Journal of Neural Transmission

, Volume 118, Issue 4, pp 511–524 | Cite as

Migraine is a neuronal disease

  • J. Tajti
  • Á. Párdutz
  • E. Vámos
  • B. Tuka
  • A. Kuris
  • Zs. Bohár
  • A. Fejes
  • J. Toldi
  • L. Vécsei
Basic Neurosciences, Genetics and Immunology - Review Article


Migraine is a common, paroxysmal, highly disabling primary headache disorder with a genetic background. The primary cause and the origin of migraine attacks are enigmatic. Numerous clinical and experimental results suggest that activation of the trigeminal system (TS) is crucial in its pathogenesis, but the primary cause of this activation is not fully understood. Since activation of the peripheral and central arms of the TS might be related to cortical spreading depression and to the activity of distinct brainstem nuclei (e.g. the periaqueductal grey), we conclude that migraine can be explained as an altered function of the neuronal elements of the TS, the brainstem, and the cortex, the centre of this process comprising activation of the TS. In light of our findings and the literature data, therefore, we can assume that migraine is mainly a neuronal disease.


Migraine Trigeminal system Cortical spreading depression Calcitonin gene-related peptide Glutamate Kynurenic acid 



Teller Ede (NAP-BIO-06-BAYBIOSZ) ETT 026-04, TÁMOP-4.2.2-08/1/2008-0002,cNEUPRO (LSHM-CT-2007-037950).


  1. Abbracchio MP, Burnstock G, Verkhratsky A, Zimmermann H (2009) Purinergic signalling in the nervous system: an overview. Trends Neurosci 32:19–29PubMedGoogle Scholar
  2. Akerman S, Goadsby PJ (2005) Topiramate inhibits cortical spreading depression in rat and cat: impact in migraine aura. Neuroreport 16:1383–1387PubMedGoogle Scholar
  3. Alkondon M, Pereira EF, Yu P (2004) Targeted deletion of the kynurenine aminotransferase ii gene reveals a critical role of endogenous kynurenic acid in the regulation of synaptic transmission via alpha7 nicotinic receptors in the hippocampus. J Neurosci 24:4635–4648PubMedGoogle Scholar
  4. Amara SG, Jonas V, Rosenfeld MG, Ong ES, Evans RM (1982) Alternative RNA processing in calcitonin gene expression generates mRNAs encoding different polypeptide products. Nature 298:240–244PubMedGoogle Scholar
  5. Anthony M, Hinterberger H, Lance JW (1969) The possible relationship of serotonin of the migraine syndrome. Res Clin Stud Headache 2:29–59Google Scholar
  6. Anzai M, Suzuki Y, Takayasu M (1995) Vasorelaxant effect of PACAP-27 on canine cerebral arteries and rat intracerebral arterioles. Eur J Pharmacol 285:173–179PubMedGoogle Scholar
  7. Arulmani U, Maassenvandenbrink A, Villalon CM, Saxena PR (2004) Calcitonin gene-related peptide and its role in migraine pathophysiology. Eur J Pharmacol 500:315–330PubMedGoogle Scholar
  8. Aurora SK (2009) Is chronic migraine one end of a spectrum of migraine or a separate entity? Cephalalgia 29:597–605PubMedGoogle Scholar
  9. Ayata C, Jin H, Kudo C, Dalkara T, Moskowitz MA (2006) Suppression of cortical spreading depression in migraine prophylaxis. Ann Neurol 59:652–661PubMedGoogle Scholar
  10. Bartsch T, Goadsby PJ (2002) Stimulation of the greater occipital nerve induces increased central excitability of dural afferent input. Brain 125:1496–1509PubMedGoogle Scholar
  11. Bartsch T, Goadsby PJ (2003) Increased responses in trigeminocervical nociceptive neurons to cervical input after stimulation of the dura mater. Brain 126:1801–1813PubMedGoogle Scholar
  12. Bartsch T, Goadsby PJ (2005) Anatomy and physiology of pain referral patterns in primary and cervicogenic headache disorders. Headache Curr 2:42–48Google Scholar
  13. Bartsch T, Knight YE, Goadsby PJ (2004) Activation of 5-HT(1B/1D) receptor in the periqueductal gray inhibits nociception. Ann Neurol 56:371–381PubMedGoogle Scholar
  14. Basarsky TA, Duffy SN, Andrew RD, MacVicar BA (1998) Imaging spreading depression and associated intracellular calcium waves in brain slices. J Neurosci 18:7189–7199PubMedGoogle Scholar
  15. Basarsky TA, Feighan D, MacVicar BA (1999) Glutamate release through volume-activated channels during spreading depression. J Neurosci 19:6439–6445PubMedGoogle Scholar
  16. Basbaum AJ, Clanton CH, Fields HL (1978) Three bulbospinal pathways from the rostral medulla of the cat: an autoradiographic study of pain-modulating systems. J Comp Neurol 178:209–224PubMedGoogle Scholar
  17. Bates E, Nikai T, Brennan K, Fu YH, Charles A, Basbaum A, Ptáček L, Ahn A (2009) Sumatriptan alleviates nitroglycerin-induced mechanical and thermal allodynia in mice. Cephalalgia. doi: 10.1111/j.1468-2982.2009.01864
  18. Behbehani MM, Fields HL (1979) Evidence that an excitatory connection between periaqueductal gray and the nucleus raphe magnus mediates stimulation-produced analgesia. Brain Res 170:85–93PubMedGoogle Scholar
  19. Bereiter DA, Bereiter DF, Hathaway CB (1996) The NMDA receptor antagonist MK-801 reduces Fos-like immunoreactivity in central trigeminal neurons and blocks select endocrine and autonomic responses to corneal stimulation in the rat. Pain 64:179–189PubMedGoogle Scholar
  20. Bigal ME, Rapoport AM, Sheftell FD, Tepper SJ (2002) New migraine preventive options: an update with pathophysiological considerations. Rev Hosp Clin Fac Med Sao Paulo 54:293–298Google Scholar
  21. Bigal ME, Rapoport A, Sheftell F, Tepper E, Tepper SJ (2008) Memantine in the preventive treatment of refractory migraine. Headache 48:1337–1342PubMedGoogle Scholar
  22. Bolay H, Reuter U, Dunn AK, Huang Z, Boas DA, Moskowitz MA (2002) Intrinsic brain activity triggers trigeminal meningeal afferents in a migraine model. Nat Med 8:136–142PubMedGoogle Scholar
  23. Bölcskei H, Farkas B, Kocsis P, Tarnawa I (2009) Recent advancements in anti-migraine drug research: focus on attempts to decrease neuronal hyperexcitability. Recent Pat CNS Drug Discov 4:14–36PubMedGoogle Scholar
