Journal of Neural Transmission

, Volume 117, Issue 9, pp 1067–1076 | Cite as

Chronic variable stress induces oxidative stress and decreases butyrylcholinesterase activity in blood of rats

  • Bárbara Tagliari
  • Tiago M. dos Santos
  • Aline A. Cunha
  • Daniela D. Lima
  • Débora Delwing
  • Angela Sitta
  • Carmem R. Vargas
  • Carla Dalmaz
  • Angela T. S. Wyse
Basic Neurosciences, Genetics and Immunology - Original Article


Depressive disorders, including major depression, are serious and disabling, whose mechanisms are not clearly understood. Since life stressors contribute in some fashion to depression, chronic variable stress (CVS) has been used as an animal model of depression. In the present study we evaluated some parameters of oxidative stress [thiobarbituric acid reactive substances (TBARS), catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx)], and inflammatory markers (interleukin 6, C reactive protein, tumor necrosis factor-alpha and nitrites), as well as the activity of butyrylcholinesterase in blood of rats subjected to chronic stress. Homocysteine and folate levels also were measured. Stressed animals were submitted to different mild stressors for 40 days. After CVS, a reduction in weight gain was observed in the stressed group, as well as an increase in immobility time in the forced swimming test as compared with controls. Stressed animals presented a significant increase on TBARS and SOD/CAT ratio, but stress did not alter GPx activity and any inflammatory parameters studied. CVS caused a significant inhibition on serum butyrylcholinesterase activity. Stressed rats had higher plasmatic levels of homocysteine without differences in folate levels. Although it is difficult to extrapolate our findings to the human condition, the alterations observed in this work may be useful to help to understand, at least in part, the pathophysiology of depressive disorders.


Depression Oxidative stress Inflammation Butyrylcholinesterase Homocysteine 


  1. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126CrossRefPubMedGoogle Scholar
  2. Alcantara VM, Chautard-Freire-Maia EA, Scartezini M, Cerci MS, Braun-Prado K, Picheth G (2002) Butyrylcholinesterase activity and risk factors for coronary artery disease. Scan J Clin Lab Invest 62:399–404CrossRefGoogle Scholar
  3. Alexopoulos P, Topalidis S, Irmisch G, Prehn K, Jung SU, Poppe K, Sebb H, Perneczky R, Kurz A, Bleich S, Herpertz SC (2010) Homocysteine and cognitive function in geriatric depression. Neuropsychobiology 61(2):97–104CrossRefPubMedGoogle Scholar
  4. Bao AM, Meynena G, Swaab DF (2008) The stress system in depression and neurodegeneration: focus on the human hypothalamus. Brain Res Rev 57:531–553CrossRefPubMedGoogle Scholar
  5. Belmaker RH, Agam G (2008) Major depressive disorder. N Engl J Med 358(1):55–68CrossRefPubMedGoogle Scholar
  6. Bilici M, Efe H, Köroğlu MA, Uydu HA, Bekaroğlu M, Değer O (2001) Antioxidative enzyme activities and lipid peroxidation in major depression: alterations by antidepressant treatments. J Affect Disord 64(1):43–51CrossRefPubMedGoogle Scholar
  7. Bottiglieri T, Laundy M, Crellin R, Toone BK, Carney MW, Reynolds EH (2000) Homocysteine, folate, methylation, and monoamine metabolism in depression. J Neurol Neurosurg Psychiatry 69:228–232CrossRefPubMedGoogle Scholar
  8. Bradford MM (1976) A rapid and sensitive method for the quantification of micrograms quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefPubMedGoogle Scholar
  9. Cascalheira JF, Parreira MC, Viegas AN, Faria MC, Domingues FC (2008) Serum homocysteine: relationship with circulating levels of cortisol and ascorbate. Ann Nutr Metab 53(1):67–74CrossRefPubMedGoogle Scholar
