Journal of Neural Transmission

, 116:1493 | Cite as

Retinopathy in Parkinson disease

Basic Neurosciences, Genetics and Immunology - Original Article


One of the non-motor manifestations of PD is visual system involvement. Foveal vision is a main contributor to both visual recognition and discrimination and to both overt and covert visual attention. Experimental evidence from humans and monkeys shows that D1 and D2 receptors are essential for retinal ganglion cell receptive field organization. The evidence linking retinopathy and foveal visual impairment in PD is discussed. A model of retinal preganglionic dopaminergic circuitry is presented. Experimental evidence in humans, using Optical Coherence Tomography shows morphological changes of retinal neurons, including ganglion cells in PD. The diagnosis of pre-cardinal stage of PD (PCPD) may take advantage of the wide availability of optical coherence tomography as a potential biomarker. Fourier-domain OCT and visual testing may contribute a quantitative approach to the early diagnosis, the effects of treatment and follow-up of progression of PD.


Parkinson disease Retina Foveal vision Dopamine receptors ERG Presynaptic cross inhibitory model Optical coherence tomography Retinal thinning 


  1. Altintas O, Iseri P, Ozkan B, Caglar Y (2008) Correlation between retinal morphological and functional findings and clinical severity in Parkinsons disease. Doc Ophthalmol 1116:137–146CrossRefGoogle Scholar
  2. Antal A, Pfeiffer R, Bodis-Wollner I (1996) Simultaneously evoked primary and cognitive visual evoked potentials distinguish younger and older patients with Parkinson’s disease. J Neural Trans 103:1053–1067CrossRefGoogle Scholar
  3. Berisha F, Feke GT, Trempe CL et al (2007) Retinal abnormalities in early Alzheimer’s disease. Invest Ophthalmol Vis Sci 48:2285–2289CrossRefPubMedGoogle Scholar
  4. Birch J, Kolle RU, Kunkel M, Paulus W, Upadhyay P (1998) Acquired colour deficiency in patients with Parkinson’s disease. Vision Res 38:3421–3426CrossRefPubMedGoogle Scholar
  5. Blumenthal EZ, Williams JM, Weinreb RN et al (2000) Reproducibility of nerve fiber layer thickness measurements by use of optical coherence tomography. Ophthalmology 107:2278–2282CrossRefPubMedGoogle Scholar
  6. Bobak P, Bodis-Wollner I, Harnois C et al (1983) Pattern electroretinograms and visual-evoked potentials in glaucoma and multiple sclerosis. Am J Ophthalmol 96:72–83PubMedGoogle Scholar
  7. Bodis-Wollner I (1972) Visual acuity and contrast sensitivity in patients with cerebral lesions. Science 178:769–771CrossRefPubMedGoogle Scholar
  8. Bodis-Wollner I (1990) Visual deficit related to dopamine deficiency in experimental animals and Parkinson’s disease. Trends Neurosci 13:296–301CrossRefPubMedGoogle Scholar
  9. Bodis-Wollner I (2008) Diagnosing and treating early: is there a pre-cardinal stage of Parkinson disease? Parkinson Rep 19:9–10Google Scholar
  10. Bodis-Wollner I, Diamond S (1976) The measurement of spatial contrast sensitivity in cases of blurred vision associated with cerebral lesions. Brain 99:695–710CrossRefPubMedGoogle Scholar
  11. Bodis-Wollner I, Tzelepi A (1998) The push-pull action of dopamine on spatial tuning of the monkey retina: the effects of dopaminergic deficiency and selective D1 and D2 receptor ligands on the pattern electroretinogram. Vision Res 38:1479–1487CrossRefPubMedGoogle Scholar