  24. Bowyer SM, Aurora KS, Moran JE, Tepley N, Welch KM (2001) Magnetoencephalographic fields from patients with spontaneous and induced migraine aura. Ann Neurol 50:582–587PubMedGoogle Scholar
  25. Burstein R, Cutrer FM, Yarnitsky D (2000a) The development of cutaneous allodynia during a migraine attack: clinical evidence for the sequential recruitment of spinal and supraspinal nociceptive neurons in migraine. Brain 123:1703–1709PubMedGoogle Scholar
  26. Burstein R, Yarnitsky D, Goor-Aryeh I, Ransil BJ, Bajwa ZH (2000b) An association between migraine and cutaneous allodynia. Ann Neurol 47:614–624PubMedGoogle Scholar
  27. Busija DW, Bari F, Domoki F, Horiguchi T, Shimizu K (2008) Mechanisms involved in the cerebrovascular dilator effects of cortical spreading depression. Prog Neurobiol 86:417–433Google Scholar
  28. Cabral-Filho JE, Trindade-Filho EM, Guedes RC (1995) Effect of d-fenfluramine on cortical spreading depression in rats. Braz J Med Biol Res 28:347–350PubMedGoogle Scholar
  29. Canals S, Makarova I, Lopez-Aguado L, Largo C, Ibarz JM, Herreras O (2005) Longitudinal depolarization gradients along the somatodendritic axis of CA1 pyramidal cells: a novel feature of spreading depression. J Neurophysiol 94:943–951PubMedGoogle Scholar
  30. Cardell LO, Uddman R, Sundler F (1991) Pituitary adenylate cyclase activating peptide (PACAP) in guinea-pig lung: distribution and dilatory effects. Regul Pept 36:379–389PubMedGoogle Scholar
  31. Charles A (1998) Intercellular calcium waves in glia. Glia 24:39–49PubMedGoogle Scholar
  32. Charles A (2007) Links between cortical spreading depression and migraine pain. Cephalalgia 27:575–576Google Scholar
  33. Chen G, Gao W, Reinert KC, Popa LS, Hendrix CM, Ross ME, Ebner TJ (2005) Involvement of Kv1 potassium channels in spreading acidification and depression in the cerebellar cortex. J Neurophysiol 94:1287–1298PubMedGoogle Scholar
  34. Chuquet J, Hollender L, Nimchinsky E (2007) High-resolution in vivo imaging of the neurovascular unit during spreading depression. J Neurosci 27:4036–4044PubMedGoogle Scholar
  35. Classey JD, Knight YE, Goadsby PJ (2001) The NMDA receptor antagonist MK-801 reduces Fos-like immunoreactivity within the trigeminocervicalis complex following superior sagittal sinus stimulation in the cat. Brain Res 907:117–124PubMedGoogle Scholar
  36. Cropper EC, Eisenman JS, Azmitis EC (1984) 5-HT-immunoreactive fibers in the trigeminal nuclear complex of the rat. Exp Brain Res 55:515–522PubMedGoogle Scholar
  37. Cunningham RF, Israili ZH, Dayton PG (1981) Clinical pharmacokinetics of probenecid. Clin Pharmacokinet 6:135–151PubMedGoogle Scholar
  38. Davidoff RA (1995) Migraine: manifestations, pathogenesis and management. Davis Co, Philadelphia, pp 115–180Google Scholar
  39. de Fusco M, Marconi R, Silvestri L, Atorino L, Rampoldi L, Morgante L, Ballabio A, Aridon P, Casari G (2003) Haploinsufficiency of ATP1A2 encoding the Na+/K+ pump alpha2 subunit associated with familial hemiplegic migraine type 2. Nat Genet 33:192–196PubMedGoogle Scholar
  40. de Tommaso M, Libro G, Guido M, Difruscolo O, Losito L, Sardaro M, Cerbo R (2004) Nitroglycerin induces migraine headache and central sensitization phenomena in patients with migraine without aura: a study of laser evoked potentials. Neurosci Lett 363:272–275PubMedGoogle Scholar
  41. Dichgans M, Freilinger T, Eckstein G, Babini E, Lorenz-Depiereux B, Biskup S, Ferrari MD, Herzog J, van den Maagdenberg AM, Pusch M, Strom TM (2005) Mutation in the neuronal voltage-gated sodium channel SCN1A in familial hemiplegic migraine. Lancet 366:371–377PubMedGoogle Scholar
  42. Dickinson L, Aramori I, McCulloch J, Sharkey J, Finlayson K (2006) A systematic comparison of intracellular cyclic AMP and calcium signalling highlights complexities in human VPAC/PAC receptor pharmacology. Neuropharmacology 51:1086–1098Google Scholar
  43. Diener HC (1997) Positron emission tomography studies in headache. Headache 37:622–625PubMedGoogle Scholar
  44. Diener HC (1999) How can PET scans help us understand headache mechanisms? Cephalalgia 23:15–18Google Scholar
  45. Diener HC, May A (1996) Positron emission tomography studies in acute migraine attacks. In: Sandler M, Ferrari M, Harnett S (eds) Migraine: pharmacology, genetics. Chapman and Hall, London, pp 109–116Google Scholar
  46. Dodick D, Silberstein S (2006) Central sensitization theory of migraine: clinical implications. Headache 46:S182–S191PubMedGoogle Scholar
  47. dos Santos AA, Pinheiro PC, de Lima DS, Ozias MG, de Oliveira MB, Guimarães NX, Guedes RC (2006) Fluoxetine inhibits cortical spreading depression in weaned and adult rats suckled under favorable and unfavorable lactation conditions. Exp Neurol 200:275–282PubMedGoogle Scholar
  48. Dreier JP, Woitzik J, Fabricius M, Bhatia R, Major S, Drenckhahn C, Lehmann TN, Sarrafzadeh A, Willumsen L, Hartings JA, Sakowitz OW, Seemann JH, Thieme A, Lauritzen M, Strong AJ (2006) Delayed ischaemic neurological deficits after subarachnoid haemorrhage are associated with clusters of spreading depolarizations. Brain 129:3224–3237PubMedGoogle Scholar
  49. Edelmayer RM, Vanderah TW, Majuta L, Zhang ET, Fioravanti B, Felice M, Chichorro JG, Ossipov MH, King T, Lai J, Kori SH, Nelsen AC, Cannon KE, Heinricher MM, Porreca F (2009) Medullary pain facilitating neurons mediate allodynia in headache-related pain. Ann Neurol 65:184–193PubMedGoogle Scholar
  50. Edvinsson L (2003) New therapeutic target in primary headaches–blocking the CGRP receptor. Expert Opin Ther Targets 7:377–383PubMedGoogle Scholar
  51. Edvinsson L (2006) Neuronal signal substances as biomarkers of migraine. Headache 46:1088–1094PubMedGoogle Scholar
  52. Edvinsson L (2008a) CGRP blockers in migraine therapy: where do they act? Br J Pharmacol 155:967–969PubMedGoogle Scholar
  53. Edvinsson L (2008b) CGRP-receptor antagonism in migraine treatment. Lancet 372:2089–2090PubMedGoogle Scholar
  54. Edvinsson L, Goadsby PJ (1995) Neuropeptides in the cerebral circulation: relevance to headache. Cephalalgia 15:272–276PubMedGoogle Scholar
