Journal of Neural Transmission

, 116:1591 | Cite as

Dimethyltryptamine and other hallucinogenic tryptamines exhibit substrate behavior at the serotonin uptake transporter and the vesicle monoamine transporter

  • Nicholas V. Cozzi
  • Anupama Gopalakrishnan
  • Lyndsey L. Anderson
  • Joel T. Feih
  • Alexander T. Shulgin
  • Paul F. Daley
  • Arnold E. Ruoho
Basic Neurosciences, Genetics and Immunology - Original Article

Abstract

N,N-dimethyltryptamine (DMT) is a potent plant hallucinogen that has also been found in human tissues. When ingested, DMT and related N,N-dialkyltryptamines produce an intense hallucinogenic state. Behavioral effects are mediated through various neurochemical mechanisms including activity at sigma-1 and serotonin receptors, modification of monoamine uptake and release, and competition for metabolic enzymes. To further clarify the pharmacology of hallucinogenic tryptamines, we synthesized DMT, N-methyl-N-isopropyltryptamine (MIPT), N,N-dipropyltryptamine (DPT), and N,N-diisopropyltryptamine. We then tested the abilities of these N,N-dialkyltryptamines to inhibit [3H]5-HT uptake via the plasma membrane serotonin transporter (SERT) in human platelets and via the vesicle monoamine transporter (VMAT2) in Sf9 cells expressing the rat VMAT2. The tryptamines were also tested as inhibitors of [3H]paroxetine binding to the SERT and [3H]dihydrotetrabenazine binding to VMAT2. Our results show that DMT, MIPT, DPT, and DIPT inhibit [3H]5-HT transport at the SERT with KI values of 4.00 ± 0.70, 8.88 ± 4.7, 0.594 ± 0.12, and 2.32 ± 0.46 μM, respectively. At VMAT2, the tryptamines inhibited [3H]5-HT transport with KI values of 93 ± 6.8, 20 ± 4.3, 19 ± 2.3, and 19 ± 3.1 μM, respectively. On the other hand, the tryptamines were very poor inhibitors of [3H]paroxetine binding to SERT and of [3H]dihydrotetrabenazine binding to VMAT2, resulting in high binding-to-uptake ratios. High binding-to-uptake ratios support the hypothesis that the tryptamines are transporter substrates, not uptake blockers, at both SERT and VMAT2, and also indicate that there are separate substrate and inhibitor binding sites within these transporters. The transporters may allow the accumulation of tryptamines within neurons to reach relatively high levels for sigma-1 receptor activation and to function as releasable transmitters.

Keywords

Biogenic amine Dihydrotetrabenazine Dimethyltryptamine DMT Dipropyltryptamine DPT Diisopropyltryptamine DIPT Methylisopropyltryptamine MIPT Psychedelic Paroxetine Serotonin Sigma-1 receptor Tetrabenazine 

