Journal of Neural Transmission

, Volume 116, Issue 8, pp 941–952 | Cite as

Neurotransmitters and prefrontal cortex–limbic system interactions: implications for plasticity and psychiatric disorders

  • Alberto Del Arco
  • Francisco Mora
Basic Neurosciences, Genetics and Immunology - Review Article


The prefrontal cortex (PFC) efferent projections to limbic areas facilitate a top-down control on the execution of goal-directed behaviours. The PFC sends glutamatergic outputs to limbic areas such as the hippocampus and amygdala which in turn modulate the activity of the nucleus accumbens (NAc). Dopamine and acetylcholine neurons in the brainstem and basal forebrain/septal areas, which send outputs to NAc, hippocampus and amygdala, are also regulated by PFC glutamatergic projections, and seem to be of special relevance in modulating motor, emotional and mnemonic functions. Both the physiological and pathological changes in the PFC influence the activity of these limbic areas and the corresponding final-guided behaviours. We revise our most recent studies on PFC–NAc interactions focussed on the role of dopamine and glutamate receptors in the PFC. Specifically, by performing microinjections/microdialysis studies we found that the activation of D2 dopamine receptors and the blockade of glutamate NMDA receptors in the PFC change the release of dopamine and acetylcholine in the NAc. We suggest the possibility that dopamine and glutamate receptors in the PFC could change the activity of dopamine and acetylcholine function in the hippocampus and amygdala. Finally, it is speculated that changes in the function of the PFC, associated with psychiatric disorders or due to environmental-dependent plasticity, can change PFC–limbic system interactions.


Dopamine Glutamate Acetylcholine NMDA Corticosterone Prefrontal cortex Hippocampus Amygdala Nucleus accumbens Schizophrenia Environmental enrichment, social isolation 



This research was supported by the Spanish Ministry of Science and Technology (SAF2006-01554), the Comunidad Autónoma de Madrid (CCG07-UCM/SAL-2162) and the University Complutense (PR34/07-15783).


  1. Aleman A, Kahn RS (2005) Strange feelings: do amygdala abnormalities dysregulate the emotional brain in schizophrenia? Prog Neurobiol 77:283–298PubMedGoogle Scholar
  2. Austin MC, Kalivas PW (1988) The effect of cholinergic stimulation in the nucleus accumbens on locomotor behavior. Brain Res 441:209–214PubMedCrossRefGoogle Scholar
  3. Bacon SJ, Headlam AJ, Gabbott PL, Smith AD (1996) Amygdala input to medial prefrontal cortex (mPFC) in the rat: a light and electron microscope study. Brain Res 720:211–219PubMedCrossRefGoogle Scholar
  4. Barbelivien A, Herbeaux K, Oberling P, Kelche C, Galani R, Majchrzak M (2006) Environmental enrichment increases responding to contextual cues but decreases overall conditioned fear in the rat. Behav Brain Res 169:231–238PubMedCrossRefGoogle Scholar
  5. Bardo MT, Bowling SL, Rowlett JK, Manderscheid P, Buxton ST, Dwoskin LP (1995) Environmental enrichment attenuates locomotor sensitization, but not in vitro dopamine release, induced by amphetamine. Pharmacol Biochem Behav 51:397–405PubMedCrossRefGoogle Scholar
  6. Berretta S, Pantazopoulos H, Caldera M, Pantazopoulos P, Paré D (2005) Infralimbic cortex activation increases c-fos expression in intercalated neurons of the amygdala. Neuroscience 132:943–953PubMedCrossRefGoogle Scholar
  7. Beyer CE, Steketee JD (1999) Dopamine depletion in the medial prefrontal cortex induces sensitized-like behavioral and neurochemical responses to cocaine. Brain Res 833:133–141PubMedCrossRefGoogle Scholar
  8. Beyer CE, Steketee JD (2000) Intra-medial prefrontal cortex injection of quinpirole, but not SKF 38393, blocks the acute motor-stimulant response to cocaine in the rat. Psychopharmacology 151:211–218PubMedCrossRefGoogle Scholar
  9. Brady AM, O’Donnell P (2004) Dopaminergic modulation of prefrontal cortical input to nucleus accumbens neurons in vivo. J Neurosci 24:1040–1049PubMedCrossRefGoogle Scholar