  55. Edvinsson L, Uddman R (1981) Adrenergic, cholinergic and peptidergic nerve fibers in dura mater-involvement in headache? Cephalalgia 1:175–179PubMedGoogle Scholar
  56. Edvinsson L, Uddman R (2005) Neurobiology in primary headaches. Brain Res Rev 48:438–456PubMedGoogle Scholar
  57. Eikermann-Haerter K, Dilekoz E, Kudo C, Savitz SI, Waeber C, Baum MJ, Ferrari MD, van den Maagdenberg AM, Moskowitz MA, Ayata C (2009) Genetic and hormonal factors modulate spreading depression and transient hemiparesis in mouse models of familial hemiplegic migraine type 1. J Clin Invest 119:99–109PubMedGoogle Scholar
  58. Entrena A, Camacho ME, Carrion MD, Lopez-Cara LC, Velasco G, Leon J, Escames G, cuna-Castroviejo D, Tapias V, Gallo MA, Vivo A, Espinosa A (2005) Kynurenamines as neural nitric oxide synthase inhibitors. J Med Chem 48:8174–8181PubMedGoogle Scholar
  59. Fabricius M, Jensen LH, Lauritzen M (1993) Microdialysis of interstitial amino acids during spreading depression and anoxic depolarization in rat neocortex. Brain Res 612:61–69PubMedGoogle Scholar
  60. Faria LC, Mody I (2004) Protective effect of ifenprodil against spreading depression in the mouse entorhinal cortex. J Neurophysiol 92:2610–2614PubMedGoogle Scholar
  61. Ferrari MD, Odink J, Tapparelli C, van Kempen GMJ, Pennings EJM, Bruyn GW (1989) Serotonin metabolism in migraine. Neurology 39:1239–1242PubMedGoogle Scholar
  62. Ferrari A, Spaccapelo L, Pinetti D, Tacchi R, Bertolini A (2009) Effective prophylactic treatments of migraine lower plasma glutamate levels. Cephalalgia 29:423–429PubMedGoogle Scholar
  63. Fields HL, Basbaum AI (1999) Central nervous system mechanisms of pain modulation. In: Wall PED, Melzack R (eds) Textbook of pain. Churchill Livingstone, EdinburghGoogle Scholar
  64. Fishman P, Black L (1999) Indirect costs of migraine in a managed care population. Cephalalgia 19:50–57PubMedGoogle Scholar
  65. Fricke B, Andres KH, Von During M (2001) Nerve fibers innervating the cranial and spinal meninges: morphology of nerve fiber terminals and their structural integration. Microsc Res Tech 53:96–105PubMedGoogle Scholar
  66. Fukui S, Schwarcz R, Rapoport SI, Takada Y, Smith QR (1991) Blood-brain barrier transport of kynurenines: implications for brain synthesis and metabolism. J Neurochem 56:2007–2017PubMedGoogle Scholar
  67. Garry MG, Walton LP, Davis MA (2000) Capsaicin-evoked release of immunoreactive calcitonin gene-related peptide from the spinal cord is mediated by nitric oxide but not by cyclic GMP. Brain Res 861:208–219PubMedGoogle Scholar
  68. Gerth WC, Carides GW, Dasbach EJ, Visser WH, Santanello NC (2001) The multinational impact of migraine symptoms on healthcare utilisation and work loss. Pharmacoeconomics 19:197–206PubMedGoogle Scholar
  69. Goadsby PJ (1998) A triptan too far? J Neurol Neurosurg Psychol 64:143–147Google Scholar
  70. Goadsby PJ (2001) Migraine, aura, and cortical spreading depression: why are we still talking about it? Ann Neurol 49:4–6PubMedGoogle Scholar
  71. Goadsby PJ (2005) Migraine, allodynia, sensitisation and all of that. Eur Neurol 53:10–16PubMedGoogle Scholar
  72. Goadsby PJ (2007) Recent advances in understanding migraine mechanisms, molecules and therapeutics. Trends Mol Med 13:39–44PubMedGoogle Scholar
  73. Goadsby PJ, Classey JD (2000) Glutamatergic transmission in the trigeminal nucleus assessed with local blood flow. Brain Res 875:119–124PubMedGoogle Scholar
  74. Goadsby PJ, Edvinsson L (1993) The trigeminovascular system and migraine: studies characterizing cerebrovascular and neuropeptide changes seen in humans and cats. Ann Neurol 33:48–56PubMedGoogle Scholar
  75. Goadsby PJ, Edvinsson L, Ekman R (1988) Release of vasoactive peptides in the extracerebral circulation of humans and the cat during activation of the trigeminovascular system. Ann Neurol 23:193–196PubMedGoogle Scholar
  76. Goadsby PJ, Edvinsson L, Ekman R (1990) Vasoactive peptide release in the extracerebral circulation of humans during migraine headache. Ann Neurol 18:183–187Google Scholar
  77. Goadsby PJ, Lipton RB, Ferrari MD (2002) Migraine-current understanding and treatment. N Engl J Med 346:257–270PubMedGoogle Scholar
  78. Goadsby PJ, Charbit AR, Andreou AP, Akerman S, Holland PR (2009a) Neurobiology of migraine. Neuroscience 161:327–341PubMedGoogle Scholar
  79. Goadsby PJ, Ferrari MD, Csanyi A, Olesen J, Mills JG (2009b) Tonabersat TON-01–05 Study Group. Randomized, double-blind, placebo-controlled, proof-of-concept study of the cortical spreading depression inhibiting agent tonabersat in migraine prophylaxis. Cephalalgia 7:742–750Google Scholar
  80. Gulbenkian S, Uddman R, Edvinsson L (2001) Neuronal messengers in the human cerebral circulation. Peptides 22:995–1007PubMedGoogle Scholar
  81. Gursoy-Ozdemir Y, Qiu J, Matsuoka N, Bolay H, Bermpohl D, Jin H, Wang X, Rosenberg GA, Lo EH, Moskowitz MA (2004) Cortical spreading depression activates and upregulates MMP-9. J Clin Invest 113:1447–1455PubMedGoogle Scholar
  82. Hadjikhani N, Sanchez Del Rio M, Wu O, Schwartz D, Bakker D, Fischl B, Kwong KK, Cutrer FM, Rosen BR, Tootell RB, Sorensen AG, Moskowitz MA (2001) Mechanisms of migraine aura revealed by functional MRI in human visual cortex. Proc Natl Acad Sci USA 98:4687–4692PubMedGoogle Scholar
  83. Haley JE, Sullivan AF, Dickenson AH (1990) Evidence for spinal N-methyl-d-aspartate receptor involvement in prolonged chemical nociception in the rat. Brain Res 518:218–226PubMedGoogle Scholar
  84. Hardingham GE, Bading H (2003) The Yin and Yang of NMDA receptor signalling. Trends Neurosci 26:81–89PubMedGoogle Scholar
  85. Hasbak P, Opgaard OS, Eskesen K, Schifter S, Arendrup H, Longmore J, Edvinsson L (2003) Investigation of CGRP receptors and peptide pharmacology in human coronary arteries. Characterization with a nonpeptide antagonist. J Pharmacol Exp Ther 304:326–333PubMedGoogle Scholar