References

  1. Adkins EM, Barker EL, Blakely RD (2001) Interactions of tryptamine derivatives with serotonin transporter species variants implicate transmembrane domain I in substrate recognition. Mol Pharmacol 59:514–523PubMedGoogle Scholar
  2. Angrist B, Gershon S, Sathananthan G, Walker RW, Lopez-Ramos B, Mandel LR, Vandenheuvel WJ (1976) Dimethyltryptamine levels in blood of schizophrenic patients and control subjects. Psychopharmacology (Berl) 47:29–32CrossRefGoogle Scholar
  3. Axelrod J (1961) Enzymatic formation of psychotomimetic metabolites from normally occurring compounds. Science 134:343CrossRefPubMedGoogle Scholar
  4. Aydar E, Palmer CP, Klyachko VA, Jackson MB (2002) The sigma receptor as a ligand-regulated auxiliary potassium channel subunit. Neuron 34:399–410CrossRefPubMedGoogle Scholar
  5. Barker SA, Beaton JM, Christian ST, Monti JA, Morris PE (1982) Comparison of the brain levels of N,N-dimethyltryptamine and alpha, alpha, beta, beta-tetradeutero-N,N-dimethyltryptamine following intraperitoneal injection. The in vivo kinetic isotope effect. Biochem Pharmacol 31:2513–2516CrossRefPubMedGoogle Scholar
  6. Barker EL, Kimmel HL, Blakely RD (1994) Chimeric human and rat serotonin transporters reveal domains involved in recognition of transporter ligands. Mol Pharmacol 46:799–807PubMedGoogle Scholar
  7. Barker EL, Moore KR, Rakhshan F, Blakely RD (1999) Transmembrane domain I contributes to the permeation pathway for serotonin and ions in the serotonin transporter. J Neurosci 19:4705–4717PubMedGoogle Scholar
  8. Berge OG, Chacho D, Hole K (1983) Inhibitory effect of 5-methoxy-N,N-dimethyltryptamine on the synaptosomal uptake of 5-hydroxytryptamine. Eur J Pharmacol 90:293–296CrossRefPubMedGoogle Scholar
  9. Brutcher JF, Vanderwerff W (1958) Concerning a preparation of tryptamine. J Org Chem 23:146–147CrossRefGoogle Scholar
  10. Burchett SA, Hicks TP (2006) The mysterious trace amines: protean neuromodulators of synaptic transmission in mammalian brain. Prog Neurobiol 79:223–246CrossRefPubMedGoogle Scholar
  11. Callaway JC, McKenna DJ, Grob CS, Brito GS, Raymon LP, Poland RE, Andrade EN, Andrade EO, Mash DC (1999) Pharmacokinetics of hoasca alkaloids in healthy humans. J Ethnopharmacol 65:243–256CrossRefPubMedGoogle Scholar
  12. Cheng Y, Prusoff WH (1973) Relationship between the inhibition constant (k1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol 22:3099–3108CrossRefPubMedGoogle Scholar
  13. Corbett L, Christian ST, Morin RD, Benington F, Smythies JR (1978) Hallucinogenic N-methylated indolealkylamines in the cerebrospinal fluid of psychiatric and control populations. Br J Psychiatry 132:139–144CrossRefPubMedGoogle Scholar
  14. Cozzi NV, Foley KF (2002) Rapid and efficient method for suspending cells for neurotransmitter uptake assays. Biotechniques 32:486–492PubMedGoogle Scholar
  15. Crespi D, Mennini T, Gobbi M (1997) Carrier-dependent and Ca(2+)-dependent 5-HT and dopamine release induced by (+)-amphetamine, 3,4-methylendioxymethamphetamine, p-chloroamphetamine and (+)-fenfluramine. Br J Pharmacol 121:1735–1743CrossRefPubMedGoogle Scholar
  16. Deliganis AV, Pierce PA, Peroutka SJ (1991) Differential interactions of dimethyltryptamine (DMT) with 5-HT1A and 5-HT2 receptors. Biochem Pharmacol 41:1739–1744CrossRefPubMedGoogle Scholar
  17. Fantegrossi WE, Reissig CJ, Katz EB, Yarosh HL, Rice KC, Winter JC (2008) Hallucinogen-like effects of N,N-dipropyltryptamine (DPT): possible mediation by serotonin 5-HT1A and 5-HT2A receptors in rodents. Pharmacol Biochem Behav 88:358–365CrossRefPubMedGoogle Scholar
