Journal of Neural Transmission

, Volume 117, Issue 6, pp 681–687 | Cite as

On the role of P2X7 receptors in dopamine nerve cell degeneration in a rat model of Parkinson’s disease: studies with the P2X7 receptor antagonist A-438079

  • Daniel Marcellino
  • Diana Suárez-Boomgaard
  • María Dolores Sánchez-Reina
  • José A. Aguirre
  • Takashi Yoshitake
  • Shimako Yoshitake
  • Beth Hagman
  • Jan Kehr
  • Luigi F. Agnati
  • Kjell Fuxe
  • Alicia Rivera
Basic Neurosciences, Genetics and Immunology - Original Article

Abstract

The role of the ATP-gated receptor, P2X7, has been evaluated in the unilateral 6-OHDA rat model of Parkinson’s disease using the P2X7 competitive antagonist A-438079. Nigral P2X7 immunoreactivity was mainly located in microglia but also in astroglia. A-438079 partially but significantly prevented the 6-OHDA-induced depletion of striatal DA stores. However, this was not associated with a reduction of DA cell loss. Blockade of P2X7 receptors may represent a novel protective strategy for striatal DA terminals in Parkinson’s disease and warrants further future investigation.

Keywords

P2X7 receptor antagonist Glia DA Protection Parkinson’s disease 

Notes

Acknowledgments

This work has been supported by a grant from Parkinsonfonden (Swedish Parkinson’s Foundation) to KF and Spanish Research Council grant BFU2008-02030 to AR.