  86. Haydon PG, Carmignoto G (2006) Astrocyte control of synaptic transmission and neurovascular coupling. Physiol Rev 86:1009–1031PubMedGoogle Scholar
  87. Headache Classification Committee of the International Headache Society (2004) The International Classification of Headache Disorders. Cephalalgia 24:1–160Google Scholar
  88. Henning EC, Meng X, Fisher M, Sotak CH (2005) Visualization of cortical spreading depression using manganese-enhanced magnetic resonance imaging. Magn Reson Med 53:851–857PubMedGoogle Scholar
  89. Hill RG, Salt TE (1982) An ionophoretic study of the responses of rat caudal trigeminal nucleus neurones to non-noxious mechanical sensory stimuli. J Physiol 327:65–78PubMedGoogle Scholar
  90. Hilmas C, Pereira EF, Alkondon M, Rassoulpour A, Schwarcz R, Albuquerque EX (2001) The brain metabolite kynurenic acid inhibits alpha7 nicotinic receptor activity and increases non-alpha7 nicotinic receptor expression: physiopathological implications. J Neurosci 21:7463–7473PubMedGoogle Scholar
  91. Ho TW, Mannix LK, Pan X, Assaid C, Furtek C, Jones CJ, Lines CR, Rapoport AM (2008) Randomized controlled trial of an oral CGRP receptor antagonist, MK-0974, in acute treatment of migraine. Neurology 70:1304–1312PubMedGoogle Scholar
  92. Ingram SL, Williams JT (1996) Modulation of the hyperpolarization-activated current (Ih) by cyclic nucleotides in guinea-pig primary afferent neurons. J Physiol 492:97–106PubMedGoogle Scholar
  93. Iversen HK, Olesen J (1996) Headache induced by a nitric oxide donor (nitroglycerin) responds to sumatriptan. A human model for development of migraine drugs. Cephalalgia 16:412–418PubMedGoogle Scholar
  94. Jensen R (2000) Central and peripheral mechanisms in migraine: a neurophysiological approach. Funct Neurol 15:63–67PubMedGoogle Scholar
  95. Jeong HJ, Chenu D, Johnson EE, Connor M, Vaughan CW (2008) Sumatriptan inhibits synaptic transmission in the rat midbrain periaqueductal grey. Mol Pain 4:54PubMedGoogle Scholar
  96. Juhász G, Zsombok T, Modos EA, Olajos S, Jakab B, Németh J, Szolcsányi J, Vitrai J, Bagdy G (2003) NO-induced migraine attack: strong increase in plasma calcitonin gene-related peptide (CGRP) concentration and negative correlation with platelet serotonin release. Pain 106:461–470PubMedGoogle Scholar
  97. Juhász G, Zsombok T, Jakab B, Németh J, Szolcsányi J, Bagdy G (2005) Sumatriptan causes parallel decrease in plasma calcitonin gene-related peptide (CGRP) concentration and migraine headache during nitroglycerin induced migraine attack. Cephalalgia 25:179–183PubMedGoogle Scholar
  98. Kaube H, Goadsby PJ (1994) Anti-migraine compounds fail to modulate the propagation of cortical spreading depression in the cat. Eur Neurol 34:30–35PubMedGoogle Scholar
  99. Keller JT, Marfurt CF (1991) Peptidergic and serotonergic innervation of rat dura mater. J Comp Neurol 309:515–534PubMedGoogle Scholar
  100. Kelman L (2004) The aura: a tertiary care study of 952 migraine patients. Cephalalgia 24:728–734PubMedGoogle Scholar
  101. Kerr FWL, Olafson RA (1961) Trigeminal and cervical volleys. Arch Neurol 5:69–76Google Scholar
  102. Kessler M, Terramani T, Lynch G, Baudry M (1989) A glycine site associated with N-methyl-d-aspartic acid receptors: characterization and identification of a new class of antagonists. J Neurochem 52:1319–1328PubMedGoogle Scholar
  103. Knight YE, Goadsby PJ (2001) The periaqueductal gray matter modulates trigeminovascular input: a role in migraine? Neuroscience 106:793–800PubMedGoogle Scholar
  104. Knight YE, Bartsch T, Kaube H, Goadsby PJ (2002) P/Q-type calcium-channel blockade in the periaqueductal gray facilitates trigeminal nociception: a functional genetic link for migraine? J Neurosci 22:RC213Google Scholar
  105. Knyihar-Csillik E, Mihaly A, Krisztin-Peva B, Robotka H, Szatmari I, Fulop F, Toldi J, Csillik B, Vecsei L (2008) The kynurenate analog SZR-72 prevents the nitroglycerol-induced increase of c-fos immunoreactivity in the rat caudal trigeminal nucleus: comparative studies of the effects of SZR-72 and kynurenic acid. Neurosci Res 61:429–432PubMedGoogle Scholar
  106. Knyihár-Csillik E, Tajti J, Samsam M, Sáry Gy, Vécsei L (1995) Electrical stimulation of the Gasserian ganglion induces structural alterations of calcitonin gene-related peptide-immunoreactive perivascular sensory nerve terminals in the rat cerebral dura mater: a possible model of migraine headache. Neurosci Lett 184:189–192PubMedGoogle Scholar
  107. Knyihár-Csillik E, Chadaide Z, Okuno E, Krisztin-Péva B, Toldi J, Varga C, Molnár A, Csillik B, Vécsei L (2004) Kynurenine aminotransferase in the supratentorial dura mater of the rat: effect of stimulation of the trigeminal ganglion. Exp Neurol 186:242–247PubMedGoogle Scholar
  108. Knyihár-Csillik E, Toldi J, Krisztin-Péva B, Chadaide Z, Németh H, Fenyo R, Vécsei L (2007a) Prevention of electrical stimulation-induced increase of c-fos immunoreaction in the caudal trigeminal nucleus by knyurenine combined with probenecid. Neurosci Lett 418:122–126PubMedGoogle Scholar
  109. Knyihár-Csillik E, Toldi J, Mihály A, Krisztin-Péva B, Chadaide Z, Németh H, Fenyo R, Vécsei L (2007b) Kynurenine in combination with probenecid mitigates the stimulation-induced increase of c-fos immunoreactivity of the rat caudal trigeminal nucleus in an experimental migraine model. J Neural Transm 114:417–421PubMedGoogle Scholar
  110. Kolaj M, Cerne R, Cheng G, Brickey DA, Randić M (1994) Alpha subunit of calcium/calmodulin-dependent protein kinase enhances excitatory amino acid and synaptic responses of rat spinal dorsal horn neurons. J Neurophysiol 72:2525–2531PubMedGoogle Scholar
  111. Kovács K, Kapócs G, Widerlöv E, Ekman R, Vécsei L, Jelencsik I, Csanda E (1991) Suboccipital cerebrospinal fluid and plasma concentrations of corticotropin-releasing hormone and calcitonin gene-related peptide in patients with common migraine. Nord Psykiatr Tidsskr 45:11–16Google Scholar