  10. Burgos-Robles A, Vidal-Gonzalez I, Santini E, Quirk GJ (2007) Consolidation of fear extintion requires NMDA receptor-dependent bursting in the ventromedial prefrontal cortex. Neuron 53:871–880PubMedCrossRefGoogle Scholar
  11. Carlsen J, Zaborszky L, Heimer L (1985) Cholinergic projections from the basal forebrain to the basolateral amygdaloid complex: a combined retrograde fluorescent and immunohistochemical study. J Comp Neurol 234:155–167PubMedCrossRefGoogle Scholar
  12. Carr DB, Sesack SR (1996) Hippocampal afferents to the rat prefrontal cortex: synaptic targets and relation to dopamine terminals. J Comp Neurol 369:1–15PubMedCrossRefGoogle Scholar
  13. Carr DB, Sesack SR (2000) Projections from the rat prefrontal cortex to the ventral tegmental area: target specificity in the synaptic associations with mesoaccumbens and mesocortical neurons. J Neurosci 20:3864–3873PubMedGoogle Scholar
  14. Carr DB, O’Donnell P, Card JP, Sesack SR (1999) Dopamine terminals in the rat prefrontal cortex synapse on pyramidal cells that project to the nucleus accumbens. J Neurosci 19:11049–11060PubMedGoogle Scholar
  15. Castner SA, Williams GV (2007) Tuning the engine of cognition: a focus on NMDA/D1 receptor interactions in prefrontal cortex. Brain Cogn 63:94–122PubMedCrossRefGoogle Scholar
  16. Colgin LL, Kubota D, Lynch G (2003) Cholinergic plasticity in the hippocampus. Proc Natl Acad Sci USA 100:2872–2877PubMedCrossRefGoogle Scholar
  17. Dalley JW, Cardinal RN, Robbins RJ (2004) Prefrontal executive and cognitive functions in rodents: neural and neurochemical substrates. Neurosci Biobehav Rev 28:771–784PubMedCrossRefGoogle Scholar
  18. de Kloet ER, Joëls M, Holsboer F (2005) Stress and the brain: from adaptation to disease. Nat Rev Neurosci 6:463–475PubMedCrossRefGoogle Scholar
  19. de Rover M, Lodder JC, Kits KS, Schoffelmeer AN, Brussaard AB (2002) Cholinergic modulation of nucleus accumbens medium spiny neurons. Eur J Neurosci 16:2279–2290PubMedCrossRefGoogle Scholar
  20. Del Arco A, Mora F (2005) Glutamate-dopamine in vivo interaction in the prefrontal cortex modulates the release of dopamine and acetylcholine in the nucleus accumbens of the awake rat. J Neural Transm 112:97–109PubMedCrossRefGoogle Scholar
  21. Del Arco A, Mora F (2008) Prefrontal cortex-nucleus accumbens interaction: in vivo modulation by glutamate and dopamine in the prefrontal cortex. Pharmacol Biochem Behav 90:226–235PubMedCrossRefGoogle Scholar
  22. Del Arco A, Segovia G, Fuxe K, Mora F (2003) Changes of dialysate concentrations of glutamate and GABA in the brain: an index of volume transmission mediated actions? J Neurochem 85:23–33PubMedCrossRefGoogle Scholar
  23. Del Arco A, Shunwei Z, Teraasma A, Mohammed AH, Fuxe K (2004) Hyperactivity to novelty induced by social isolation is not correlated with changes in D2 receptor function and binding in striatum. Psychopharmacology 171:148–155PubMedCrossRefGoogle Scholar
  24. Del Arco A, Mora F, Mohammed AH, Fuxe K (2007a) Stimulation of D2 receptors in the prefrontal cortex reduces PCP-induced hyperactivity, acetylcholine release and dopamine metabolism in the nucleus accumbens. J Neural Transm 114:185–193PubMedCrossRefGoogle Scholar
  25. Del Arco A, Segovia G, Canales JJ, Garrido P, De Blas M, García-Verdugo JM, Mora F (2007b) Environmental enrichment reduces the function of D1 dopamine receptors in the prefrontal cortex of the rat. J Neural Transm 114:43–48PubMedCrossRefGoogle Scholar
  26. Del Arco A, Segovia G, Garrido P, De Blas M, Mora F (2007c) Stress, prefrontal cortex and environmental enrichment: studies on dopamine and acetylcholine release and working memory performance in rats. Behav Brain Res 176:267–273PubMedCrossRefGoogle Scholar
  27. Del Arco A, Segovia G, Mora F (2008) Blockade of NMDA receptors in the prefrontal cortex increases dopamine and acetylcholine release in the nucleus accumbens and motor activity. Psychopharmacology 201:325–338PubMedCrossRefGoogle Scholar