  10. Charney DS, Manji HK (2004) Life stress, genes, and depression: multiple pathways lead to increased risk and new opportunities for intervention. Sci. STKE 225:1–11Google Scholar
  11. Cumurcu BE, Ozyurt H, Etikan I, Demir S, Karlidag R (2009) Total antioxidant capacity and total oxidant status in patients with major depression: impact of antidepressant treatment. Psychiatry Clin Neurosci 63(5):639–645CrossRefPubMedGoogle Scholar
  12. Dantzer R (2006) Cytokine, sickness behavior and depression. Neurol Clin 24(3):441–446CrossRefPubMedGoogle Scholar
  13. Darvesh S, Hopkins DA, Geula C (2003) Neurobiology of butyrylcholinesterase. Nat Rev Neurosci 17:131–138CrossRefGoogle Scholar
  14. de Souza FG, Rodrigues MD, Tufik S, Nobrega JN, D’Almeida V (2006) Acute stressor-selective effects on homocysteine metabolism and oxidative stress parameters in female rats. Pharmacol Biochem Behav 85(2):400–407CrossRefPubMedGoogle Scholar
  15. Del Rio D, Stewart AJ, Pellegrini N (2005) A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutr Metab Cardiovasc Dis 15:316–328CrossRefPubMedGoogle Scholar
  16. Draper HH, Hadley M (1990) Malondialdehyde determination as index of lipid peroxidation. Methods Enzymol 186:421–431CrossRefPubMedGoogle Scholar
  17. Ellman GL, Courtney KD, Andres V, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95CrossRefPubMedGoogle Scholar
  18. Faraci FM, Lentz SR (2004) Hyperhomocysteinemia, oxidative stress, and cerebral vascular dysfunction. Stroke 35:345–347CrossRefPubMedGoogle Scholar
  19. Ferreira AG, Lima DD, Delwing D, Mackedanz V, Tagliari B, Kolling J, Schuck PF, Wajner M, Wyse AT (2010) Proline impairs energy metabolism in cerebral cortex of young rats. Metab Brain Dis 25(2):161–168CrossRefPubMedGoogle Scholar
  20. Folstein M, Liu T, Peter I, Buel J, Arsenault L, Scott T, Qiu WW (2007) Homocysteine hypothesis of depression. Am J Psychiatry 16:861–867CrossRefGoogle Scholar
  21. Gamaro GD, Manoli LP, Torres ILS, Silveira R, Dalmaz C (2003) Effects of chronic variate stress on feeding behavior and on monoamine levels in different rat brain structures. Neurochem Int 42:107–114CrossRefPubMedGoogle Scholar
  22. Gamaro GD, Prediger ME, Bassani MG, Dalmaz C (2008) Fluoxetine alters feeding behavior and leptin levels in chronically-stressed rats. Pharmacol Biochem Behav 90:312–317CrossRefPubMedGoogle Scholar
  23. Gillespie CF, Nemeroff CB (2005) Hypercortisolemia and depression. Psychosom Med 67:26–28CrossRefGoogle Scholar
  24. Goshen I, Kreisel T, Ben-Menachem-Zidon O, Licht T, Weidenfeld J, Ben-Hur T, Yirmiya R (2008) Brain interleukin-1 mediates chronic stress-induced depression in mice via adrenocortical activation and hippocampal neurogenesis suppression. Mol Psychiatry 13(7):717–728CrossRefPubMedGoogle Scholar
  25. Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR (1982) Analysis of nitrate, nitrite and [15N]nitrate in biological fluids. Anal Biochem 126:131–138CrossRefPubMedGoogle Scholar
  26. Haack M, Hinze-Selch D, Fenzel T, Kraus T, Kühn M, Schuld A, Pollmächer T (1999) Plasma levels of cytokines and soluble cytokine receptors in psychiatric patients upon hospital admission: effects of confounding factors and diagnosis. J Psychiatr Res 33:407–418CrossRefPubMedGoogle Scholar
  27. Halliwell B (2006) Oxidative stress and neurodegeneration: where are we now? J Neurochem 97:1634–1658CrossRefPubMedGoogle Scholar
  28. Halliwell B, Gutteridge JMC (2006) Free radicals in biology and medicine, 4th edn. Oxford University Press, OxfordGoogle Scholar