  112. Kunkler PE, Kraig RP (2003) Hippocampal spreading depression bilaterally activates the caudal trigeminal nucleus in rodents. Hippocampus 13:835–844PubMedGoogle Scholar
  113. Kunkler PE, Kraig RP (2004) P/Q Ca2+ channel blockade stops spreading depression and related pyramidal neuronal Ca2+ rise in hippocampal organ culture. Hippocampus 14:356–367PubMedGoogle Scholar
  114. Lambert GA, Zagami AS (2009) The mode of action of migraine triggers: a hypothesis. Headache 49:253–275PubMedGoogle Scholar
  115. Lance JW, Lambert GA, Goadsby PJ, Duckworth JW (1983) Brain stem influences on the cephalic circulation: experimental data from cat and monkey of relevance to the mechanism of migraine. Headache 23:258–265PubMedGoogle Scholar
  116. Lance JW, Lambert GA, Goadsby PJ, Zagami AS (1990) Contribution of experimental studies to understanding the pathophysiology of migraine. In: Sandler M, Collins GM (eds) Migraine: a spectrum of ideas. Oxfrod University Press, Oxford, pp 21–39Google Scholar
  117. Lashley KS (1941) Patterns of cerebral integration indicated by the scotomas of migraine. Arch Neurol Psychiatry 46:331–339Google Scholar
  118. Lassen LH, Ashina M, Christiansen I, Ulrich V, Olesen J (1997) Nitric oxide synthase inhibition in migraine. Lancet 349:401–402PubMedGoogle Scholar
  119. Lassen LH, Haderslev PA, Jacobsen VB, Iversen HK, Sperling B, Olesen J (2002) CGRP may play a causative role in migraine. Cephalalgia 22:54–61PubMedGoogle Scholar
  120. Lassen LH, Jacobsen VB, Haderslev PA, Sperling B, Iversen HK, Olesen J, Tfelt-Hansen P (2008) Involvement of calcitonin gene-related peptide in migraine: regional cerebral blood flow and blood flow velocity in migraine patients. J Headache Pain 9:151–157PubMedGoogle Scholar
  121. Lauritzen M (1994) Pathophysiology of the migraine aura leading depression theory. Brain 117:199–210PubMedGoogle Scholar
  122. Lauritzen M, Hansen A (1992) The effect of glutamate receptor blockade on anoxic depolarization and cortical spreading depression. J Cereb Blood Flow Metab 12:223–229PubMedGoogle Scholar
  123. Leao AAP (1944) Spreading depression of activity in the cerebral cortex. J Neurophysiol 7:391–396Google Scholar
  124. Lennerz JK, Ruhle V, Ceppa EP, Neuhuber WL, Bunnet NW, Grady EF (2008) Calcitonin receptor-like receptor (CLR), receptor activity-modifying protein 1 (RAMP1), and calcitonin gene-related peptide (CGRP) immunoreactivity in the rat trigeminovascular system: differences between peripheral and central CGRP receptor distribution. J Comp Neurol 507:1277–1299PubMedGoogle Scholar
  125. Leonardi M, Steiner TJ, Scher AT, Lipton RB (2005) The global burden of migraine: measuring disability in headache disorders with WHO’s Classification of Functioning, disability and Health (ICF). J Headache Pain 6:429–440PubMedGoogle Scholar
  126. Lipton RB, Stewart WF, Diamond S, Diamond ML, Reed M (2001) Prevalence and burden of migraine in the United States: data from the American Migraine Study II. Headache 41:646–657PubMedGoogle Scholar
  127. Longoni M, Ferrarese C (2006) Inflammation and excitotoxicity: role in migraine pathogenesis. Neurol Sci 27:S107–S110PubMedGoogle Scholar
  128. Lovick TA, Wolstencroft JH (1983) Projections from brain stem nuclei to the spinal trigeminal nucleus in the cat. Neuroscience 9:411–420PubMedGoogle Scholar
  129. Marchi M, Risso F, Viola C, Cavazzani P, Raiteri M (2002) Direct evidence that release-stimulating alpha7 nicotinic cholinergic receptors are localized on human and rat brain glutamatergic axon terminals. J Neurochem 80:1071–1078PubMedGoogle Scholar
  130. Martella G, Costa C, Pisani A, Cupini LM, Bernardi G, Calabresi P (2008) Antiepileptic drugs on calcium currents recorded from cortical and PAG neurons: therapeutic implications for migraine. Cephalalgia 28:1315–1326PubMedGoogle Scholar
  131. Martinez F, Castillo J, Rodriguez JR, Leira R, Noya M (1993) Neuroexcitatory amino acid levels in plasma and cerebrospinal fluid during migraine attacks. Cephalalgia 13:89–93PubMedGoogle Scholar
  132. Mayberg M, Langers RS, Zervos NT, Moskowitz MA (1981) Perivascular meningeal projections from cat trigeminal ganglia: possible pathway for vascular headache in man. Science 213:228–230PubMedGoogle Scholar
  133. Menken M, Munsat TL, Toole JF (2000) The global burden of disease study-implications for neurology. Arch Neurol 57:418–420PubMedGoogle Scholar
  134. Messlinger K (2009) Migraine: when and how does the pain originate? Exp Brain Res 196:179–193PubMedGoogle Scholar
  135. Mitsikostas DD, Sanchez del Rio M, Waeber C (1998) The NMDA receptor antagonist MK-800 reduces capsaicin induced c-fos expression within rat trigeminal nucleus caudalis. Pain 76:239–248PubMedGoogle Scholar
  136. Miyata A, Arimura A, Dahl RR, Minamino N, Uehara A, Jiang L, Culler MH, Coy DH (1989) Isolation of a novel 38 residue-hypothalamic polypeptide which stimulates adenylate cyclase in pituitary cells. Biochem Biophys Res Commun 164:567–574PubMedGoogle Scholar
  137. Moller K, Zhang YZ, Hakanson R, Luts A, Sjolund B, Uddman R, Sundler F (1993) Pituitary adenylate cyclase activating peptide is a sensory neuropeptide: immunocytochemical and immunochemical evidence. Neuroscience 57:725–732PubMedGoogle Scholar
  138. Morris RG, Panico M, Etienne T, Tippins J, Girgis SI, McIntyre I (1984) Isolation and characterization of human calcitonin gene-related peptide. Nature 308:746–748PubMedGoogle Scholar
  139. Morris RG, Anderson E, Lynch GS, Baudry M (1986) Selective impairment of learning and blockade of long-term potentiation by an N-methyl-d-aspartate receptor antagonist, AP5. Nature 319:774–776PubMedGoogle Scholar
  140. Moskowitz MA (2008) Defining a pathway to discovery from bench to bedside: the trigeminovascular system and sensitization. Headache 48:688–690PubMedGoogle Scholar