  28. Diorio D, Viau V, Meaney MJ (1993) The role of the medial prefrontal cortex (cingulate gyrus) in the regulation of hypothalamic-pituitary-adrenal responses to stress. J Neurosci 13:3839–3847PubMedGoogle Scholar
  29. Egorov AV, Unsicker K, und Halbach O (2006) Muscarinic control of graded persistent activity in lateral amygdala neurons. Eur J Neurosci 24:3183–3194PubMedCrossRefGoogle Scholar
  30. Elvander-Tottie E, Eriksson TM, Sandin J (2006) N-Methyl-d-aspartate receptors in the medial septal area have a role in spatial and emotional learning in the rat. Neuroscience 142:963–978PubMedCrossRefGoogle Scholar
  31. Floresco SB, Tse MT (2007) Dopaminergic regulation of inhibitory and excitatory transmission in the basolateral amygdala-prefrontal cortical pathway. J Neurosci 27:2045–2057PubMedCrossRefGoogle Scholar
  32. Fone KCF, Porkess MV (2008) Behavioural and neurochemical effects of post-weaning social isolation in rodents—relevance to developmental neuropsychiatric disorders. Neurosci Biobehav Rev 32:1082–1102CrossRefGoogle Scholar
  33. Forster GL, Blaha CD (2000) Laterodorsal tegmental stimulation elicits dopamine efflux in the rat nucleus accumbens by activation of acetylcholine and glutamate receptors in the ventral tegmental area. Eur J Neurosci 12:3596–3604PubMedCrossRefGoogle Scholar
  34. Francis DD, Diorio J, Plotsky PM, Meaney MJ (2002) Environmental enrichment reverses the effects of maternal separation on stress reactivity. J Neurosci 22:7840–7843PubMedGoogle Scholar
  35. Fujishiro H, Umegaki H, Suzuki Y, Oohara-Kurotani S, Yamaguchi Y, Iguchi A (2005) Dopamine D2 receptor plays a role in memory function: implications of dopamine-acetylcholine interaction in the ventral hippocampus. Psychopharmacology 182:253–261PubMedCrossRefGoogle Scholar
  36. Fulford AJ, Marsden CA (1998) Effect of isolation-rearing on conditioned dopamine release in vivo in the nucleus accumbens of the rat. J Neurochem 70:384–390PubMedGoogle Scholar
  37. Fuster JM (1997) The prefrontal cortex: anatomy, physiology, and neuropsychology of the frontal lobe. Lippincott-Raven, New YorkGoogle Scholar
  38. Gabbott PLA, Warner TA, Jays PRL, Salway P, Busby SJ (2005) Prefrontal cortex in the rat: projections to subcortical autonomic, motor, and limbic centers. J Comp Neurol 492:145–177PubMedCrossRefGoogle Scholar
  39. Garrido P, De Blas M, Del Arco A, Segovia G, Mora F (2008) Environmental enrichment supresses dopamine and coricosterone increases produced by acute stress in the prefrontal cortex of the rat. FENS Abstr 4: 114.8Google Scholar
  40. Gasbarri A, Verney C, Innocenzi R, Campana E, Pacitti C (1994) Mesolimbic dopaminergic neurons innervating the hippocampal formation in the rat: a combined retrograde tracing and immunohistochemical study. Brain Res 668:71–79PubMedCrossRefGoogle Scholar
  41. Gaspar P, Bloch B, Le Moine C (1995) D1 and D2 receptor gene expression in the rat frontal cortex: cellular localization in different classes of efferent neurons. Eur J Neurosci 7:1050–1063PubMedCrossRefGoogle Scholar
  42. Gaykema RP, Luiten PGM, Nyakas C, Traber J (1990) Cortical projection patterns of the medial septum–diagonal band complex. J Comp Neurol 293:103–124PubMedCrossRefGoogle Scholar
  43. Geisler S, Derst C, Veh RW, Zahm DS (2007) Glutamatergic afferents of the ventral tegmental area in the rat. J Neurosci 27:5730–5743PubMedCrossRefGoogle Scholar
  44. Giménez-Llort L, Wang F-H, Ögren SO, Ferré S (2002) Local dopaminergic modulation of the motor activity induced by N-methyl-d-aspartate receptor stimulation in the ventral hippocampus. Neuropsychopharmacology 26:737–743PubMedCrossRefGoogle Scholar
  45. Gispen-de Wied CC (2000) Stress in schizophrenia: an integrative view. Eur J Pharmacol 405:375–384PubMedCrossRefGoogle Scholar
  46. Goldman-Rakic PS, Muly EC III, Williams GV (2000) D1 receptors in prefrontal cells and circuits. Brain Res Rev 31:295–301PubMedCrossRefGoogle Scholar
  47. Goto Y, Grace AA (2008) Dopamine modulation of hippocampal-prefrontal cortical interaction drives memory-guided behavior. Cerebral Cortex 18:1407–1414PubMedCrossRefGoogle Scholar