  18. Fontanilla D, Johannessen M, Hajipour AR, Cozzi NV, Jackson MB, Ruoho AE (2009) The hallucinogen N,N-dimethyltryptamine (DMT) is an endogenous sigma-1 receptor regulator. Science 323:934–937CrossRefPubMedGoogle Scholar
  19. Franzen F, Gross H (1965) Tryptamine, N,N-dimethyltryptamine, N,N-dimethyl-5-hydroxytryptamine and 5-methoxytryptamine in human blood and urine. Nature 206:1052CrossRefPubMedGoogle Scholar
  20. Glennon RA, Liebowitz SM, Mack EC (1978) Serotonin receptor binding affinities of several hallucinogenic phenylalkylamine and N,N-dimethyltryptamine analogues. J Med Chem 21:822–825CrossRefPubMedGoogle Scholar
  21. Hayashi T, Su TP (2003) Intracellular dynamics of σ-1 receptors (σ1 binding sites) in NG108–15 cells. J Pharmacol Exp Ther 306:726–733CrossRefPubMedGoogle Scholar
  22. Hayashi T, Su TP (2007) Sigma-1 receptor chaperones at the ER-mitochondrion interface regulate Ca(2+) signaling and cell survival. Cell 131:596–610CrossRefPubMedGoogle Scholar
  23. Jacob MS, Presti DE (2005) Endogenous psychoactive tryptamines reconsidered: an anxiolytic role for dimethyltryptamine. Med Hypotheses 64:930–937CrossRefPubMedGoogle Scholar
  24. Lipinski JF, Mandel LR, Ahn HS, Vanden Heuvel WJ, Walker RW (1974) Blood dimethyltryptamine concentrations in psychotic disorders. Biol Psychiatry 9:89–91PubMedGoogle Scholar
  25. Lupardus PJ, Wilke RA, Aydar E, Palmer CP, Chen Y, Ruoho AE, Jackson MB (2000) Membrane-delimited coupling between sigma receptors and K+ channels in rat neurohypophysial terminals requires neither G-protein nor ATP. J Physiol 526(Pt 3):527–539CrossRefPubMedGoogle Scholar
  26. Mandell AJ, Morgan M (1971) Indole(ethyl)amine N-methyltransferase in human brain. Nat New Biol 230:85–87PubMedGoogle Scholar
  27. Marcusson JO, Bergstrom M, Eriksson K, Ross SB (1988) Characterization of [3H]paroxetine binding in rat brain. J Neurochem 50:1783–1790CrossRefPubMedGoogle Scholar
  28. Mavlyutov TA, Ruoho AE (2007) Ligand-dependent localization and intracellular stability of sigma-1 receptors in CHO-K1 cells. J Mol Signal 2:8CrossRefPubMedGoogle Scholar
  29. McKenna DJ, Repke DB, Lo L, Peroutka SJ (1990) Differential interactions of indolealkylamines with 5-hydroxytryptamine receptor subtypes. Neuropharmacology 29:193–198CrossRefPubMedGoogle Scholar
  30. McKenna DJ, Guan XM, Shulgin AT (1991) 3, 4-Methylenedioxyamphetamine (MDA) analogues exhibit differential effects on synaptosomal release of [3H]dopamine and [3H]5-hydroxytryptamine. Pharmacol Biochem Behav 38:505–512CrossRefPubMedGoogle Scholar
  31. Morgan M, Mandell AJ (1969) Indole(ethyl)amine N-methyltransferase in the brain. Science 165:492–493CrossRefPubMedGoogle Scholar
  32. Nagai F, Nonaka R, Satoh Hisashi Kamimura K (2007) The effects of non-medically used psychoactive drugs on monoamine neurotransmission in rat brain. Eur J Pharmacol 559:132–137CrossRefPubMedGoogle Scholar
  33. Nelson PJ, Rudnick G (1979) Coupling between platelet 5-hydroxytryptamine and potassium transport. J Biol Chem 254:10084–10089PubMedGoogle Scholar
  34. Olivier B, Soudijn W, van Wijngaarden I (2000) Serotonin, dopamine and norepinephrine transporters in the central nervous system and their inhibitors. Prog Drug Res 54:59–119PubMedGoogle Scholar
  35. Oon MC, Murray RM, Rodnight R, Murphy MP, Birley JL (1977) Factors affecting the urinary excretion of endogenously formed dimethyltryptamine in normal human subjects. Psychopharmacology (Berl) 54:171–175CrossRefGoogle Scholar