  141. Moskowitz MA, Nozaki K, Kraig RP (1993) Neocortical spreading depression provokes the expression of c-fos protein-like immunoreactivity within trigeminal nucleus caudalis via trigeminovascular mechanisms. J Neurosci 13:1167–1177PubMedGoogle Scholar
  142. Moskowitz MA, Bolay H, Dalkara T (2004) Deciphering migraine mechanisms: clues from familial hemiplegic migraine genotypes. Ann Neurol 55:276–280PubMedGoogle Scholar
  143. Obrenovitch TP, Urenjak J, Wang M (2002) Nitric oxide formation during cortical spreading depression is critical for rapid subsequent recovery of ionic homeostasis. J Cereb Blood Flow Metab 22:680–688PubMedGoogle Scholar
  144. Ogi K, Kimura C, Onda H, Arimura A, Fujino M (1990) Molecular cloning and characterization of cDNA for the precursor of rat pituitary adenylate cyclase activating polypeptide (PACAP). Biochem Biophys Res Commun 173:1271–1279PubMedGoogle Scholar
  145. Ohkubo S, Kimura C, Ogi K, Okazaki K, Hosoya M, Onda H, Miyata A, Arimura A, Fujino M (1992) Primary structure and characterization of the precursor to human pituitary adenylate cyclase activating polypeptide. DNA Cell Biol 11:21–30PubMedGoogle Scholar
  146. Olesen J, Saxena PR (1992) 5-Hydroxytryptamine mechanisms in primary headaches. Raven Press, New YorkGoogle Scholar
  147. Olesen J, Thomsen LL, Lassen LH, Olesen IJ (1995) The nitric oxide hypothesis of migraine and other vascular headaches. Cephalalgia 15:94–100PubMedGoogle Scholar
  148. Olesen J, Diener HC, Husstedt IW, Goadsby PJ, Hall D, Meier U, Pollentier S, Lesko LM (2004) Calcitonin gene-related peptide receptor antagonist BIBN 4096 BS for the acute treatment of migraine. N Engl J Med 350:1104–1110PubMedGoogle Scholar
  149. Olesen J, Burstein R, Ashina M, Tfelt-Hansen P (2009) Origin of pain in migraine: evidence for peripheral sensitisation. Lancet Neurol 8:679–690PubMedGoogle Scholar
  150. Ophoff RA, Terwindt GM, Vergouwe MN, van Eijk R, Oefner PJ, Hoffman SM, Lamerdin JE, Mohrenweiser HW, Bulman DE, Ferrari M, Haan J, Lindhout D, van Ommen GJ, Hofker MH, Ferrari MD, Frants RR (1996) Familial hemiplegic migraine and episodic ataxia type-2 are caused by mutations in the Ca2+ channel gene CACNL1A4. Cell 87:543–552PubMedGoogle Scholar
  151. Oshinsky ML, Luo J (2006) Neurochemistry of trigeminal activation in an animal model of migraine. Headache 46:S39–S44PubMedGoogle Scholar
  152. Palkovits M, Jacobowitz DM (1974) Topographic atlas of catecholamine and acetylcholinesterase-containing neurons in the rat brain. II. Hindbrain (mesencephalon, rhombencephalon). J Comp Neurol 157:29–42PubMedGoogle Scholar
  153. Panconesi A, Bartoozzi ML, Guidi L (2009) Migraine pain: reflections against vasodilatation. J Headache Pain 10:317–325PubMedGoogle Scholar
  154. Pardutz A, Krizbai I, Multon S, Vecsei L, Schoenen J (2000) Systemic nitroglycerin increases nNOS levels in rat trigeminal nucleus caudalis. Neuroreport 11:3071–3075PubMedGoogle Scholar
  155. Pardutz A, Multon S, Malgrange B, Parducz A, Vécsei L, Schoenen J (2002) Effect of systemic nitroglycerin on CGRP and 5-HT afferents to rat caudal spinal trigeminal nucleus and its modulation by estrogen. Eur J Neurosci 15:1803–1809PubMedGoogle Scholar
  156. Pardutz A, Szatmári E, Vécsei L, Schoenen J (2004) Nitroglycerin-induced nNOS increase in rat trigeminal nucleus caudalis is inhibited by systemic administration of lysine acetylsalicylate but not of sumatriptan. Cephalalgia 24:439–445PubMedGoogle Scholar
  157. Pardutz A, Hoyk Z, Varga H, Vécsei L, Schoenen J (2007) Oestrogen-modulated increase of calmodulin-dependent protein kinase II (CamKII) in rat spinal trigeminal nucleus after systemic nitroglycerin. Cephalalgia 27:46–53PubMedGoogle Scholar
  158. Peeters M, Gunthorpe MJ, Strijbos PJLM, Goldsmith P, Upton N, James MF (2007) Effects of pan- and subtype-selective N-methyl-d-aspartate receptor antagonists on cortical spreading depression in the rat: therapeutic potential for migraine. J Pharmacol Exp Ther 321:564–572PubMedGoogle Scholar
  159. Perkins MN, Stone TW (1982) An iontophoretic investigation of the actions of convulsant kynurenines and their interaction with the endogenous excitant quinolinic acid. Brain Res 247:184–187PubMedGoogle Scholar
  160. Perkins MN, Stone TW (1985) Actions of kynurenic acid and quinolinic acid in the rat hippocampus in vivo. Exp Neurol 88:570–579PubMedGoogle Scholar
  161. Peters O, Schipke CG, Hashimoto Y, Kettenmann H (2003) Different mechanisms promote astrocyte Ca2+ waves and spreading depression in the mouse neocortex. J Neurosci 23:9888–9896PubMedGoogle Scholar
  162. Petzold GC, Windmuller O, Haack S, Major S, Buchheim K, Megow D, Gabriel S, Lehmann TN, Drenckhahn C, Peters O, Meierkord H, Heinemann U, Dirnagl U, Dreier JP (2005) Increased extracellular K+ concentration reduces the efficacy of N-methyl-d-aspartate receptor antagonists to block spreading depression-like depolarizations and spreading ischemia. Stroke 36:1270–1277PubMedGoogle Scholar
  163. Pietrobon D, Striessing J (2003) Neurobiology of migraine. Nat Rev Neurosci 4:386–398PubMedGoogle Scholar
  164. Piovesan EJ, Kowacs PA, Oshinsky ML (2003) Convergence of cervical and trigeminal sensory afferents. Curr Pain Headache Rep 7:377–383PubMedGoogle Scholar
  165. Rajda C, Tajti J, Komoróczy R, Seres E, Klivényi P, Vécsei L (1999) Amino acids in the saliva of migraine patients. Headache 39:644–649PubMedGoogle Scholar
  166. Raskin NH, Hosobuchi Y, Lamb S (1987) Headache may arise from perturbation of the brain. Headache 27:416–420PubMedGoogle Scholar
  167. Read SJ, Smith MI, Hunter AJ, Upton N, Parsons AA (2000) SB-220453, a potential novel antimigraine agent, inhibits nitric oxide release following induction of cortical spreading depression in the anaesthetized cat. Cephalalgia 20:92–99PubMedGoogle Scholar
  168. Reuter U, Weber JR, Gold L, Arnold G, Wolf T, Dreier J, Lindauer U, Dirnagl U (1998) Perivascular nerves contribute to cortical spreading depression associated hyperemia in rats. Am J Physiol Heart Circ Physiol 274:1979–1987Google Scholar