  29. Harro J, Tõnissaar M, Eller M, Kask A, Oreland L (2001) Chronic variable stress and partial 5-HT denervation by parachloroamphetamine treatment in the rat: effects on behavior and monoamine neurochemistry. Brain Res 899(1–2):227–239CrossRefPubMedGoogle Scholar
  30. Jendricko T, Vidović A, Grubisić-Ilić M, Romić Z, Kovacić Z, Kozarić-Kovacić D (2009) Homocysteine and serum lipids concentration in male war veterans with posttraumatic stress disorder. Prog Neuropsychopharmacol Biol Psychiatry 33(1):134–140CrossRefPubMedGoogle Scholar
  31. Johnson AK, Grippo AJ (2006) Sadness and broken hearts: neurohumoral mechanisms and co-morbidity of ischemic heart disease and psychological depression. J Physiol Pharmacol 57(S11):5–29PubMedGoogle Scholar
  32. Katz RJ, Hersh S (1981) Amitriptyline and scopolamine in an animal model of depression. Neurosci Biobehav Rev 5:265–271CrossRefPubMedGoogle Scholar
  33. Kelly CB, McDonnell AP, Johnston TG, Mulholland C, Cooper SJ, McMaster D, Evans A, Whitehead AS (2004) The MTHFR C677T polymorphism is associated with depressive episodes in patients from Northern Ireland. J. Psychopharmacol 18(4):567–571CrossRefPubMedGoogle Scholar
  34. Kelner MJ, Bagnell R, Montoya M, Estes L, Uglik SF, Cerutti P (1995) Transfection with human copper-zinc superoxide dismutase induces bidirectional alterations in other antioxidant enzymes, proteins, growth factor response, and paraquat resistance. Free Radic Biol Med 18:497–506CrossRefPubMedGoogle Scholar
  35. Khanzode SD, Dakhale GN, Khanzode SS, Saoji A, Palasodkar R (2003) Oxidative damage and major depression: the potential antioxidant action of selective serotonin re-uptake inhibitors. Redox Rep 8(6):365–370CrossRefPubMedGoogle Scholar
  36. Kim JM, Stewart R, Kim SW, Yang SJ, Shin IS, Yoon JS (2008) Predictive value of folate, vitamin B12 and homocysteine levels in latelife depression. Br J Psychiatry 192:268–274CrossRefPubMedGoogle Scholar
  37. Konarska M, Stewart RE, McCarty R (1990) Predictability of chronic intermittent stress: effects on sympathetic-adrenal medullary responses of laboratory rats. Behav Neural Biol 53:231–243CrossRefPubMedGoogle Scholar
  38. Kubera M, Symbirtsev A, Basta-Kaim A, Borycz J, Roman A, Papp M, Claesson M (1996) Effect of chronic treatment with imipramine on interleukin 1 and interleukin 2 production by splenocytes obtained from rats subjected to a chronic mild stress model of depression. Pol J Pharmacol 48(5):503–506PubMedGoogle Scholar
  39. Kunz M, Gama CS, Andreazza AC, Salvador M, Ceresér KM, Gomes FA, Belmonte-de-Abreu PS, Berk M, Kapczinski F (2008) Elevated serum superoxide dismutase and thiobarbituric acid reactive substances in different phases of bipolar disorder and in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 32(7):1677–1681CrossRefPubMedGoogle Scholar
  40. Levine J, Timinsky I, Vishne T, Dwolatzky T, Roitman S, Kaplan Z, Kotler M, Sela BA, Spivak B (2008) Elevated serum homocysteine levels in male patients with PTSD. Depress Anxiety 25(11):E154–E157CrossRefPubMedGoogle Scholar
  41. Lipton SA, Kim WK, Choi YB, Kumar S, D’Emilia DM, Rayudu PV, Arnelle DR, Stamler JS (1997) Neurotoxicity associated with dual actions of homocysteine at the N-methyl-d-aspartate receptor. Proc Natl Acad Sci USA 94:5923–5928CrossRefPubMedGoogle Scholar
  42. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–267PubMedGoogle Scholar
  43. Lucca G, Comim CM, Valvassori SS, Réus GZ, Vuolo F, Petronilho F, Dal-Pizzol F, Gavioli EC, Quevedo J (2009) Effects of chronic mild stress on the oxidative parameters in the rat brain. Neurochem Int 54:358–362CrossRefPubMedGoogle Scholar