  36. Pochettino ML, Cortella AR, Ruiz M (1999) Hallucinogenic snuff from northwestern Argentina: microscopical identification of Anadenanthera colubrina var Cebil (fabaceae) in powdered archaeological material. Econ Bot 53:127–132Google Scholar
  37. Reimann W, Schneider F (1993) The serotonin receptor agonist 5-methoxy-N,N-dimethyltryptamine facilitates noradrenaline release from rat spinal cord slices and inhibits monoamine oxidase activity. Gen Pharmacol 24:449–453PubMedGoogle Scholar
  38. Riba J, Valle M, Urbano G, Yritia M, Morte A, Barbanoj MJ (2003) Human pharmacology of ayahuasca: subjective and cardiovascular effects, monoamine metabolite excretion, and pharmacokinetics. J Pharmacol Exp Ther 306:73–83CrossRefPubMedGoogle Scholar
  39. Rothman RB, Becketts KM, Radesca LR, de Costa BR, Rice KC, Carroll FI, Dersch CM (1993) Studies of the biogenic amine transporters II A brief study on the use of [3H]DA-uptake-inhibition to transporter-binding-inhibition ratios for the in vitro evaluation of putative cocaine antagonists. Life Sci 53:PL267–PL272Google Scholar
  40. Rothman RB, Ayestas MA, Dersch CM, Baumann MH (1999) Aminorex, fenfluramine, and chlorphentermine are serotonin transporter substrates. Implications for primary pulmonary hypertension. Circulation 100:869–875PubMedGoogle Scholar
  41. Rothman RB, Baumann MH, Dersch CM, Romero DV, Rice KC, Carroll FI, Partilla JS (2001) Amphetamine-type central nervous system stimulants release norepinephrine more potently than they release dopamine and serotonin. Synapse 39:32–41CrossRefPubMedGoogle Scholar
  42. Saavedra JM, Axelrod J (1972) Psychotomimetic N-methylated tryptamines: formation in brain in vivo and in vitro. Science 175:1365–1366CrossRefPubMedGoogle Scholar
  43. Sangiah S, Gomez MV, Domino EF (1979) Accumulation of N,N-dimethyltryptamine in rat brain cortical slices. Biol Psychiatry 14:925–936PubMedGoogle Scholar
  44. Schloss P, Williams DC (1998) The serotonin transporter: a primary target for antidepressant drugs. J Psychopharmacol 12:115–121CrossRefPubMedGoogle Scholar
  45. Shulgin AT and Shulgin A (1997) TIHKAL: the continuation. Transform Press, Berkeley, CA 94712Google Scholar
  46. Shulgin AT, Carter MF (1980) N,N-diisopropyltryptamine (DIPT) and 5-methoxy-N,N-diisopropyltryptamine (5-MeO-DIPT). Two orally active tryptamine analogs with CNS activity. Commun Psychopharmacol 4:363–369PubMedGoogle Scholar
  47. Sievert MK, Thiriot DS, Edwards RH, Ruoho AE (1998) High-efficiency expression and characterization of the synaptic-vesicle monoamine transporter from baculovirus-infected insect cells. Biochem J 330(Pt 2):959–966PubMedGoogle Scholar
  48. Sitaram BR, Lockett L, Talomsin R, Blackman GL, McLeod WR (1987) In vivo metabolism of 5-methoxy-N,N-dimethyltryptamine and N,N-dimethyltryptamine in the rat. Biochem Pharmacol 36:1509–1512CrossRefPubMedGoogle Scholar
  49. Smith TE, Weissbach H, Udenfriend S (1962) Studies on the mechanism of action of monoamine oxidase: metabolism of N,N-dimethyltryptamine and N,N-dimethyltryptamine-N-oxide. Biochemistry 1:137–143CrossRefPubMedGoogle Scholar
  50. Smythies JR, Morin RD, Brown GB (1979) Identification of dimethyltryptamine and O-methylbufotenin in human cerebrospinal fluid by combined gas chromatography/mass spectrometry. Biol Psychiatry 14:549–556PubMedGoogle Scholar
  51. Speeter ME, Anthony WC (1954) The action of oxalyl chloride on indoles: a new approach to tryptamines. J Am Chem Soc 76:6208–6210CrossRefGoogle Scholar