  12. Bodis-Wollner I, Tzelepi A (2002) Push-pull model of Dopamine’s action in the retina in: models of the visual system. Hung GK, Ciuffreda KJ (eds) Kluwer Academic/Plenum Publishers, New York, Boston, Dordrecht, London, Moscow. Chapter 5, pp 191–214Google Scholar
  13. Bodis-Wollner I, Tzelepi A (2005) The effect of diverse dopamine receptors on spatial processing in the central retina: a model. Chapter 17. In: Jenkin M, Harris L (eds) Seeing spatial form. Oxford University Press, New York, NYGoogle Scholar
  14. Bodis-Wollner I, Yahr MD (1978) Measurement of visual evoked potentials in Parkinson’s disease. Brain 101:661–671CrossRefPubMedGoogle Scholar
  15. Bodis-Wollner I, Marx MS, Mitra S et al (1987) Visual dysfunction in Parkinsons disease. Brain 110:1675–1698CrossRefPubMedGoogle Scholar
  16. Bodis-Wollner I, Brannan JR, Storch RL, Hajee M, Minko M (2009) The effect of background spatial contrast on electroretinographic responses in the human retina. Vision Res 49(9):922–930CrossRefPubMedGoogle Scholar
  17. Bodis-Wollner I, Yahr MD, Mylin LH, Thornton J (1982) Dopaminergic deficiency and delayed visual evoked potentials in humans. Ann Neurol 11:478–483CrossRefPubMedGoogle Scholar
  18. Braak H, Del Tredici K, Bratzke H et al (2002) Staging of the intracerebral inclusion body pathology associated with idiopathic Parkinson’s disease (preclinical and clinical stages). J Neurol 249:1–5CrossRefGoogle Scholar
  19. Bulens C, Meerwaldt JD, van der Wildt GJ, Keemink CJ (1986) Contrast sensitivity in Parkinson’s disease. Neurology 36:1121–1125PubMedGoogle Scholar
  20. Buttner T, Kuhn W, Muller T, Heinze T, Puhl C, Przuntek H (1996) Chromatic and achromatic visual evoked potentials in Parkinson’s disease. Electroencephalogr Clin Neurophysiol 100:443–447PubMedGoogle Scholar
  21. Dacey DM (1988) Dopamine-accumulating retinal neurons revealed by in vitro fluorescence display a unique morphology. Science 240(4856):1196–1198CrossRefPubMedGoogle Scholar
  22. Davenport CM, Detwiler PB, Dacey DM (2007) Functional polarity of dendrites and axons of primate A1 amacrine cells. Vis Neurosci 24:449–457CrossRefPubMedGoogle Scholar
  23. Djamgoz MB, Hankins MW, Hirano J et al (1997) Neurobiology of retinal dopamine in relation to degenerative states of the tissue. Vision Res 37:3509–3529CrossRefPubMedGoogle Scholar
  24. Enroth-Cugell C, Robson JG (1966) The contrast sensitivity of retinal ganglion cells of the cat. J Physiol 187(3):517–552PubMedGoogle Scholar
  25. Frederick JM, Rayborn ME, Laties AM, Lam DM, Hollyfield JG (1982) Dopaminergic neurons in the human retina. J Comp Neurol 210(1):65–79CrossRefPubMedGoogle Scholar
  26. Ghilardi MF, Bodis-Wollner I, Onofrj MC et al (1988) Spatial frequency dependent abnormalities of the pattern electroretinogram and visual evoked potentials in a parkinsonian monkey model. Brain 3:131–184CrossRefGoogle Scholar
  27. Ghilardi MF, Marx MS, Bodis-Wollner I et al (1989) The effect of intraocular 6-hydroxydopamine on retinal processing of primates. Ann Neurol 25:357–364CrossRefPubMedGoogle Scholar
  28. Hajee M, March W, Lazzaro D, Wolintz A, Shrier E, Glazman S, Bodis-Wollner I (2009) Inner retinal layer thinning in Parkinson disease. Arch Ophthalmol 127(6):737–741CrossRefPubMedGoogle Scholar
  29. Hampson EC, Vaney DI, Weiler R (1992) Dopaminergic modulation of gap junction permeability between amacrine cells in mammalian retina. J Neurosci 12:4911–4922PubMedGoogle Scholar
