Journal of Neural Transmission

, Volume 118, Issue 8, pp 1139–1154 | Cite as

Brain activity associated with pain, hyperalgesia and allodynia: an ALE meta-analysis

  • Stefan Lanz
  • Frank Seifert
  • Christian Maihöfner
Basic Neurosciences, Genetics and Immunology - Original Article


The use of functional brain imaging techniques offers the possibility of uncovering the cerebral processing of the human pain experience. In recent years, many imaging studies have focused on defining a network of brain structures involved in the processing of normal pain. Additionally, it has been shown that stimulus-evoked pain, which is a frequent symptom of neuropathic pain, causes distinct patterns of brain activation. In the present study, we quantitatively analyzed the data of previous functional imaging studies. Studies were thus collected by means of a MEDLINE query. A meta-analysis using the activation-likelihood estimation method was conducted to quantify the acquired results. We then used this data to summarize and compare the cerebral activations of (i) normal and stimulus-evoked pain, (ii) thermal and mechanical pain, (iii) different types of stimulus-evoked pain (hyperalgesia, allodynia), and (iv) clinical neuropathic and experimental pain. The results suggest the existence of distinct, although overlapping, neuronal networks related to these different types of pain.


Allodynia Cerebral activation Functional imaging Hyperalgesia Neuropathic Experimental Nociception 



This study was supported by the German Research Network “Neuropathic Pain” of the German Federal Ministry of Education and Research (Bundesministerium für Bildung und Forschung; BMBF) and the German Research Foundation (DFG, KFO 130).

Supplementary material

702_2011_606_MOESM1_ESM.pdf (55 kb)
Supplementary material 1 (PDF 54.5 kb)