  48. Goto Y, O’Donnell P (2004) Prefrontal lesion reverses abnormal mesoaccumbens response in an animal model of schizophrenia. Biol Psychiatry 55:172–176PubMedCrossRefGoogle Scholar
  49. Grace AA, Floresco SB, Goto Y, Lodge D (2007) Regulation of firing of dopaminergic neurons and control of goal-directed behaviors. Trends Neurosci 30:220–227PubMedCrossRefGoogle Scholar
  50. Green A, Cain E, Michael T, Bardo MT (2003) Environmental enrichment decreases nicotine-induced hyperactivity in rats. Psychopharmacology 170:235–241PubMedCrossRefGoogle Scholar
  51. Groenewegen HJ, Uylings HBM (2000) The prefrontal cortex and the integration of sensory, limbic and autonomic information. Prog Brain Res 126:3–28PubMedCrossRefGoogle Scholar
  52. Hamilton DA, Kolb B (2005) Differential effects of nicotine and complex housing on subsequent experience-dependent structural plasticity in the nucleus accumbens. Behav Neurosci 119:355–365PubMedCrossRefGoogle Scholar
  53. Hasue RH, Shammah-Lagnado SJ (2002) Origin of the dopminergic innervation of the central extended amygdala and accumbens shell: a combined retrograde tracing and immunohistochemical study in the rat. J Comp Neurol 454:15–33PubMedCrossRefGoogle Scholar
  54. Heidbreder CA, Weiss IC, Domeney AM, Pryce C, Homberg J, Hedou G, Feldon J, Moran MC, Nelson P (2000) Behavioral, neurochemical and endocrinological characterization of the early social isolation syndrome. Neuroscience 100:749–768PubMedCrossRefGoogle Scholar
  55. Hoebel BG, Avena NM, Rada P (2007) Accumbens dopamine-acetylcholine balance in approach and avoidance. Curr Opin Pharmacol 7:617–627PubMedCrossRefGoogle Scholar
  56. Hokfelt T, Ljungdahl A, Fuxe K, Johansson O (1974) Dopamine nerve terminals in the rat limbic cortex: aspects of the dopamine hypothesis of schizophrenia. Science 184:177–179PubMedCrossRefGoogle Scholar
  57. Homayoun H, Moghaddam B (2007) NMDA receptor hypofunction produces opposite effects on prefrontal cortex interneurons and pyramidal neurons. J Neurosci 27:11496–11500PubMedCrossRefGoogle Scholar
  58. Howes SR, Dalley JW, Morrison CH, Robbins TW, Everitt BJ (2000) Leftward shift in the acquisition of cocaine self-administration in isolation-reared rats: relationship to extracellular levels of dopamine, serotonin and glutamate in the nucleus accumbens and amygdala-striatal FOS expression. Psychopharmacology 151:55–63PubMedCrossRefGoogle Scholar
  59. Jackson ME, Frost AS, Moghaddam B (2001) Stimulation of prefrontal cortex at physiologically relevant frequencies inhibits dopamine release in the nucleus accumbens. J Neurochem 78:920–923PubMedCrossRefGoogle Scholar
  60. Jiang L, Role LW (2008) Facilitation of cortico–amygdala synapses by nicotine: activity-dependent modulation of glutamatergic transmission. J Neurophysiol 99:1988–1999PubMedCrossRefGoogle Scholar
  61. Jones GH, Hernández TD, Kendall DA, Marsden CA, Robbins TW (1992) Dopaminergic and serotonergic function following isolation rearing in rats: study of behavioural responses and postmortem and in vivo neurochemistry. Pharmacol Biochem Behav 43:17–35PubMedCrossRefGoogle Scholar
  62. King D, Zigmond MJ, Finlay JM (1997) Effects of dopamine depletion in the medial prefrontal cortex on the stress-induced increase in extracellular dopamine in the nucleus accumbens core and shell. Neuroscience 77:141–153PubMedCrossRefGoogle Scholar
  63. Kolb B, Gorny G, Li Y, Samaha AN, Robinson TE (2003a) Amphetamine os cocaine limits the ability of later experience to promote structural plasticity in the neocortex and nucleus accumbens. Proc Natl Am Sci 100:10523–10528CrossRefGoogle Scholar
  64. Kolb B, Gorny G, Söderpalm AHV, Robinson TE (2003b) Environmental complexity has different effects on the structure of neurons in the prefrontal cortex versus the parietal cortex or nucleus accumbens. Synapse 48:149–153PubMedCrossRefGoogle Scholar