  30. Harnois C, DiPaolo T (1990) Decreased dopamine in the retinas of patients with Parkinsons disease. Invest Ophthalmol Vis Sci 31:2473–2475PubMedGoogle Scholar
  31. Hollander H, Bisti S, Maffei L, Hebel R (1984) Electroretinographic responses and anterograde changes of morphology after intercranial optic nerve section. A quantitative analysis in the cat. Exp Brain Res 5:483–493Google Scholar
  32. Hutton JT, Morris JL, Elias JW (1993) Levodopa improves spatial contrast sensitivity in Parkinson’s disease. Arch Neurol 50:721–724PubMedGoogle Scholar
  33. Ikeda H, Head GM, Ellis CJ (1994) Electrophysiological signs of retinal dopamine deficiency in recently diagnosed Parkinson’s disease and a follow up study. Vision Res 34:2629–2638CrossRefPubMedGoogle Scholar
  34. Inzelberg R, Ramirez JA, Nisipeanu P et al (2004) Retinal nerve fiber layer thinning in Parkinson disease. Vision Res 44:2793–2797CrossRefPubMedGoogle Scholar
  35. Krizaj D, Gábriel R, Owen WG, Witkovsky P (1988) Dopamine D2 receptor-mediated modulation of rod-cone coupling in the Xenopus retina. J Comp Neurol 398(4):529–538CrossRefGoogle Scholar
  36. Kuffler SW (1953) Discharge patterns and functional organization of mammalian retina. J Neurophysiol 1:37–68Google Scholar
  37. Maffei L, Fiorentini A, Bisti S, Hollander H (1985) Pattern ERG in the monkey after section of the optic nerve. Exp Brain Res 59:423–425CrossRefPubMedGoogle Scholar
  38. Marx M, Bodis-Wollner I, Bobak P, Harnois C (1986) Temporal frequency-dependent VEP changes in Parkinson’s disease. Vision Res 26:185–193CrossRefPubMedGoogle Scholar
  39. Masson G, Mestre D, Blin O (1993) Dopaminergic modulation of visual sensitivity in man. Fundam Clin Pharmacol 7(8):449–463CrossRefPubMedGoogle Scholar
  40. Nguyen-Legros J (1988) Functional neuroarchitecture of the retina: hypothesis on the dysfunction of retinal dopaminergic circuitry in Parkinson’s disease. Surg Radiol Anat 10(2):137–144CrossRefPubMedGoogle Scholar
  41. Nguyen-Legros J, Simon A, Caillé I, Bloch B (1997) Immunocytochemical localization of dopamine D1 receptors in the retina of mammals. Vis Neurosci 14(3):545–551CrossRefPubMedGoogle Scholar
  42. Nguyen-Legros J, Versaux-Botteri C, Vernier P (1999) Dopamine receptor localization in the mammalian retina. Mol Neurobiol 19(3):181–204CrossRefPubMedGoogle Scholar
  43. Onofrj M, Bodis-Wollner I (1982) Dopaminergic deficiency causes delayed VEPs in rats. Ann Neurol 11:484–490CrossRefPubMedGoogle Scholar
  44. Onofrj M, Ghilardi MF, Basciani M, Gambi D (1986) Visual evoked potentials in parkinsonism and dopamine blockade reveal a stimulus-dep endent dopamine function in humans. J Neurol Neurosurg Psychiatry 49(10):1150–1159CrossRefPubMedGoogle Scholar
  45. Peppe A, Antal A, Tagliati M, Stanzione P, Bodis-Wollner I (1998a) Dl agonist CY208–243 attenuates the PERG to low spatial frequency stimuli in the monkey. Neurosci Lett 242:1–4CrossRefGoogle Scholar
  46. Peppe A, Stanzione P, Pierantozzi M, Semprini R, Bassi A, Santilli AM, Formisano R, Piccolino M, Bernardi G (1998b) Does pattern electroretinogram spatial tuning alteration in Parkinson’s disease depend on motor disturbances or retinal dopaminergic loss? Electroencephalogr Clin Neurophysiol 106(4):374–382CrossRefPubMedGoogle Scholar
  47. Price M, Feldman R, Adelberg D, Kayne H (1992) Abnormalities in color vision and contrast sensitivity in Parkinson’s disease. Neurology 42:887–890PubMedGoogle Scholar