References

  1. Acarin L, Vela JM, Gonzalez B, Castellano B (1994) Demonstration of poly-N-acetyl lactosamine residues in ameboid and ramified microglial cells in rat brain by tomato lectin binding. J Histochem Cytochem 42(8):1033–1041PubMedGoogle Scholar
  2. Aguirre JA, Kehr J, Yoshitake T, Liu FL, Rivera A, Fernandez-Espinola S, Andbjer B, Leo G, Medhurst AD, Agnati LF, Fuxe K (2005) Protection but maintained dysfunction of nigral dopaminergic nerve cell bodies and striatal dopaminergic terminals in MPTP-lesioned mice after acute treatment with the mGluR5 antagonist MPEP. Brain Res 1033(2):216–220CrossRefPubMedGoogle Scholar
  3. Aguirre JA, Leo G, Cueto R, Andbjer B, Naylor A, Medhurst AD, Agnati LF, Fuxe K (2008) The novel cyclooxygenase-2 inhibitor GW637185X protects against l-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine toxicity. Neuroreport 19(6):657–660CrossRefPubMedGoogle Scholar
  4. Anderson CM, Nedergaard M (2006) Emerging challenges of assigning P2X7 receptor function and immunoreactivity in neurons. Trends Neurosci 29(5):257–262CrossRefPubMedGoogle Scholar
  5. Chessell IP, Hatcher JP, Bountra C, Michel AD, Hughes JP, Green P, Egerton J, Murfin M, Richardson J, Peck WL, Grahames CB, Casula MA, Yiangou Y, Birch R, Anand P, Buell GN (2005) Disruption of the P2X7 purinoceptor gene abolishes chronic inflammatory and neuropathic pain. Pain 114(3):386–396CrossRefPubMedGoogle Scholar
  6. Donnelly-Roberts DL, Jarvis MF (2007) Discovery of P2X7 receptor-selective antagonists offers new insights into P2X7 receptor function and indicates a role in chronic pain states. Br J Pharmacol 151(5):571–579CrossRefPubMedGoogle Scholar
  7. Ferrari D, Pizzirani C, Adinolfi E, Lemoli RM, Curti A, Idzko M, Panther E, Di Virgilio F (2006) The P2X7 receptor: a key player in IL-1 processing and release. J Immunol 176(7):3877–3883PubMedGoogle Scholar
  8. Fuxe K, Manger P, Genedani S, Agnati L (2006) The nigrostriatal DA pathway and Parkinson’s disease. J Neural Transm Suppl (70):71–83Google Scholar
  9. Fuxe KG, Tarakanov AO, Goncharova LB, Agnati LF (2008) A new road to neuroinflammation in Parkinson’s disease? Brain Res Rev 58(2):453–458CrossRefPubMedGoogle Scholar
  10. Fuxe K, Marcellino D, Antonelli T, Mudó G, Manger P, Genedani S, Ferraro L, Belluardo N, Tanganelli S, Agnati LF (2009) The nigro-striatal DA neurons and mechanisms of their degeneration in Parkinson’s disease. In: Ribak CE, Arámburo de la Hoz C, Jones EG, Larriva Sahd JA, Swanson LW (eds) From development to degeneration and regeneration of the nervous system. Oxford University Press, New York, pp 121–143Google Scholar
  11. Guyon A, Nahon JL (2007) Multiple actions of the chemokine stromal cell-derived factor-1alpha on neuronal activity. J Mol Endocrinol 38(3):365–376CrossRefPubMedGoogle Scholar
  12. Honore P, Donnelly-Roberts D, Namovic MT, Hsieh G, Zhu CZ, Mikusa JP, Hernandez G, Zhong C, Gauvin DM, Chandran P, Harris R, Medrano AP, Carroll W, Marsh K, Sullivan JP, Faltynek CR, Jarvis MF (2006) A-740003 [N-(1-{[(cyanoimino)(5-quinolinylamino) methyl]amino}-2, 2-dimethylpropyl)-2-(3, 4-dimethoxyphenyl)acetamide], a novel and selective P2X7 receptor antagonist, dose-dependently reduces neuropathic pain in the rat. J Pharmacol Exp Ther 319(3):1376–1385CrossRefPubMedGoogle Scholar
  13. Jun DJ, Kim J, Jung SY, Song R, Noh JH, Park YS, Ryu SH, Kim JH, Kong YY, Chung JM, Kim KT (2007) Extracellular ATP mediates necrotic cell swelling in SN4741 dopaminergic neurons through P2X7 receptors. J Biol Chem 282(52):37350–37358CrossRefPubMedGoogle Scholar
  14. Kehr J, Yoshitake T (2006) Monitoring brain chemical signals by microdialysis. In: Grimes CA, Dickey EC, Pishko MV (eds) Encyclopedia of sensors. American Scientific Publishers, USA, pp 287–312Google Scholar
  15. Mariotti R, Bentivoglio M (2000) Activation and response to axotomy of microglia in the facial motor nuclei of G93A superoxide dismutase transgenic mice. Neurosci Lett 285(2):87–90CrossRefPubMedGoogle Scholar
  16. Nelson DW, Gregg RJ, Kort ME, Perez-Medrano A, Voight EA, Wang Y, Grayson G, Namovic MT, Donnelly-Roberts DL, Niforatos W, Honore P, Jarvis MF, Faltynek CR, Carroll WA (2006) Structure-activity relationship studies on a series of novel, substituted 1-benzyl-5-phenyltetrazole P2X7 antagonists. J Med Chem 49(12):3659–3666CrossRefPubMedGoogle Scholar
  17. Pelegrin P, Surprenant A (2006) Pannexin-1 mediates large pore formation and interleukin-1beta release by the ATP-gated P2X7 receptor. EMBO J 25(21):5071–5082CrossRefPubMedGoogle Scholar
  18. Rivera A, Agnati LF, Horvath TL, Valderrama JJ, de La Calle A, Fuxe K (2006) Uncoupling protein 2/3 immunoreactivity and the ascending dopaminergic and noradrenergic neuronal systems: relevance for volume transmission. Neuroscience 137(4):1447–1461CrossRefPubMedGoogle Scholar
  19. Sanchez-Nogueiro J, Marin-Garcia P, Miras-Portugal MT (2005) Characterization of a functional P2X(7)-like receptor in cerebellar granule neurons from P2X(7) knockout mice. FEBS Lett 579(17):3783–3788CrossRefPubMedGoogle Scholar
  20. Sim JA, Young MT, Sung HY, North RA, Surprenant A (2004) Reanalysis of P2X7 receptor expression in rodent brain. J Neurosci 24(28):6307–6314CrossRefPubMedGoogle Scholar
  21. Surprenant A, Rassendren F, Kawashima E, North RA, Buell G (1996) The cytolytic P2Z receptor for extracellular ATP identified as a P2X receptor (P2X7). Science 272(5262):735–738CrossRefPubMedGoogle Scholar
  22. Ungerstedt U (1968) 6-Hydroxy-dopamine induced degeneration of central monoamine neurons. Eur J Pharmacol 5(1):107–110CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Daniel Marcellino
    • 1
  • Diana Suárez-Boomgaard
    • 2
  • María Dolores Sánchez-Reina
    • 2
  • José A. Aguirre
    • 3
  • Takashi Yoshitake
    • 4
  • Shimako Yoshitake
    • 4
  • Beth Hagman
    • 1
  • Jan Kehr
    • 4
  • Luigi F. Agnati
    • 5
    • 6
  • Kjell Fuxe
    • 1
  • Alicia Rivera
    • 2
  1. 1.Department of NeuroscienceKarolinska InstitutetStockholmSweden
  2. 2.Department of Cell Biology, Faculty of SciencesUniversity of MalagaMalagaSpain
  3. 3.Department of Human Physiology, School of MedicineUniversity of MalagaMalagaSpain
  4. 4.Department of Physiology and PharmacologyKarolinska InstitutetStockholmSweden
  5. 5.Department of BioMedical SciencesUniversity of ModenaModenaItaly
  6. 6.IRCCS San CamilloVeniceItaly

Personalised recommendations