRefGoogle Scholar
  16. Kojima J, Yamaji Y, Matsumura M, Nambu A, Inase M, Tokuno H, Takada M, Imai H (1997) Excitotoxic lesions of the pedunculopontine tegmental nucleus produce contralateral hemiparkinsonism in the monkey. Neurosci Lett 226(2):111–114. S0304-3940(97)00254-1[pii]PubMedCrossRefGoogle Scholar
  17. Kuroda R, Nakatani J, Yamada Y, Yorimae A, Kitano M (1991) Location of a DBS-electrode in lateral thalamus for deafferentation pain: an autopsy case report. Acta Neurochir Suppl (Wien) 52:140–142Google Scholar
  18. Mazzone P, Lozano A, Stanzione P, Galati S, Scarnati E, Peppe A, Stefani A (2005) Implantation of human pedunculopontine nucleus: a safe and clinically relevant target in Parkinson’s disease. Neuroreport 16(17):1877–1881. 00001756-200511280-00002[pii]PubMedCrossRefGoogle Scholar
  19. Mazzone P, Sposato S, Insola A, Dilazzaro V, Scarnati E (2008) Stereotactic surgery of nucleus tegmenti pedunculopontine. Br J Neurosurg 22(Suppl 1):S33–S40. doi:10.1080/02688690802448327 PubMedCrossRefGoogle Scholar
  20. Mazzone P, Insola A, Sposato S, Scarnati E (2009) The deep brain stimulation of the pedunculopontine tegmental nucleus. Neuromodulation 12(3):191–204CrossRefGoogle Scholar
  21. McClelland S 3rd, Vonsattel JP, Garcia RE, Amaya MD, Winfield LM, Pullman SL, Yu Q, Fahn S, Ford B, Goodman RR (2007) Relationship of clinical efficacy to postmortem-determined anatomic subthalamic stimulation in Parkinson syndrome. Clin Neuropathol 26(6):267–275PubMedGoogle Scholar
  22. Moro E, Hamani C, Poon YY, Al-Khairallah T, Dostrovsky JO, Hutchison WD, Lozano AM (2009) Unilateral pedunculopontine stimulation improves falls in Parkinson’s disease. Brain. doi:10.1093/brain/awp261
  23. Munro-Davies L, Winter J, Aziz TZ, Stein J (2001) Kainate acid lesions of the pedunculopontine region in the normal behaving primate. Mov Disord 16(1):150–151PubMedCrossRefGoogle Scholar
  24. Nandi D, Jenkinson N, Stein J, Aziz T (2008) The pedunculopontine nucleus in Parkinson’s disease: primate studies. Br J Neurosurg 22(Suppl 1):S4–S8. doi:10.1080/02688690802448350 PubMedCrossRefGoogle Scholar
  25. Olszewski J, Baxter D (1982) Cytoarchitecture of the human brain stem. KargerGoogle Scholar
  26. Ostrem JL, Christine CW, Glass GA, Schrock LE, Starr PA (2010) Pedunculopontine nucleus deep brain stimulation in a patient with primary progressive freezing gait disorder. Stereotact Funct Neurosurg 88(1):51–55. doi:10.1159/000268742 PubMedCrossRefGoogle Scholar
  27. Pahapill PA, Lozano AM (2000) The pedunculopontine nucleus and Parkinson’s disease. Brain 123(Pt 9):1767–1783PubMedCrossRefGoogle Scholar
  28. Petersen EA, Holl EM, Martinez-Torres I, Foltynie T, Limousin P, Hariz MI, Zrinzo L (2010) Minimizing brain shift in stereotactic functional neurosurgery. Neurosurgery 67 (3 Suppl Operative):ons213–ons221 (discussion ons221). doi:10.1227/01.NEU.0000380991.23444.08
  29. Pierantozzi M, Palmieri MG, Galati S, Stanzione P, Peppe A, Tropepi D, Brusa L, Pisani A, Moschella V, Marciani MG, Mazzone P, Stefani A (2008) Pedunculopontine nucleus deep brain stimulation changes spinal cord excitability in Parkinson’s disease patients. J Neural Transm 115(5):731–735. doi:10.1007/s00702-007-0001-8 PubMedCrossRefGoogle Scholar
  30. Plaha P, Gill SS (2005) Bilateral deep brain stimulation of the pedunculopontine nucleus for Parkinson’s disease. Neuroreport 16(17):1883–1887. 00001756-200511280-00003[pii]PubMedCrossRefGoogle Scholar
  31. Quester R, Schroder R (1997) The shrinkage of the human brain stem during formalin fixation and embedding in paraffin. J Neurosci Methods 75(1):81–89. S0165-0270(97)00050-2[pii]PubMedCrossRefGoogle Scholar
  32. Rodriguez-Oroz MC, Rodriguez M, Leiva C, Rodriguez-Palmero M, Nieto J, Garcia-Garcia D, Luis Zubieta J, Cardiel C, Obeso JA (2008) Neuronal activity of the red nucleus in Parkinson’s disease. Mov Disord 23(6):908–911. doi:10.1002/mds.22000 PubMedCrossRefGoogle Scholar