  48. Regan D, Maxner C (1987) Orientation-selective visual loss in patients with Parkinson’s disease. Brain 110(Pt 2):415–432CrossRefPubMedGoogle Scholar
  49. Regan D, Neima D (1984) Low-contrast letter charts in early diabetic retinopathy, ocular hypertension, glaucoma, and Parkinson’s disease. Br J Ophthalmol 68(12):885–889CrossRefPubMedGoogle Scholar
  50. Sartucci F, Orlandi G, Lucetti C et al (2003) Changes in pattern electroretinograms to equiluminant red-green and blue-yellow gratings in patients with early Parkinson’s disease. J Clin Neurophysiol 20:375–381CrossRefPubMedGoogle Scholar
  51. Schulman JS, Pedut-Kloizman T, Hertzmark E et al (1996) Reproducibility of nerve fiber layer thickness measurements using optical coherence tomography. Ophthalmology 103:1889–1898Google Scholar
  52. Silva MF, Faria P, Regateiro FS, Forjaz V, Januário C, Freire A, Castelo-Branco M (2005) Independent patterns of damage within magno-, parvo- and koniocellular pathways in Parkinson’s disease. Brain 128:2260–2271CrossRefPubMedGoogle Scholar
  53. Skirboll LR, Grace AA, Bunney BS (1977) Dopamine auto- and postsynaptic receptors: electrophysiological evidence for differential sensitivity to dopamine agonists. Science 206:80–82CrossRefGoogle Scholar
  54. Stanzione P, Pierantozzi M, Semprini R, Tagliati M, Traversa R, Peppe A et al (1995) Increasing doses of l-sulpiride reveal dose- and spatial frequency-dependent effects of D2 selective blockade in the human electroretinogram. Vision Res 35:2659–2664CrossRefPubMedGoogle Scholar
  55. Tagliati M, Bodis-Wollner I, Yahr MD (1996) The pattern electroretinogram in Parkinson’s disease reveals lack of retinal spatial tuning. Electroencephalogr Clin Neurophysiol 100:1–11CrossRefPubMedGoogle Scholar
  56. Tagliati M, Bodis-Wollner I, Kovanecz I, Stanzione P (1994) Spatial frequency tuning of the monkey pattern ERG depends on D2 receptor-linked action of dopamine. Vision Res 34:2051–2057CrossRefPubMedGoogle Scholar
  57. Tartaglione A, Pizio N, Bino G, Spadavecchia L, Favale E (1984) VEP changes in Parkinson’s disease are stimulus dependent. J Neurol Neurosurg Psychiatry 47(3):305–307CrossRefPubMedGoogle Scholar
  58. Tartaglione A, Oneto A, Bandini F, Favale E (1987) Visual evoked potentials and pattern electroretinograms in Parkinson’s disease and control subjects. J Neurol Neurosurg Psychiatry 50(9):1243–1244CrossRefPubMedGoogle Scholar
  59. Valenti DA (2007) Neuroimaging of retinal nerve fiber layer in AD using optical coherence tomography. Neurology 69:1060CrossRefPubMedGoogle Scholar
  60. Witkovsky P (2004) Dopamine and retinal function. Doc Ophthalmol 108:17–39CrossRefPubMedGoogle Scholar
  61. Witkovsky P, Gabriel R, Krizaj D, Akopian A (1995) Feedback from luminosity horizontal cells mediates depolarizing responses of chromaticity horizontal cells in the Xenopus retina. Proc Natl Acad Sci USA 92(8):3556–3560CrossRefPubMedGoogle Scholar
  62. Wojtkowski M, Srinivasan V, Fujimoto J et al (2005) Three-dimensional retinal imaging with high speed ultrahigh resolution optical coherence tomography. Ophthalmology 112:1734–1746CrossRefPubMedGoogle Scholar
  63. Yavas GF, Yilmaz O, Küsbeci T, Oztürk F (2007) The effect of levodopa and dopamine agonists on optic nerve head in Parkinson disease. Eur J Ophthalmol 17:812–816PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.NPF Center of Excellence, Department of NeurologySUNY Downstate Medical CenterBrooklynUSA

Personalised recommendations