  44. Lucinio J, Wong ML (1999) The role of inflammatory mediators in the biology of major depression: central nervous system cytokines modulate the biological substrate of depressive symptoms, regulate stress-responsive systems, and contribute to neurotoxicity and neuroprotection. Mol Psychiatry 4:317–327CrossRefGoogle Scholar
  45. Madrigal JLM, Olivenza R, Moro MA, Lisasoain I, Lorenzo P, Rodrigo J, Leza JC (2001) Glutathione depletion, lipid peroxidation and mitochondrial dysfunction are induced by chronic stress in rat brain. Neuropsychopharmacology 24(4):420–429CrossRefPubMedGoogle Scholar
  46. Maes M, Yirmya R, Noraberg J, Brene S, Hibbeln J, Perinii G, Kubera M, Bob P, Lerer B, Maj M (2009) The inflammatory & neurodegenerative (I&ND) hypothesis of depression: leads for future research and new drug developments in depression. Metab Brain Dis 24:27–53CrossRefPubMedGoogle Scholar
  47. Magera MJ, Lacey JM, Casetta B, Rinaldo P (1999) Method for the determination of total homocysteine in plasma and urine by stable isotope dilution and electrospray tandem mass spectrometry. Clin Chem 45:1517–1522PubMedGoogle Scholar
  48. Maletic V, Robinson M, Oakes T, Iyengar S, Ball SG, Russel J (2007) Neurobiology of depression: an integrated view of key findings. Int J Clin Pract 61(12):2030–2040CrossRefGoogle Scholar
  49. Manji HK, Drevets WC, Charney DS (2001) The cellular neurobiology of depression. Nat Med 7(5):541–547CrossRefPubMedGoogle Scholar
  50. Marin MT, Cruz FC, Planeta CS (2007) Chronic restraint or variable stresses differently affect the behavior, corticosterone secretion and body weight in rats. Physiol Behav 90(1):29–35CrossRefPubMedGoogle Scholar
  51. Marklund S (1985) Handbook of methods for oxygen radical research. CRC Press, Boca Raton, pp 243–247Google Scholar
  52. Massoulié J, Pezzementi L, Bon S, Krejci E, Vallette FM (1993) Molecular and cellular biology of cholinesterases. Prog Neurobiol 41(1):31–91CrossRefPubMedGoogle Scholar
  53. Matés JM, Pérez-Gomes C, De Castro IN (1999) Antioxidant enzymes and human diseases. Clin Biochem 32(8):595–603CrossRefPubMedGoogle Scholar
  54. Matté C, Durigon E, Stefanello FM, Cipriani F, Wajner M, Wyse ATS (2006) Folic acid pretreatment prevents the reduction of Na(+),K(+)-ATPase and butyrylcholinesterase activities in rats subjected to acute hyperhomocysteinemia. Int J Dev Neurosci 24(1):3–8CrossRefPubMedGoogle Scholar
  55. Matté C, Mackedanz V, Stefanello FM, Scherer EB, Andreazza AC, Zanotto C, Moro AM, Garcia SC, Gonçalves CA, Erdtmann B, Salvador M, Wyse ATS (2009) Chronic hyperhomocysteinemia alters antioxidant defenses and increases DNA damage in brain and blood of rats: protective effect of folic acid. Neurochem Int 54(1):7–13CrossRefPubMedGoogle Scholar
  56. Mattson MP, Shea TB (2003) Folate and homocysteine metabolism in neural plasticity and neurodegenerative disorders. Trends Neurosci 26:137–146CrossRefPubMedGoogle Scholar
  57. Mesulam MM, Guillozet A, Shaw P, Levey A, Duysen EG, Lockridge O (2002) Acethylcolynesterase knockouts establish central cholinergic pathways and can use butyrylcholinesterase to hydrolyse acetylcholine. Neuroscience 110:627–639CrossRefPubMedGoogle Scholar
  58. Miller AH, Maletic V, Raison CL (2009) Inflammation and its discontents: the role of cytokines in the pathophysiology of major depression. Biol Psychiatry 65(9):732–741CrossRefPubMedGoogle Scholar
  59. Mormède C, Castanon N, Médina C, Moze E, Lestage J, Leveu PJ, Dantzer R (2003) Chronic mild stress in mice decreases peripheral cytokine and increases central cytokine expression independently of IL-10 regulation of the cytokine network. Neuroimmunomodulation 10:359–366Google Scholar