  1. Apkarian AV, Shi T (1994) Squirrel monkey lateral thalamus I. Somatic nociresponsive neurons and their relation to spinothalamic terminals. J Neurosci 14:6779–6795PubMedGoogle Scholar
  2. Apkarian AV, Bushnell MC, Treede RD, Zubieta JK (2005) Human brain mechanisms of pain perception and regulation in health and disease. Eur J Pain 9:463–484PubMedCrossRefGoogle Scholar
  3. Baron R, Baron Y, Disbrow E, Roberts TP (1999) Brain processing of capsaicin-induced secondary hyperalgesia: a functional MRI study. Neurology 53:548–557PubMedGoogle Scholar
  4. Bingel U, Quante M, Knab R, Bromm B, Weiller C, Buchel C (2003) Single trial fMRI reveals significant contralateral bias in responses to laser pain within thalamus and somatosensory cortices. Neuroimage 18:740–748PubMedCrossRefGoogle Scholar
  5. Bingel U, Lorenz J, Schoell E, Weiller C, Buchel C (2006) Mechanisms of placebo analgesia: rACC recruitment of a subcortical antinociceptive network. Pain 120:8–15PubMedCrossRefGoogle Scholar
  6. Bingel U, Schoell E, Herken W, Buchel C, May A (2007) Habituation to painful stimulation involves the antinociceptive system. Pain 131:21–30PubMedCrossRefGoogle Scholar
  7. Chein JM, Fissell K, Jacobs S, Fiez JA (2002) Functional heterogeneity within Broca’s area during verbal working memory. Physiol Behav 77:635–639PubMedCrossRefGoogle Scholar
  8. Coghill RC, Sang CN, Maisog JM, Iadarola MJ (1999) Pain intensity processing within the human brain: a bilateral, distributed mechanism. J Neurophysiol 82:1934–1943PubMedGoogle Scholar
  9. Collins DL, Neelin P, Peters TM, Evans AC (1994) Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space. J Comput Assist Tomogr 18:192–205PubMedCrossRefGoogle Scholar
  10. Disbrow E, Roberts T, Krubitzer L (2000) Somatotopic organization of cortical fields in the lateral sulcus of Homo sapiens: evidence for SII and PV. J Comp Neurol 418:1–21PubMedCrossRefGoogle Scholar
  11. Ducreux D, Attal N, Parker F, Bouhassira D (2006) Mechanisms of central neuropathic pain: a combined psychophysical and fMRI study in syringomyelia. Brain 129:963–976PubMedCrossRefGoogle Scholar
  12. Eickhoff SB, Laird AR, Grefkes C, Wang LE, Zilles K, Fox PT (2009) Coordinate-based activation likelihood estimation meta-analysis of neuroimaging data: a random-effects approach based on empirical estimates of spatial uncertainty. Hum Brain Mapp 30:2907–2926PubMedCrossRefGoogle Scholar
  13. Farrell MJ, Laird AR, Egan GF (2005) Brain activity associated with painfully hot stimuli applied to the upper limb: a meta-analysis. Hum Brain Mapp 25:129–139PubMedCrossRefGoogle Scholar
  14. Forss N, Raij TT, Seppa M, Hari R (2005) Common cortical network for first and second pain. Neuroimage 24:132–142PubMedCrossRefGoogle Scholar
  15. Fox PT, Parsons LM, Lancaster JL (1998) Beyond the single study: function/location metanalysis in cognitive neuroimaging. Curr Opin Neurobiol 8:178–187PubMedCrossRefGoogle Scholar
  16. Geha PY, Baliki MN, Wang X, Harden RN, Paice JA, Apkarian AV (2008) Brain dynamics for perception of tactile allodynia (touch-induced pain) in postherpetic neuralgia. Pain 138:641–656PubMedCrossRefGoogle Scholar
  17. Hoffman HG, Richards TL, Coda B, Bills AR, Blough D, Richards AL, Sharar SR (2004) Modulation of thermal pain-related brain activity with virtual reality: evidence from fMRI. Neuroreport 15:1245–1248PubMedCrossRefGoogle Scholar
  18. Iadarola MJ, Berman KF, Zeffiro TA, Byas-Smith MG, Gracely RH, Max MB, Bennett GJ (1998) Neural activation during acute capsaicin-evoked pain and allodynia assessed with PET. Brain 121(Pt 5):931–947PubMedCrossRefGoogle Scholar
  19. Jensen TS, Baron R (2003) Translation of symptoms and signs into mechanisms in neuropathic pain. Pain 102:1–8PubMedCrossRefGoogle Scholar