  169. Robotka H, Toldi J, Vécsei L (2008) l-Kynurenine: metabolism and mechanism of neuroprotection. Future Neurol 3:169–188Google Scholar
  170. Rosenfeld MG, Mermod JJ, Amara SG, Swanson LW, Sawchenko PE, Rivier J, Vale WW, Evans RM (1983) Production of a novel neuropeptide encoded by the calcitonin gene via tissue-specific RNA processing. Nature 304:129–135PubMedGoogle Scholar
  171. Rózsa É, Robotka H, Vécsei L, Toldi J (2008) The Janus-face kynurenic acid. J Neural Transm 115:1087–1091PubMedGoogle Scholar
  172. Sang CN, Ramadan NM, Wallihan RG, Chappell AS, Freitag FG, Smith TR, Silberstein SD, Johnson KW, Phebus LA, Bleakman D, Ornstein PL, Arnold B, Tepper SJ, Vandenhende F (2004) LY293558, a novel AMPA/GluR5 antagonist, is efficacious and well-tolerated in acute migraine. Cephalalgia 24:596–602PubMedGoogle Scholar
  173. Santamaria A, Rios C, Solis-Hernandez F, Ordaz-Moreno J, Gonzalez-Reynoso L, Altagracia M, Kravzov J (1996) Systemic d, l-kynurenine and probenecid pretreatment attenuates quinolinic acid-induced neurotoxicity in rats. Neuropharmacology 35:23–28PubMedGoogle Scholar
  174. Sas K, Robotka H, Toldi J, Vécsei L (2007) Mitochondria, metabolic disturbances, oxidative stress and the kynurenine system, with focus on neurodegenerative disorders. J Neurol Sci 257:221–239PubMedGoogle Scholar
  175. Schock SC, Munyao N, Yakubchyk Y, Sabourin LA, Hakim AM, Ventureyra ECG, Thompson CS (2007) Cortical spreading depression releases ATP into the extracellular space and purinergic receptor activation contributes to the induction of ischemic tolerance. Brain Res 1168:129–138PubMedGoogle Scholar
  176. Schoenen J (1997) Acute migraine therapy: the newer drugs. Curr Opin Neurol 10:237–243PubMedGoogle Scholar
  177. Schoenen J, Ambrosini A, Sándor PS, Maertens de Noordhout A (2003) Evoked potentials and transcranial magnetic stimulation in migraine: published data and viewpoint on their pathophysiologic significance. Clin Neurophysiol 114:955–972PubMedGoogle Scholar
  178. Schoonman GG, van der Grond J, Kortmann C, van der Geest RJ, Terwindt GM, Ferrari MD (2008) Migraine headache is not associated with cerebral or meningeal vasodilatation—a 3T magnetic resonance angiography study. Brain 131:2192–2200PubMedGoogle Scholar
  179. Schytz HW, Birk S, Wienecke T, Kruuse C, Olesen J, Ashina M (2009) PACAP38 induces migraine-like attacks in patients with migraine without aura. Brain 132:16–25PubMedGoogle Scholar
  180. Seki Y, Suzuki Y, Baskaya MB, Kano T, Saito K, Takayasu M, Shibuya M, Sugita K (1995) The effects of pituitary adenylate cyclase activating polypeptide on cerebral arteries and vertebral artery blood flow in anesthetized dogs. Eur J Pharmacol 275:259–266PubMedGoogle Scholar
  181. Shimizu K, Bari F, Busija DW (2000) Glibenclamide enhances cortical spreading depression-associated hyperemia in the rat. NeuroReport 11:2103–2106Google Scholar
  182. Sicuteri F, Testi A, Anselmi B (1961) Biochemical investigations in headache: increase in hydroxyindoleacetic acid excretion during migraine attacks. Int Arch Allergy 19:55–58Google Scholar
  183. Sicuteri F, Del BE, Poggioni M, Bonazzi A (1987) Unmasking latent dysnociception in healthy subjects. Headache 27:180–185PubMedGoogle Scholar
  184. Silberstein SD, Lipton RB, Goadsby PJ (1998) Headache in clinical practice. Isis Medical Media, Oxford, pp 41–90Google Scholar
  185. Silberstein SD, Schoenen J, Göbel H, Diener HC, Elkind AH, Klapper JA, Howard RA (2009) Tonabersat, a gap-junction modulator: efficacy and safety in two randomized, placebo-controlled, dose-ranging studies of acute migraine. Cephalalgia 29:17–27PubMedGoogle Scholar
  186. Smith JM, Bradley DP, James MF, Huang CL (2006) Physiological studies of cortical spreading depression. Biol Rev 81:457–481PubMedGoogle Scholar
  187. Somjen GG (2001) Mechanisms of spreading depression and hypoxic spreading depression-like depolarization. Physiol Rev 81:1065–1096PubMedGoogle Scholar
  188. Steiner TJ (2005) Lifting the burden: the global campaign to reduce the burden of headache worldwide. J Headache Pain 6:373–377PubMedGoogle Scholar
  189. Steiner TJ, Scher AI, Stewart WF, Kolodner K, Liberman J, Lipton RB (2003) The prevalence and disability burden of adult migraine in England and their relationships to age, gender and ethnicity. Cephalalgia 23:519–527PubMedGoogle Scholar
  190. Stone TW, Mackay GM, Forrest CM, Clark CJ, Darlington LG (2003) Tryptophan metabolites and brain disorders. Clin Chem Lab Med 41:852–859PubMedGoogle Scholar
  191. Storer RJ, Goadsby PJ (1999) Trigeminovascular nociceptive transmission involves N-methyl-d-aspartate and non-N-methyl-d-aspartate glutamate receptors. Neuroscience 90:1371–1376PubMedGoogle Scholar
  192. Stovner L, Hogen K, Jensen R, Katsarava Z, Lipton R, Scher A (2007) The global burden of headache a documentation of headache prevalence and disability world-wide. Cephalalgia 27:193–210PubMedGoogle Scholar
  193. Supornsilpchai W, Sanguanrangsirikul S, Maneesri S, Srikiatkhachorn A (2006) Serotonin depletion, cortical spreading depression, and trigeminal nociception. Headache 46:34–39PubMedGoogle Scholar
  194. Tajti J, Uddman R, Möller S, Sundler F, Edvinsson L (1999) Messenger molecules and receptor mRNA in the human trigeminal ganglion. J Auton Nerv Syst 76:176–183PubMedGoogle Scholar
  195. Tajti J, Uddman R, Edvinsson L (2001) Neuropeptide messengers in the migraine generator region of the human brainstem. Cephalalgia 21:96–101PubMedGoogle Scholar
  196. Tallaksen-Greene SJ, Young AB, Penney JB, Beitz AJ (1992) Excitatory amino acid binding sites in the trigeminal principal sensory and spinal trigeminal nuclei of the rat. Neurosci Lett 141:79–83PubMedGoogle Scholar
  197. Tassorelli C, Joseph SA (1995) Systemic nitroglycerin induces Fos immunoreactivity in brainstem and forebrain structures of the rat. Brain Res 682:167–181Google Scholar