  60. Ng F, Berk M, Dean O, Bush AI (2008) Oxidative stress in psychiatric disorders: evidence base and therapeutic implications. Int J Neuropsychopharmacol 21:1–26Google Scholar
  61. Ni Y, Su M, Lin J, Wang X, Qiu Y, Zhao A, Chen T, Jia W (2008) Metabolic profiling reveals disorder of amino acid metabolism in four brain regions from a rat model of chronic unpredictable mild stress. FEBS Lett 582(17):2627–2636CrossRefPubMedGoogle Scholar
  62. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358CrossRefPubMedGoogle Scholar
  63. Olivenza R, Moro MA, Lisasoain I, Lorenzo P, Fernandez AP, Rodrigo J, Boscá L, Leza JC (2000) Chronic stress induces the expression of inducible nitric oxide synthase in rat brain cortex. J Neurochem 74:785–791CrossRefPubMedGoogle Scholar
  64. Porsolt RD, Bertin A, Jalfre M (1977) Behavioral despair in mice: a primary screening test for antidepressants. Arch Int Pharmacodyn Ther 229:327–336PubMedGoogle Scholar
  65. Rada P, Colasante C, Skirzewski M, Hernandez L, Hoebel B (2006) Behavioral depression in the swim test causes a biphasic, long-lasting change in accumbens acetylcholine release, with partial compensation by acetylcholinesterase and muscarinic-1 receptors. Neuroscience 141:67–76CrossRefPubMedGoogle Scholar
  66. Refsum H, Nurk E, Smith AD, Ueland PM, Gjesdal CG, Bjelland I, Tverdal A, Tell GS, Nygård O, Vollset SE (2006) The Hordaland homocysteine study: a community-based study of homocysteine, its determinants, and associations with disease. J Nutr 136(6):1731S–1740SPubMedGoogle Scholar
  67. Reif A, Schneider MF, Kamolz S, Pfuhlmann B (2003) Homocysteinemia in psychiatric disorders: association with dementia and depression, but not schizophrenia in female patients. J Neural Transm 110:1401–1411CrossRefPubMedGoogle Scholar
  68. Resler G, Lavie R, Campos J, Mata S, Urbina M, García A, Apitz R, Lima L (2008) Effect of folic acid combined with fluoxetine in patients with major depression on plasma homocysteine and vitamin B12, and serotonin levels in lymphocytes. Neuroimmunomodulation 15(3):145–152CrossRefPubMedGoogle Scholar
  69. Röhrdanz E, Obertrifter B, Ohler S, Tran-Thi Q, Kahl R (2000) Influence of Adriamycin and paraquat on antioxidant enzyme expression in primary rat hepatocytes. Arch Toxicol 74:231–237CrossRefPubMedGoogle Scholar
  70. Sapolsky RM (1996) Why stress is bad for your brain. Science 273:749–750CrossRefPubMedGoogle Scholar
  71. Schallreuter KU, Elwary S (2007) Hydrogen peroxide regulates the cholinergic signal in a concentration dependent manner. Life Sci 80(24–25):2221–2226CrossRefPubMedGoogle Scholar
  72. Scherer EB, Stefanello FM, Mattos C, Netto CA, Wyse ATS (2007) Homocysteine reduces cholinesterase activity in rat and human serum. Int J Dev Neurosci 25(4):201–205CrossRefPubMedGoogle Scholar
  73. Schiepers OJ, Wichers MC, Maes M (2005) Cytokines and major depression. Prog Neuropsychopharmacol Biol Psychiatry 29(2):201–217CrossRefPubMedGoogle Scholar
  74. Stefanello FM, Franzon R, Tagliari B, Wannmacher C, Wajner M, Wyse ATS (2005) Reduction of butyrylcholinesterase activity in rat serum subjected to hyperhomocysteinemia. Metab Brain Dis 20(2):97–103CrossRefPubMedGoogle Scholar
  75. Steptoe A, Kunz-Ebrecht SR, Owen N (2003) Lack of association between depressive symptoms and markers of immune and vascular inflammation in middle-aged men and women. Psychol Med 33:667–674CrossRefPubMedGoogle Scholar