  65. Krystal JH, D’Souza DC, Mathalon D, Perry E, Belger A, Hoffman R (2003) NMDA receptor antagonist effects, cortical glutamatergic function, and schizophrenia: toward a paradigm shift in medication development. Psychopharmacology 169:215–233PubMedCrossRefGoogle Scholar
  66. Kyd RJ, Bilkey DK (2005) Hippocampal place cells show increased sensitivity to changes in the local environment following prefrontal cortex lesions. Cerebral Cortex 15:720–731PubMedCrossRefGoogle Scholar
  67. Larsson F, Winblad B, Mohammed AH (2002) Psychological stress and environmental adaptation in enriched vs. impoverished housed rats. Pharmacol Biochem Behav 73:193–207PubMedCrossRefGoogle Scholar
  68. Laruelle M, Kegeles LS, Abi-Dargham A (2003) Glutamate, dopamine, and schizophrenia: from pathophysiology to treatment. Ann NY Acad Sci 1003:138–158PubMedCrossRefGoogle Scholar
  69. LeDoux JE (2000) Emotion circuits in the brain. Annu Rev Neurosci 23:155–184PubMedCrossRefGoogle Scholar
  70. Lewis DA, Moghaddam B (2006) Cognitive dysfunction in schizophrenia. Arch Neurol 63:1372–1376PubMedCrossRefGoogle Scholar
  71. Lewis SM, Lee FS, Todorova M, Seyfried T, Ueda T (1997) Syanptic vesicle glutamate uptake in epileptic (EL) mice. Neurochem Int 31:581–585PubMedCrossRefGoogle Scholar
  72. Likhtik E, Pelletier JG, Paz R, Paré D (2005) Prefrontal control of the amygdala. J Neurosci 25:7429–7437PubMedCrossRefGoogle Scholar
  73. Lisman JE, Grace AA (2005) The hippocampal-VTA loop: controlling the entry of information into long-term memory. Neuron 46:703–713PubMedCrossRefGoogle Scholar
  74. Lu X-Y, Churchill L, Kalivas PW (1997) Expression of D1 receptor mRNA in projections from the forebrain to the ventral tegmental area. Synapse 25:205–214PubMedCrossRefGoogle Scholar
  75. McGaugh JL (2004) The amygdala modulates the consolidation of memories of emotionally arousing experiences. Annu Rev Neurosci 27:1–28PubMedCrossRefGoogle Scholar
  76. Melendez RI, Gregory ML, Bardo MT, Kalivas PW (2004) Impoverished rearing environment alters metabotropic glutamate receptor expression and function in the prefrontal cortex. Neuropsychopharmacology 29:1980–1987PubMedCrossRefGoogle Scholar
  77. Meyer-Lindenberg A, Miletich RS, Kohn PD, Esposito G, Carson RE, Quarantelli M, Weinberger DR, Berman KF (2002) Reduced prefrontal activity predicts exaggerated striatal dopaminergic function in schizophrenia. Nat Neurosci 5:267–271PubMedCrossRefGoogle Scholar
  78. Meyer-Lindenberg A, Olsen RK, Kohn PD, Brown T, Egan MF, Weinberger DR, Berman KF (2005) Regionally specific disturbance of dorsolateral prefrontal-hippocampal functional connectivity in schizophrenia. Arch Gen Psychiatry 62:379–386PubMedCrossRefGoogle Scholar
  79. Miller EK, Cohen JD (2001) An integrative theory of prefrontal cortex function. Annu Rev Neurosci 24:167–202PubMedCrossRefGoogle Scholar
  80. Mizoguchi K, Yuzurihara M, Ishige A, Sasaki H, Chui D-H, Tabira T (2000) Chronic stress induces impairment of spatial working memory because of prefrontal dopaminergic dysfunction. J Neurosci 20:1568–1574PubMedGoogle Scholar
  81. Mogenson GJ, Jones DL, Yim CY (1980) From motivation to action: functional interface between the limbic system and the motor system. Prog Neurobiol 14:69–97PubMedCrossRefGoogle Scholar
  82. Moghaddam B (2002) Stress activation of glutamate neurotransmission in the prefrontal cortex: implications for dopamine-associated psychiatric disorders. Biol Psychiatry 51:775–787PubMedCrossRefGoogle Scholar
  83. Montaron MF, Deniau JM, Menetrey A, Glowinski J, Thierry AM (1996) Prefrontal cortex inputs of the nucleus accumbens-nigro-thalamic circuit. Neuroscience 71:371–382PubMedCrossRefGoogle Scholar
  84. Moore H, Lavin A, Grace AA (1998) Interaction between dopamine and NMDA delivered locally by microdialysis during in vivo intracellular recordings of rat prefrontal cortical neurons. Soc Neurosci Abst 24:2061Google Scholar
  85. Mora F, Sweeney KF, Rolls ET, Sanguinetti AM (1976) Spontaneous firing rate of neurons in the prefrontal cortex of the rat: evidence for a dopaminergic inhibition. Brain Res 116:516–522PubMedCrossRefGoogle Scholar