  198. Tepper SJ, Rapoport AM, Sheftell FD (2002) Mechanisms of action of the 5-HT1B/1D receptor agonists. Arch Neurol 59:1084–1088PubMedGoogle Scholar
  199. Tobiasz C, Nicholson C (1982) Tetrodotoxin resistant propagation and extracellular sodium changes during spreading depression in rat cerebellum. Brain Res 241:329–333PubMedGoogle Scholar
  200. Uddman R, Goadsby PJ, Jansen J, Edvinsson L (1993) PACAP, a VIP-like peptide: immunohistochemical localization and effect upon cat pial arteries and cerebral blood flow. J Cerebral Blood Flow Metab 13:291–297Google Scholar
  201. Uddman R, Tajti J, Hou M, Sundler F, Edvinsson L (2002) Neuropeptide expression in the human trigeminal nucleus caudalis and in the cervical spinal cord C1 and C2. Cephalalgia 22:112–116PubMedGoogle Scholar
  202. Vámos E, Fejes A, Koch J, Tajti J, Fülöp F, Toldi J, Párdutz Á, Vécsei L (2009a) Kynurenate derivative attenuates the nitroglycerin-induced CamKIIα and CGRP expression changes. Headache. doi: 10.1111/j.1526-4610.2009.01574.x
  203. Vámos E, Párdutz A, Fejes A, Tajti J, Toldi J, Vécsei L (2009b) Modulatory effects of probenecid on the nitroglycerin-induced changes in the rat caudal trigeminal nucleus. Eur J Pharmacol 621:33–37PubMedGoogle Scholar
  204. Vámos E, Párdutz A, Varga H, Bohár Z, Tajti J, Fülöp F, Toldi J, Vécsei L (2009c) l-Kynurenine combined with probenecid and the novel synthetic kynurenic acid derivative attenuate nitroglycerin-induced nNOS in the rat caudal trigeminal nucleus. Neuropharmacology 57:425–429PubMedGoogle Scholar
  205. van den Maagdenberg AM, Pietrobon D, Pizzorusso T, Kaja S, Broos LA, Cesetti T, van de Ven RC, Tottene A, van der Kaa J, Plomp JJ, Frants RR, Ferrari MD (2004) A Cacna1a knockin migraine mouse model with increased susceptibility to cortical spreading depression. Neuron 41:701–710PubMedGoogle Scholar
  206. Vanmolkot KR, Kors EE, Turk U, Turkdogan D, Keyser A, Broos LA, Kia SK, van den Heuvel JJ, Black DF, Haan J, Frants RR, Barone V, Ferrari MD, Casari G, Koenderink JB, van den Maagdenberg AM (2006) Two de novo mutations in the Na, K-ATPase gene ATP1A2 associated with pure familial hemiplegic migraine. Eur J Hum Genet 14:555–560PubMedGoogle Scholar
  207. Vécsei L (ed) (2005) Kynurenines in the brain. From experiments to clinics. Nova, New YorkGoogle Scholar
  208. Vécsei L, Miller J, MacGarvey U, Beal MF (1992) Kynurenine and probenecid inhibit pentylenetetrazol- and NMDLA-induced seizures and increase kynurenic acid concentrations in the brain. Brain Res Bull 28:233–238PubMedGoogle Scholar
  209. Vikelis M, Mitsikostas DD (2007) The role of glutamate and its receptors in migraine. CNS Neurol Disord Drug Targets 6:251–257PubMedGoogle Scholar
  210. Wahl M, Schilling L, Parsons AA, Kaumann A (1994) Involvement of calcitonin gene-related peptide (CGRP) and nitric oxide (NO) in the pial artery dilatation elicited by cortical spreading depression. Brain Res 637:204–210PubMedGoogle Scholar
  211. Weiller C, May A, Limmorth V, Jüptner M, Kaube H, Schayck R, Coenen HH, Diener HC (1995) Brain stem activation in spontaneous human migraine attacks. Nat Med 1:658–660PubMedGoogle Scholar
  212. Welch KM (2005) Brain hyperexcitability: the basis for antiepileptic drugs in migraine prevention. Headache 45:S25–S32PubMedGoogle Scholar
  213. Welch KM, Nagesh V, Aurora SK, Gelman N (2001) Periaqueductal gray matter dysfunction in migraine: cause or the burden of illness? Headache 41:629–637PubMedGoogle Scholar
  214. Wimalawansa SJ (1996) Calcitonin gene-related peptide and its receptors: molecular genetics, physiology, pathophysiology, and therapeutic potentials. Endocr Rev 17:533–585PubMedGoogle Scholar
  215. Wolff HG (1963) Headache and other head pain. Oxford University Press, New YorkGoogle Scholar
  216. Woolf CJ, Salter MW (2000) Neuronal plasticity: increasing the gain in pain. Science 288:1765–1769PubMedGoogle Scholar
  217. Woolf CJ, Thompson SW (1991) The induction and maintenance of central sensitization is dependent on N-methyl-d-aspartic acid receptor activation, implications for the treatment of postinjury pain hypersensitivity states. Pain 44:293–299PubMedGoogle Scholar
  218. World Health Organization (2001) The World Health Report 2001. WHO, GenevaGoogle Scholar
  219. Wu Y-J, Boissard CG, Greco C, Gribkoff VK, Harden DG, He H (2003) (S)-N-[1-(3-Morpholin-4-ylphenyl)ethyl]- 3-phenylacrylamide: an orally bioavailable KCNQ2 opener with significant activity in a cortical spreading depression model of migraine. J Med Chem 46:3197–3200PubMedGoogle Scholar
  220. Xiong ZQ, Stringer JL (2000) Sodium pump activity, not glial spatial buffering, clears potassium after epileptiform activity induced in the dentate gyrus. J Neurophysiol 83:1443–1451PubMedGoogle Scholar
  221. Yokota T (1988) Anatomy and physiology of intra- and extracranial nociceptive afferents and their central projections. In: Olesen J, Edvinsson L (eds) Basic mechanisms of headache. Elsevier, New YorkGoogle Scholar
  222. Zagami AS, Goadsby PJ, Edvinsson L (1990) Stimulation of the superior sagittal sinus in the cat causes release of vasoactive peptides. 16:69–75Google Scholar
  223. Zagami AS, Edvinsson L, Hoskin KL, Goadsby PJ (1995) Stimulation of the superior sagittal sinus causes extracranial release of PACAP. Cephalalgia 15:109Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • J. Tajti
    • 1
  • Á. Párdutz
    • 1
  • E. Vámos
    • 2
  • B. Tuka
    • 1
  • A. Kuris
    • 1
  • Zs. Bohár
    • 1
  • A. Fejes
    • 1
  • J. Toldi
    • 3
  • L. Vécsei
    • 1
  1. 1.Department of Neurology, Albert Szent-Györgyi Clinical CentreUniversity of SzegedSzegedHungary
  2. 2.Department of Physiology, Anatomy and Neuroscience, Research Group for Cortical Microcircuits of the Hungarian Academy of SciencesUniversity of SzegedSzegedHungary
  3. 3.Department of Physiology, Anatomy and NeuroscienceUniversity of SzegedSzegedHungary

Personalised recommendations