  76. Swaab DF, Bao AM, Lucassen PJ (2005) The stress system in the human brain in depression and neurodegeneration. Ageing Res Rev 4:141–194CrossRefPubMedGoogle Scholar
  77. Tagliari B, Noschang CG, Ferreira AGK, Ferrari OA, Feksa LR, Wannmacher CMD, Dalmaz C, Wyse ATS (2010) Chronic variable stress impairs energy metabolism in brain of rats. Metab Brain Dis 25(2):169–176CrossRefPubMedGoogle Scholar
  78. Tolmunen T, Hintikka J, Voutilainen S, Ruusunen A, Alfthan G, Nyyssönen K, Viinamäki H, Kaplan GA, Salonen JT (2004) Association between depressive symptoms and serum concentrations of homocysteine in men: a population study. Am J Clin Nutr 80:1574–1578PubMedGoogle Scholar
  79. Tracey KJ (2002) The inflammatory reflex. Nature 420:853–859CrossRefPubMedGoogle Scholar
  80. Triantafyllou N, Evangelopoulos ME, Kimiskidis VK, Kararizou E, Boufidou F, Fountoulakis KN, Siamouli M, Konstantinos N, Nikolaou C, Sfagos C, Vlaikidis N, Vassilopoulos D (2008) Increased plasma homocysteine levels in patients with multiple sclerosis and depression. Ann Gen Psychiatry 7:17–21CrossRefPubMedGoogle Scholar
  81. Wendel A (1981) Glutathione peroxidase. Methods Enzymol 77:325–332CrossRefPubMedGoogle Scholar
  82. Wilhelm J, Muller E, de Zwaan M, Fischer J, Hillemacher T, Komhuber J, Bleich S, Frieling H (2010) Elevation of homocysteine levels is only partially reversed after therapy in females with eating disorders. J Neural Transm 117:521–527CrossRefPubMedGoogle Scholar
  83. Wilner P (2005) Chronic mild stress (CMS) revisited: consistency and behavioural-neurobiological concordance in the effects of CMS. Neuropsychobiology 52:90–110CrossRefGoogle Scholar
  84. Wilson DO, Johnson P (2000) Exercise modulates antioxidant enzyme gene expression in rat myocardium and liver. J Appl Physiol 88:1791–1796PubMedGoogle Scholar
  85. Wyse ATS, Zugno AI, Streck EL, Matté C, Calcagnotto T, Wannmacher CM, Wajner M (2002) Inhibition of Na(+),K(+)-ATPase activity in hippocampus of rats subjected to acute administration of homocysteine is prevented by vitamins E and C treatment. Neurochem Res 27(12):1685–1689CrossRefPubMedGoogle Scholar
  86. You JM, Yun SJ, Nam KN, Kang C, Won R, Lee EH (2009) Mechanism of glucocorticoid-induced oxidative stress in rat hippocampal slice cultures. Can J Physiol Pharmacol 87(6):440–447CrossRefPubMedGoogle Scholar
  87. Zafir A, Banu N (2009) Modulation of in vivo oxidative status by exogenous corticosterone and restraint stress in rats. Stress 12(2):167–177CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Bárbara Tagliari
    • 1
    • 2
  • Tiago M. dos Santos
    • 1
    • 2
  • Aline A. Cunha
    • 1
    • 2
  • Daniela D. Lima
    • 5
  • Débora Delwing
    • 6
  • Angela Sitta
    • 4
  • Carmem R. Vargas
    • 4
  • Carla Dalmaz
    • 3
  • Angela T. S. Wyse
    • 1
    • 2
  1. 1.Laboratório de Neuroproteção e Doenças Metabólicas, Departamento de BioquímicaICBS, Universidade Federal do Rio Grande do Sul, UFRGS, Rua Ramiro BarcelosPorto AlegreBrazil
  2. 2.Laboratório de Erros Inatos do Metabolismo, Departamento de BioquímicaICBS, Universidade Federal do Rio Grande do Sul, UFRGS, Rua Ramiro BarcelosPorto AlegreBrazil
  3. 3.Laboratório de Neurobiologia do Estresse, Departamento de BioquímicaICBS, Universidade Federal do Rio Grande do Sul, UFRGS, Rua Ramiro BarcelosPorto AlegreBrazil
  4. 4.Serviço de Genética Médica, HCPAPorto AlegreBrazil
  5. 5.Centro de Ciências da SaúdeUniversidade Comunitária da Região de Chapecó, Avenida Senador Attílio FontanaChapecóBrazil
  6. 6.Departamento de Ciências Naturais, Centro de Ciências Exatas e NaturaisUniversidade Regional de BlumenauBlumenauBrazil

Personalised recommendations