  20. Jung P, Baumgartner U, Stoeter P, Treede RD (2009) Structural and functional asymmetry in the human parietal opercular cortex. J Neurophysiol 101:3246–3257PubMedCrossRefGoogle Scholar
  21. Kenshalo DR Jr, Isensee O (1983) Responses of primate SI cortical neurons to noxious stimuli. J Neurophysiol 50:1479–1496PubMedGoogle Scholar
  22. Koltzenburg M, Torebjork HE, Wahren LK (1994) Nociceptor modulated central sensitization causes mechanical hyperalgesia in acute chemogenic and chronic neuropathic pain. Brain 117(Pt 3):579–591PubMedCrossRefGoogle Scholar
  23. Kupers R, Kehlet H (2006) Brain imaging of clinical pain states: a critical review and strategies for future studies. Lancet Neurol 5:1033–1044PubMedCrossRefGoogle Scholar
  24. Laird AR, Fox PM, Price CJ, Glahn DC, Uecker AM, Lancaster JL, Turkeltaub PE, Kochunov P, Fox PT (2005) ALE meta-analysis: controlling the false discovery rate and performing statistical contrasts. Hum Brain Mapp 25:155–164PubMedCrossRefGoogle Scholar
  25. Lebel A, Becerra L, Wallin D, Moulton EA, Morris S, Pendse G, Jasciewicz J, Stein M, Aiello-Lammens M, Grant E, Berde C, Borsook D (2008) fMRI reveals distinct CNS processing during symptomatic and recovered complex regional pain syndrome in children. Brain 131:1854–1879PubMedCrossRefGoogle Scholar
  26. Lorenz J, Cross D, Minoshima S, Morrow T, Paulson P, Casey K (2002) A unique representation of heat allodynia in the human brain. Neuron 35:383–393PubMedCrossRefGoogle Scholar
  27. Lorenz J, Minoshima S, Casey KL (2003) Keeping pain out of mind: the role of the dorsolateral prefrontal cortex in pain modulation. Brain 126:1079–1091PubMedCrossRefGoogle Scholar
  28. Lui F, Duzzi D, Corradini M, Serafini M, Baraldi P, Porro CA (2008) Touch or pain? Spatio-temporal patterns of cortical fMRI activity following brief mechanical stimuli. Pain 138:362–374PubMedCrossRefGoogle Scholar
  29. Maihofner C, Handwerker HO (2005) Differential coding of hyperalgesia in the human brain: a functional MRI study. Neuroimage 28:996–1006PubMedCrossRefGoogle Scholar
  30. Maihofner C, Schmelz M, Forster C, Neundorfer B, Handwerker HO (2004) Neural activation during experimental allodynia: a functional magnetic resonance imaging study. Eur J Neurosci 19:3211–3218PubMedCrossRefGoogle Scholar
  31. Maihofner C, Forster C, Birklein F, Neundorfer B, Handwerker HO (2005) Brain processing during mechanical hyperalgesia in complex regional pain syndrome: a functional MRI study. Pain 114:93–103PubMedCrossRefGoogle Scholar
  32. Maihofner C, Herzner B, Otto Handwerker H (2006) Secondary somatosensory cortex is important for the sensory-discriminative dimension of pain: a functional MRI study. Eur J Neurosci 23:1377–1383PubMedCrossRefGoogle Scholar
  33. Maihofner C, Ringler R, Herrndobler F, Koppert W (2007) Brain imaging of analgesic and antihyperalgesic effects of cyclooxygenase inhibition in an experimental human pain model: a functional MRI study. Eur J Neurosci 26:1344–1356PubMedCrossRefGoogle Scholar
  34. Melzack R (1999) From the gate to the neuromatrix. Pain Suppl 6:S121–126Google Scholar
  35. Merskey H, Bogduk N (1994) Classification of chronic pain: descriptions of chronic pain syndromes and definition of pain terms, 2nd edn. IASP Press, SeattleGoogle Scholar
  36. Mohr C, Leyendecker S, Helmchen C (2008) Dissociable neural activity to self- vs. externally administered thermal hyperalgesia: a parametric fMRI study. Eur J Neurosci 27:739–749PubMedCrossRefGoogle Scholar
  37. Moisset X, Bouhassira D (2007) Brain imaging of neuropathic pain. Neuroimage 37(Suppl 1):S80–S88PubMedCrossRefGoogle Scholar
  38. Neumann J, von Cramon DY, Lohmann G (2008) Model-based clustering of meta-analytic functional imaging data. Hum Brain Mapp 29:177–192PubMedCrossRefGoogle Scholar
  39. Ochoa JL, Yarnitsky D (1993) Mechanical hyperalgesias in neuropathic pain patients: dynamic and static subtypes. Ann Neurol 33:465–472PubMedCrossRefGoogle Scholar