  33. Romigi A, Placidi F, Peppe A, Pierantozzi M, Izzi F, Brusa L, Galati S, Moschella V, Marciani MG, Mazzone P, Stanzione P, Stefani A (2008) Pedunculopontine nucleus stimulation influences REM sleep in Parkinson’s disease. Eur J Neurol 15(7):e64–e65. doi:10.1111/j.1468-1331.2008.02167.x PubMedCrossRefGoogle Scholar
  34. Schiff SJ, Dunagan BK, Worth RM (2002) Failure of single-unit neuronal activity to differentiate globus pallidus internus and externus in Parkinson disease. J Neurosurg 97(1):119–128. doi:10.3171/jns.2002.97.1.0119 PubMedCrossRefGoogle Scholar
  35. Stefani A, Lozano AM, Peppe A, Stanzione P, Galati S, Tropepi D, Pierantozzi M, Brusa L, Scarnati E, Mazzone P (2007) Bilateral deep brain stimulation of the pedunculopontine and subthalamic nuclei in severe Parkinson’s disease. Brain 130(Pt 6):1596–1607. doi:10.1093/brain/awl346 PubMedCrossRefGoogle Scholar
  36. Van Horn G, Hassenbusch SJ, Zouridakis G, Mullani NA, Wilde MC, Papanicolaou AC (2001) Pallidotomy: a comparison of responders and nonresponders. Neurosurgery 48(2):263–271 (discussion 271–263)PubMedGoogle Scholar
  37. Yelnik J (2007) PPN or PPD, what is the target for deep brain stimulation in Parkinson’s disease? Brain 130 (Pt 9):e79 (author reply e80). doi:10.1093/brain/awm138
  38. Zanini S, Moschella V, Stefani A, Peppe A, Pierantozzi M, Galati S, Costa A, Mazzone P, Stanzione P (2009) Grammar improvement following deep brain stimulation of the subthalamic and the pedunculopontine nuclei in advanced Parkinson’s disease: a pilot study. Parkinsonism Relat Disord 15(8):606–609. doi:10.1016/j.parkreldis.2008.12.003 PubMedCrossRefGoogle Scholar
  39. Zrinzo L (2010) The role of imaging in the surgical treatment of movement disorders. Neuroimaging Clin N Am 20(1):125–140. doi:10.1016/j.nic.2009.08.002 PubMedCrossRefGoogle Scholar
  40. Zrinzo L, Zrinzo LV, Hariz M (2007) The pedunculopontine and peripeduncular nuclei: a tale of two structures. Brain 130 (Pt 6):e73 (author reply e74). doi:10.1093/brain/awm079
  41. Zrinzo L, Zrinzo LV, Tisch S, Limousin PD, Yousry TA, Afshar F, Hariz MI (2008) Stereotactic localization of the human pedunculopontine nucleus: atlas-based coordinates and validation of a magnetic resonance imaging protocol for direct localization. Brain 131(Pt 6):1588–1598. doi:10.1093/brain/awn075 PubMedCrossRefGoogle Scholar
  42. Zrinzo L, van Hulzen AL, Gorgulho AA, Limousin P, Staal MJ, De Salles AA, Hariz MI (2009) Avoiding the ventricle: a simple step to improve accuracy of anatomical targeting during deep brain stimulation. J Neurosurg. doi:10.3171/2008.12.JNS08885

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Ludvic Zrinzo
    • 1
    • 2
  • Laurence V. Zrinzo
    • 3
  • Luke A. Massey
    • 4
  • John Thornton
    • 5
    • 6
  • Harold G. Parkes
    • 6
    • 7
  • Mark White
    • 5
  • Tarek A. Yousry
    • 5
  • Catherine Strand
    • 8
  • Tamas Revesz
    • 8
  • Patricia Limousin
    • 1
  • Marwan I. Hariz
    • 1
    • 9
  • Janice L. Holton
    • 8
  1. 1.Unit of Functional NeurosurgeryBox 146, Institute of Neurology and National Hospital for Neurology and NeurosurgeryLondonUK
  2. 2.Victor Horsley Department of NeurosurgeryNational Hospital for Neurology and NeurosurgeryLondonUK
  3. 3.Department of Anatomy, Genetics and Cell BiologyUniversity of MaltaMsidaMalta
  4. 4.Sara Koe PSP Research Centre, UCL Institute of NeurologyLondonUK
  5. 5.Lysholm Department of NeuroradiologyUCL Institute of Neurology, National Hospital for Neurology and NeurosurgeryLondonUK
  6. 6.Department of Brain Repair and RehabilitationUCL Institute of Neurology, University College LondonLondonUK
  7. 7.Department of NeuroinflammationUCL Institute of Neurology, University College LondonLondonUK
  8. 8.Queen Square Brain Bank, Department of Molecular NeuroscienceUCL Institute of NeurologyLondonUK
  9. 9.Department of Clinical NeuroscienceUmeå UniversityUmeåSweden

Personalised recommendations