  52. Strassman RJ (2001) DMT: the spirit molecule: a doctor’s revolutionary research into the biology of near-death and mystical experiences. Park Street Press, Rochester, VTGoogle Scholar
  53. Strassman RJ, Qualls CR, Uhlenhuth EH, Kellner R (1994) Dose–response study of N,N-dimethyltryptamine in humans. II. Subjective effects and preliminary results of a new rating scale. Arch Gen Psychiatry 51:98–108PubMedGoogle Scholar
  54. Su T-P, Hayashi T, Vaupel DB (2009) When the endogenous hallucinogenic trace amine N,N-dimethyltryptamine meets the sigma-1 receptor. Sci Signal 2: pe12Google Scholar
  55. Takahashi T, Takahashi K, Ido T, Yanai K, Iwata R, Ishiwata K, Nozoe S (1985) 11C-labeling of indolealkylamine alkaloids and the comparative study of their tissue distributions. Int J Appl Radiat Isot 36:965–969CrossRefPubMedGoogle Scholar
  56. Talvenheimo J, Nelson PJ, Rudnick G (1979) Mechanism of imipramine inhibition of platelet 5-hydroxytryptamine transport. J Biol Chem 254:4631–4635PubMedGoogle Scholar
  57. Tanimukai H, Ginther R, Spaide J, Bueno JR, Himwich HE (1970) Detection of psychotomimetic N,N-dimethylated indoleamines in the urine of four schizophrenic patients. Br J Psychiatry 117:421–430CrossRefPubMedGoogle Scholar
  58. Thiriot DS, Ruoho AE (2001) Mutagenesis and derivatization of human vesicle monoamine transporter 2 (VMAT2). Cysteines identifies transporter domains involved in tetrabenazine binding and substrate transport. J Biol Chem 276:27304–27315CrossRefPubMedGoogle Scholar
  59. Thompson MA, Moon E, Kim UJ, Xu J, Siciliano MJ, Weinshilboum RM (1999) Human indolethylamine N-methyltransferase: cDNA cloning and expression, gene cloning, and chromosomal localization. Genomics 61:285–297CrossRefPubMedGoogle Scholar
  60. Weissman AD, Su TP, Hedreen JC, London ED (1988) Sigma receptors in post-mortem human brains. J Pharmacol Exp Ther 247:29–33PubMedGoogle Scholar
  61. Whipple MR, Reinecke MG, Gage FH (1983) Inhibition of synaptosomal neurotransmitter uptake by hallucinogens. J Neurochem 40:1185–1188CrossRefPubMedGoogle Scholar
  62. Wyatt RJ, Saavedra JM, Axelrod J (1973) A dimethyltryptamine-forming enzyme in human blood. Am J Psychiatry 130:754–760PubMedGoogle Scholar
  63. Yanai K, Ido T, Ishiwata K, Hatazawa J, Takahashi T, Iwata R, Matsuzawa T (1986) In vivo kinetics and displacement study of a carbon-11-labeled hallucinogen, N,N-[11C]dimethyltryptamine. Eur J Nucl Med 12:141–146PubMedGoogle Scholar
  64. Yritia M, Riba J, Ortuno J, Ramirez A, Castillo A, Alfaro Y, de la Torre R, Barbanoj MJ (2002) Determination of N,N-dimethyltryptamine and beta-carboline alkaloids in human plasma following oral administration of ayahuasca. J Chromatogr B Analyt Technol Biomed Life Sci 779:271–281CrossRefPubMedGoogle Scholar
  65. Zhang H, Cuevas J (2002) Sigma receptors inhibit high-voltage-activated calcium channels in rat sympathetic and parasympathetic neurons. J Neurophysiol 87:2867–2879PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Nicholas V. Cozzi
    • 1
  • Anupama Gopalakrishnan
    • 1
  • Lyndsey L. Anderson
    • 1
  • Joel T. Feih
    • 1
  • Alexander T. Shulgin
    • 2
  • Paul F. Daley
    • 3
  • Arnold E. Ruoho
    • 1
  1. 1.Department of PharmacologyUniversity of Wisconsin School of Medicine and Public HealthWisconsinUSA
  2. 2.LafayetteUSA
  3. 3.Addiction Pharmacology Research LaboratoryCalifornia Pacific Medical Center Research InstituteSan FranciscoUSA

Personalised recommendations