  40. Ochoa JL, Yarnitsky D (1994) The triple cold syndrome. Cold hyperalgesia, cold hypoaesthesia and cold skin in peripheral nerve disease. Brain 117(Pt 1):185–197PubMedCrossRefGoogle Scholar
  41. Petrovic P, Ingvar M, Stone-Elander S, Petersson KM, Hansson P (1999) A PET activation study of dynamic mechanical allodynia in patients with mononeuropathy. Pain 83:459–470PubMedCrossRefGoogle Scholar
  42. Peyron R, Garcia-Larrea L, Gregoire MC, Convers P, Lavenne F, Veyre L, Froment JC, Mauguiere F, Michel D, Laurent B (1998) Allodynia after lateral-medullary (Wallenberg) infarct. A PET study. Brain 121(Pt 2):345–356PubMedCrossRefGoogle Scholar
  43. Peyron R, Laurent B, Garcia-Larrea L (2000) Functional imaging of brain responses to pain. A review and meta-analysis (2000). Neurophysiol Clin 30:263–288PubMedCrossRefGoogle Scholar
  44. Qiu Y, Noguchi Y, Honda M, Nakata H, Tamura Y, Tanaka S, Sadato N, Wang X, Inui K, Kakigi R (2006) Brain processing of the signals ascending through unmyelinated C fibers in humans: an event-related functional magnetic resonance imaging study. Cereb Cortex 16:1289–1295PubMedCrossRefGoogle Scholar
  45. Rogers R, Wise RG, Painter DJ, Longe SE, Tracey I (2004) An investigation to dissociate the analgesic and anesthetic properties of ketamine using functional magnetic resonance imaging. Anesthesiology 100:292–301PubMedCrossRefGoogle Scholar
  46. Salimi-Khorshidi G, Smith SM, Keltner JR, Wager TD, Nichols TE (2009) Meta-analysis of neuroimaging data: a comparison of image-based and coordinate-based pooling of studies. Neuroimage 45:810–823PubMedCrossRefGoogle Scholar
  47. Schlereth T, Baumgartner U, Magerl W, Stoeter P, Treede RD (2003) Left-hemisphere dominance in early nociceptive processing in the human parasylvian cortex. Neuroimage 20:441–454PubMedCrossRefGoogle Scholar
  48. Schmelz M, Schmid R, Handwerker HO, Torebjork HE (2000) Encoding of burning pain from capsaicin-treated human skin in two categories of unmyelinated nerve fibres. Brain 123(Pt 3):560–571PubMedCrossRefGoogle Scholar
  49. Schmidt R, Schmelz M, Forster C, Ringkamp M, Torebjork E, Handwerker H (1995) Novel classes of responsive and unresponsive C nociceptors in human skin. J Neurosci 15:333–341PubMedGoogle Scholar
  50. Schoedel AL, Zimmermann K, Handwerker HO, Forster C (2008) The influence of simultaneous ratings on cortical BOLD effects during painful and non-painful stimulation. Pain 135:131–141PubMedCrossRefGoogle Scholar
  51. Schweinhardt P, Glynn C, Brooks J, McQuay H, Jack T, Chessell I, Bountra C, Tracey I (2006) An fMRI study of cerebral processing of brush-evoked allodynia in neuropathic pain patients. Neuroimage 32:256–265PubMedCrossRefGoogle Scholar
  52. Seifert F, Maihofner C (2009) Central mechanisms of experimental and chronic neuropathic pain: findings from functional imaging studies. Cell Mol Life Sci 66:375–390PubMedCrossRefGoogle Scholar
  53. Seifert F, Jungfer I, Schmelz M, Maihofner C (2007) Representation of UV-B-induced thermal and mechanical hyperalgesia in the human brain: a functional MRI study. Hum Brain MappGoogle Scholar
  54. Seifert F, Jungfer I, Schmelz M, Maihofner C (2008) Representation of UV-B-induced thermal and mechanical hyperalgesia in the human brain: a functional MRI study. Hum Brain Mapp 29:1327–1342PubMedCrossRefGoogle Scholar
  55. Seminowicz DA, Davis KD (2007) Interactions of pain intensity and cognitive load: the brain stays on task. Cereb Cortex 17:1412–1422PubMedCrossRefGoogle Scholar
  56. Seminowicz DA, Mikulis DJ, Davis KD (2004) Cognitive modulation of pain-related brain responses depends on behavioral strategy. Pain 112:48–58PubMedCrossRefGoogle Scholar