  86. Mora F, Segovia G, Del Arco A (2007) Aging, plasticity and environmental enrichment: structural changes and neurotransmitter dynamics in several areas of the brain. Brain Res Rev 55:78–88PubMedCrossRefGoogle Scholar
  87. Mora F, Segovia G, Del Arco A (2008) Glutamate-dopamine-GABA interactions in the aging basal ganglia. Brain Res Rev 58:340–353PubMedCrossRefGoogle Scholar
  88. Omelchenko N, Sesack SR (2005) Laterodorsal tegmental projections to identified cell populations in the rat ventral tegmental area. J Comp Neurol 483:217–235PubMedCrossRefGoogle Scholar
  89. Öngür D, Price JL (2000) The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans. Cerebral Cortex 10:206–219PubMedCrossRefGoogle Scholar
  90. Otmakhova NA, Lisman JE (1998) Dopamine selectively inhibits the direct cortical pathway to the CA1 hippocampal region. J Neurosci 19:1437–1445Google Scholar
  91. Pantelis C, Barnes TRE, Nelson HE, Tanner S, Weatherley L, Owen AM, Robbins TW (1997) Frontal-striatal cognitive deficits in patients with chronic schizophrenia. Brain 120:1823–1843PubMedCrossRefGoogle Scholar
  92. Peinado JM, Mora F (1986) Glutamic acid as a putative transmitter of the interhemispheric cortico–cortical connections in the rat. J Neurochem 47:1598–1603PubMedCrossRefGoogle Scholar
  93. Peters YM, O’Donnell P (2005) Social isolation rearing affects prefrontal cortical response to ventral tegmental area stimulation. Biol Psychiatry 57:1205–1208PubMedCrossRefGoogle Scholar
  94. Pezze MA, Feldon J (2004) Mesolimbic dopaminergic pathways in fear conditioning. Prog Neurobiol 74:301–320PubMedCrossRefGoogle Scholar
  95. Pfeiffer UJ, Fendt M (2006) Prefrontal dopamine D4 receptors are involved in encoding fear extinction. NeuroReport 17:847–850PubMedCrossRefGoogle Scholar
  96. Pinto A, Sesack SR (2008) Ultrastructural analysis of prefrontal cortical inputs to the rat amygdala: spatial relationships to presumed dopamine axons and D1 and D2 receptors. Brain Struct Funct 213:159–175Google Scholar
  97. Pirot S, Jay TM, Glowinski J, Thierry AM (1994) Anatomical and electrophysiological evidence for an excitatory amino acid pathway from the thalamic mediodorsal nucleus to the prefrontal cortex in the rat. Eur J Neurosci 6:1225–1234PubMedCrossRefGoogle Scholar
  98. Power AE, McIntyre CK, Litmanovich A, McGaugh JL (2003) Cholinergic modulation of memory in the basolateral amygdala involves activation of both m1 and m2 receptors. Behav Pharmacol 14:207–213PubMedGoogle Scholar
  99. Pratt WE, Kelley AE (2004) Nucleus accumbens acetylcholine regulates appetitive learning and motivation for food via activation of muscarinic receptors. Behav Neurosci 118:730–739PubMedCrossRefGoogle Scholar
  100. Quirk GJ, Mueller D (2008) Neural mechanisms of extinction learning and retrieval. Neuropsychopharmacology 33:56–72PubMedCrossRefGoogle Scholar
  101. Quirk GJ, Likhtik E, Pelletier JG, Paré D (2003) Stimulation of medial prefrontal cortex decreases the responsiveness of central output neurons. J Neurosci 23:8800–8807PubMedGoogle Scholar
  102. Robbins TW (2000a) Chemical neuromodulation of frontal-executive functions in humans and other animals. Exp Brain Res 133:130–138PubMedCrossRefGoogle Scholar
  103. Robbins TW (2000b) From arousal to cognition: integrative position of the prefrontal cortex. Prog Brain Res 126:469–483PubMedCrossRefGoogle Scholar
  104. Robbins TW (2005) Chemistry of the mind: neurochemical modulation of prefrontal cortical function. J Comp Neurol 493:140–146PubMedCrossRefGoogle Scholar
  105. Robbins TW, Everitt BJ (1996) Neurobehavioural mechanisms of reward and motivation. Curr Opin Neurobiol 6:228–236PubMedCrossRefGoogle Scholar
  106. Roncada P, Bortolano M, Frau R, Saba P, Flore G, Soggiu A, Pisanu S, Amoresano A, Carpentieri A, Devoto P (2009) Gating deficits in isolation-reared rats are correlated with alterations in protein expression in nucleus accumbens. J Neurochem 108:611–620PubMedCrossRefGoogle Scholar
