Astrocytes and Glioblastoma cells release exosomes carrying mtDNA

  • Michele Guescini
  • Susanna Genedani
  • Vilberto Stocchi
  • Luigi Francesco Agnati
Basic Neurosciences, Genetics and Immunology - Rapid Communication

Abstract

Cells can exchange information not only by means of chemical and/or electrical signals, but also via microvesicles released into the intercellular space. The present paper, for the first time, provides evidence that Glioblastoma and Astrocyte cells release microvesicles, which carry mitochondrial DNA (mtDNA). These microvesicles have been characterised as exosomes in view of the presence of some protein markers of exosomes, such as Tsg101, CD9 and Alix. Thus, the important finding has been obtained that bonafide exosomes, constitutively released by Glioblastoma cells and Astrocytes, can carry mtDNA, which can be, therefore, transferred between cells. This datum may help the understanding of some diseases due to mitochondrial alterations.

Keywords

Glioblastoma cells Astrocytes Mitochondrial DNA Exosomes Intercellular communication 

References

  1. Agnati LF, Guidolin D, Baluska F, Leo G, Barlow PW, Carone C, Genedani S (2009) A new hypothesis of pathogenesis based on the divorce between mitochondria and their host cells: possible relevances for the Alzheimer’s disease. Curr Alzheimer Res (in press)Google Scholar
  2. Barral AM, von Herrath MG (2005) Exosomes: specific intercellular nano-shuttles. Curr Immunol Rev 1:1–6CrossRefGoogle Scholar
  3. Belting M, Wittrup A (2008) Nanotubes, exosomes, and nucleic acid-binding peptides provide novel mechanisms of intercellular communication in eukaryotic cells: implications in health and disease. J Cell Biol 183:1187–1191CrossRefPubMedGoogle Scholar
  4. Cocucci E, Racchetti G, Meldolesi J (2009) Shedding microvesicles: artefacts no more. Trends Cell Biol 19:43–51CrossRefPubMedGoogle Scholar
  5. Fevrier B, Raposo G (2004) Exosomes: endosomal-derived vesicles shipping extracellular messages. Curr Opin Cell Biol 16:415–421CrossRefPubMedGoogle Scholar
  6. Gerdes HH, Bukoreshtliev NV, Barroso JF (2007) Tunneling nanotubes: a new route for the exchange of components between animal cells. FEBS Lett 581:2194–2201CrossRefPubMedGoogle Scholar
  7. Jansen FH, Krijgsveld J, van Rijswijk A, van den Bemd GJ, van den Berg MS, van Weerden WM, Willemsen R, Dekker LJ, Luider TM, Jenster G (2009) Exosomal secretion of cytoplasmic prostate cancer xenograft-derived proteins. Mol Cell Proteomics 8:1192–1205CrossRefPubMedGoogle Scholar
  8. Lakkaraju A, Rodriguez-Boulan E (2008) Itinerant exosomes: emerging roles in cell and tissue polarity. Trends Cell Biol 18:199–209CrossRefPubMedGoogle Scholar
  9. Mallegol J, Van Niel G, Lebreton C, Lepelletier Y, Candalh C, Dugave C, Heath JK, Raposo G, Cerf-Bensussan N, Heyman M (2007) T84-intestinal epithelial exosomes bear MHC class II/peptide complexes potentiating antigen presentation by dendritic cells. Gastroenterology 132:1866–1876CrossRefPubMedGoogle Scholar
  10. Mears R, Craven RA, Hanrahan S, Totty N, Upton C, Young SL, Patel P, Selby PJ, Banks RE (2004) Proteomic analysis of melanoma-derived exosomes by two-dimensional polyacrylamide gel electrophoresis and mass spectrometry. Proteomics 4:4019–4031CrossRefPubMedGoogle Scholar
  11. Raiborg C, Rusten TE, Stenmark H (2003) Protein sorting into multivesicular endosomes. Curr Opin Cell Biol 15:446–455CrossRefPubMedGoogle Scholar
  12. Rajendran L, Honsho M, Zahn TR, Keller P, Geiger KD, Verkade P, Simons K (2006) Alzheimer’s disease beta-amyloid peptides are released in association with exosomes. Proc Natl Acad Sci USA 103:11172–11177CrossRefPubMedGoogle Scholar
  13. Rustom A, Saffrich R, Markovic I, Walther P, Gerdes HH (2004) Nanotubular highways for intercellular organelle transport. Science 303:1007–1010CrossRefPubMedGoogle Scholar
  14. Schapira AH (2006) Mitochondrial disease. Lancet 368:70–82CrossRefPubMedGoogle Scholar
  15. Schorey JS, Bhatnagar S (2008) Exosome function: from tumor immunology to pathogen biology. Traffic 9:871–881CrossRefPubMedGoogle Scholar
  16. Simons M, Raposo G (2009) Exosomes—vesicular carriers for intercellular communication. Curr Opin Cell Biol May 11. [Epub ahead of print]Google Scholar
  17. Skog J, Wurdinger T, van Rijn S, Meijer DH, Gainche L, Sena-Esteves M, Curry WT Jr, Carter BS, Krichevsky AM, Breakefield XO (2008) Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol 10:1470–1476CrossRefPubMedGoogle Scholar
  18. Smalheiser NR (2007) Exosomal transfer of proteins and RNAs at synapses in the nervous system. Biol Direct 2:35CrossRefPubMedGoogle Scholar
  19. Staubach S, Razawi H, Hanisch FG (2009) Proteomics of MUC1-containing lipid rafts from plasma membranes and exosomes of human breast carcinoma cells MCF-7. Proteomics 9:2820–2835CrossRefPubMedGoogle Scholar
  20. van Niel G, Porto-Carreiro I, Simoes S, Raposo G (2006) Exosomes: a common pathway for a specialized function. J Biochem 140:13–21CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Michele Guescini
    • 1
  • Susanna Genedani
    • 2
  • Vilberto Stocchi
    • 1
  • Luigi Francesco Agnati
    • 2
    • 3
  1. 1.Department of Biomolecular SciencesUniversity of Urbino ‘Carlo Bo’UrbinoItaly
  2. 2.Department Biomedical SciencesUniversity of Modena and Reggio EmiliaModenaItaly
  3. 3.IRCCS LidoVeneziaItaly

Personalised recommendations