  57. Smith SM, Fox PT, Miller KL, Glahn DC, Fox PM, Mackay CE, Filippini N, Watkins KE, Toro R, Laird AR, Beckmann CF (2009) Correspondence of the brain’s functional architecture during activation and rest. Proc Natl Acad Sci USA 106:13040–13045PubMedCrossRefGoogle Scholar
  58. Sprenger T, Valet M, Woltmann R, Zimmer C, Freynhagen R, Kochs EF, Tolle TR, Wagner KJ (2006) Imaging pain modulation by subanesthetic S-(+)-ketamine. Anesth Analg 103:729–737PubMedCrossRefGoogle Scholar
  59. Symonds LL, Gordon NS, Bixby JC, Mande MM (2006) Right-lateralized pain processing in the human cortex: an FMRI study. J Neurophysiol 95:3823–3830PubMedCrossRefGoogle Scholar
  60. Talairach J, Tournoux P (1988) Co-planar stereotaxic atlas of the human brain. Thieme Medical Publishers, Germany, pp 1–122Google Scholar
  61. Tracey I (2008) Imaging pain. Br J Anaesth 101:32–39PubMedCrossRefGoogle Scholar
  62. Treede RD, Kenshalo DR, Gracely RH, Jones AK (1999) The cortical representation of pain. Pain 79:105–111PubMedCrossRefGoogle Scholar
  63. Turkeltaub PE, Eden GF, Jones KM, Zeffiro TA (2002) Meta-analysis of the functional neuroanatomy of single-word reading: method and validation. Neuroimage 16:765–780PubMedCrossRefGoogle Scholar
  64. Wager TD, Jonides J, Reading S (2004a) Neuroimaging studies of shifting attention: a meta-analysis. Neuroimage 22:1679–1693PubMedCrossRefGoogle Scholar
  65. Wager TD, Rilling JK, Smith EE, Sokolik A, Casey KL, Davidson RJ, Kosslyn SM, Rose RM, Cohen JD (2004b) Placebo-induced changes in FMRI in the anticipation and experience of pain. Science 303:1162–1167PubMedCrossRefGoogle Scholar
  66. Wager TD, Lindquist M, Kaplan L (2007) Meta-analysis of functional neuroimaging data: current and future directions. Soc Cogn Affect Neurosci 2:150–158PubMedCrossRefGoogle Scholar
  67. Wager TD, Lindquist MA, Nichols TE, Kober H, Van Snellenberg JX (2009) Evaluating the consistency and specificity of neuroimaging data using meta-analysis. Neuroimage 45:S210–S221PubMedCrossRefGoogle Scholar
  68. Wagner KJ, Sprenger T, Kochs EF, Tolle TR, Valet M, Willoch F (2007) Imaging human cerebral pain modulation by dose-dependent opioid analgesia: a positron emission tomography activation study using remifentanil. Anesthesiology 106:548–556PubMedCrossRefGoogle Scholar
  69. Wiech K, Seymour B, Kalisch R, Stephan KE, Koltzenburg M, Driver J, Dolan RJ (2005) Modulation of pain processing in hyperalgesia by cognitive demand. Neuroimage 27:59–69PubMedCrossRefGoogle Scholar
  70. Witting N, Kupers RC, Svensson P, Arendt-Nielsen L, Gjedde A, Jensen TS (2001) Experimental brush-evoked allodynia activates posterior parietal cortex. Neurology 57:1817–1824PubMedGoogle Scholar
  71. Witting N, Kupers RC, Svensson P, Jensen TS (2006) A PET activation study of brush-evoked allodynia in patients with nerve injury pain. Pain 120:145–154PubMedCrossRefGoogle Scholar
  72. Woolf CJ, Mannion RJ (1999) Neuropathic pain: aetiology, symptoms, mechanisms, and management. Lancet 353:1959–1964PubMedCrossRefGoogle Scholar
  73. Xu X, Fukuyama H, Yazawa S, Mima T, Hanakawa T, Magata Y, Kanda M, Fujiwara N, Shindo K, Nagamine T, Shibasaki H (1997) Functional localization of pain perception in the human brain studied by PET. Neuroreport 8:555–559PubMedCrossRefGoogle Scholar
  74. Youell PD, Wise RG, Bentley DE, Dickinson MR, King TA, Tracey I, Jones AK (2004) Lateralisation of nociceptive processing in the human brain: a functional magnetic resonance imaging study. Neuroimage 23:1068–1077PubMedCrossRefGoogle Scholar
  75. Ziegler EA, Magerl W, Meyer RA, Treede RD (1999) Secondary hyperalgesia to punctate mechanical stimuli. Central sensitization to A-fibre nociceptor input. Brain 122(Pt 12):2245–2257PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Stefan Lanz
    • 1
  • Frank Seifert
    • 1
  • Christian Maihöfner
    • 1
  1. 1.Department of NeurologyUniversity of Erlangen-NurembergErlangenGermany

Personalised recommendations