  107. Rosenkranz JA, Grace AA (2002) Cellular mechanisms of infralimbic and prelimbic prefrontal cortical inhibition and dopaminergic modulation of basolateral amygdala neurons in vivo. J Neurosci 22:324–337PubMedGoogle Scholar
  108. Rosenzweig MR, Bennett EL (1996) Psychobiology of plasticity: effects of training and experience on brain and behavior. Behav Brain Res 78:57–65PubMedCrossRefGoogle Scholar
  109. Sarter M, Nelson CL, Bruno JP (2005) Cortical cholinergic transmission and cortical information processing in schizophrenia. Schizophr Bull 31:117–138PubMedCrossRefGoogle Scholar
  110. Schiller L, Donix M, Jähkel M, Oehler J (2006) Serotonin 1A and 2A receptor densities, neurochemical and behavioural characteristics in two closely related mice strains after long-term isolation. Prog Neuropsychopharmacol Biol Psychiatry 30:492–503PubMedCrossRefGoogle Scholar
  111. Schrijver NCA, Bahr NI, Weiss IC, Würbel H (2002) Dissociable effects of isolation rearing and environmental enrichment on exploration, spatial learning and HPA activity in adult rats. Pharmacol Biochem Behav 73:209–224PubMedCrossRefGoogle Scholar
  112. Schubert MI, Porkess MV, Dashdorj N, Fone KCF, Auer DP (2009) Effects of social isolation rearing on the limbic brain: a combined behavioral and magnetic resonance imaging volumetry study in rats. Neuroscience 159:21–30PubMedCrossRefGoogle Scholar
  113. Seamans JK, Yang CR (2004) The principal features and mechanisms of dopamine modulation in the prefrontal cortex. Prog Neurobiol 74:1–57PubMedCrossRefGoogle Scholar
  114. Segovia G, Yagüe AG, García-Verdugo JM, Mora F (2006) Environmental enrichment promotes neurogenesis and changes the extracellular concentrations of glutamate and GABA in the hippocampus of aged rats. Brain Res Bull 70:8–14PubMedCrossRefGoogle Scholar
  115. Segovia G, Del Arco A, De Blas M, Garrido P, Mora F (2008) Effects of an enriched environment on the release of dopamine in the prefrontal cortex produced by stress and on working memory during aging in the awake rat. Behav Brain Res 187:304–311PubMedCrossRefGoogle Scholar
  116. Sesack SR, Carr DB (2002) Selective prefrontal cortex inputs to dopamine cells: implications for schizophrenia. Physiol Behav 77:513–517PubMedCrossRefGoogle Scholar
  117. Sesack SR, Pickel VM (1990) In the rat medial nucleus accumbens, hippocampal and catecholaminergic terminals converge on spiny neurons and are in apposition to each other. Brain Res 527:266–279PubMedCrossRefGoogle Scholar
  118. Sesack SR, Pickel VM (1992) Prefrontal cortical efferents in the rat synapse on unlabeled neuronal targets of catecholamine terminals in the nucleus accumbens septi and dopamine neurons in the ventral tegmental area. J Comp Neurol 320:145–160PubMedCrossRefGoogle Scholar
  119. Sesack SR, Carr DB, Omelchenko N, Pinto A (2003) Anatomical substrates for glutamate–dopamine interactions. Ann NY Acad Sci 1003:36–52PubMedCrossRefGoogle Scholar
  120. Silva-Gómez AB, Rojas D, Juárez I, Flores G (2003) Decreased dendritic spine density on prefrontal cortical and hippocampal pyramidal neurons in postweaning social isolation rats. Brain Res 983:128–136PubMedCrossRefGoogle Scholar
  121. Somogyi P, Tamás G, Lujan R, Buhl EH (1998) Salient features of synaptic organisation in the cerebral cortex. Brain Res Rev 26:113–135PubMedCrossRefGoogle Scholar
  122. Steketee JD (2003) Neurotransmitter systems of the medial prefrontal cortex: potential role in sensitization to psychostimulants. Brain Res Rev 41:203–228PubMedCrossRefGoogle Scholar
  123. Taber MT, Fibiger HC (1995) Electrical stimulation of the prefrontal cortex increases dopamine release in the nucleus accumbens of the rat: modulation by metabotropic glutamate receptors. J Neurosci 15:3896–3904PubMedGoogle Scholar
  124. Taber MT, Das S, Fibiger HC (1995) Cortical regulation of subcortical dopamine release: mediation via the ventral tegmental area. J Neurochem 65:1407–1410PubMedCrossRefGoogle Scholar
  125. Takahata R, Moghaddam B (2003) Activation of glutamate neurotransmission in the prefrontal cortex sustains the motoric and dopaminergic effects of phencyclidine. Neuropsychopharmacology 28:1117–1124PubMedGoogle Scholar
  126. Thierry AM, Godbout R, Mantz J, Glowinski J (1990) Influence of the ascending monoaminergic system on the activity of the rat prefrontal cortex. In: Uylings HBM, Van Eden CG, De Bruin JPC, Corner MA, Feenstra MGP (eds) The prefrontal cortex: its structure, function and pathology. Elsevier, Amsterdam, pp 357–366Google Scholar
  127. Thompson TL, Moss RL (1995) In vivo stimulated dopamine release in the nucleus accumbens: modulation by the prefrontal cortex. Brain Res 686:93–98PubMedCrossRefGoogle Scholar
  128. Tseng K, O’Donnell P (2004) Dopamine-glutamate interactions controlling prefrontal cortical pyramidal cell excitability involve multiple signaling mechanisms. J Neurosci 24:5131–5139PubMedCrossRefGoogle Scholar
  129. Tseng KY, Mallet N, Toreson KL, Le Moine C, Gonon F, O’Donnell P (2006) Excitatory response of prefrontal cortical fast-spiking interneurons to ventral tegmental area stimulation in vivo. Synapse 59:412–417PubMedCrossRefGoogle Scholar
  130. Tzschentke TM (2001) Pharmacology and behavioral pharmacology of the mesocortical dopamine system. Prog Neurobiol 63:241–320PubMedCrossRefGoogle Scholar
  131. Tzschentke TM, Schmidt WJ (2000) Functional relationship among medial prefrontal cortex, nucleus accumbens, and ventral tegmental area in locomotion and reward. Crit Rev Neurobiol 14:131–142PubMedGoogle Scholar
  132. van Praag H, Kempermann G, Gage FH (2000) Neural consequences of environmental enrichment. Nat Rev Neurosci 1:191–198PubMedCrossRefGoogle Scholar
  133. Verney C, Alvarez C, Geffard M, Berger B (1990) Ultrastructural double-labelling study of dopamine terminals and GABA-containing neurons in rat anteromedial cerebral cortex. Eur J Neurosci 2:960–972PubMedCrossRefGoogle Scholar
  134. Vertes RP (2004) Differential projections of the infralimbic and prelimbic cortex in the rat. Synapse 51:32–58PubMedCrossRefGoogle Scholar
  135. Vertes RP (2006) Interactions among the medial prefrontal cortex, hippocampus and midline thalamus in emotional and cognitive processing in the rat. Neuroscience 142:1–20PubMedCrossRefGoogle Scholar
  136. Vincent SL, Khan Y, Benes FM (1995) Cellular colocalization of dopamine D1 and D2 receptors in rat medial prefrontal cortex. Synapse 19:112–120PubMedCrossRefGoogle Scholar
  137. Walker E, Mittal V, Tessner K (2008) Stress and the hypothalamic pituitary adrenal axis in the development course of schizophrenia. Ann Rev Clin Psychol 4:189–216CrossRefGoogle Scholar
  138. Wang M, Goldman-Rakic PS (2004) D2 receptor regulation of synaptic burst firing in prefrontal cortical pyramidal neurons. Proc Natl Acad Sci USA 101:5093–5098PubMedCrossRefGoogle Scholar
  139. Willner P, Ahlenius S, Muscat R, Scheel-Krüger J (1991) The mesolimbic dopamine system. In: Willner P, Scheel-Krüger J (eds) The mesolimbic dopamine system: from motivation to action. Wiley & Sons, Chichester, pp 3–15Google Scholar
  140. Wilson RS, Mendes de Leon CF, Barnes LL, Schneider JA, Bienias JL, Evans DA, Bennett DA (2002) Participation in cognitively stimulating activities and risk of incident Alzheimer disease. J Am Med Assoc 287:742–748CrossRefGoogle Scholar
  141. Winterer G, Weinberger DR (2004) Genes, dopamine and cortical signal-to-noise ratio in schizophrenia. Trends Neurosci 27:683–690PubMedCrossRefGoogle Scholar
  142. Wisman LAB, Sahin G, Maingay M, Leanza G, Kirik D (2008) Functional convergence of dopaminergic and cholinergic inputs is critical for hippocampus-dependent working memory. J Neurosci 28:7797–7807PubMedCrossRefGoogle Scholar
  143. Wood DA, Rebec GV (2009) Environmental enrichment alters neuronal processing in the nucleus accumbens core during appetitive conditioning. Brain Res 1259:59–67PubMedCrossRefGoogle Scholar
  144. Yang CR, Chen L (2005) Targeting prefrontal cortical dopamine D1 and N-methyl-d-aspartate receptor interactions in Schizophrenia treatment. Neuroscientist 11:452–470PubMedCrossRefGoogle Scholar
  145. Yang CR, Seamans JK, Gorelova N (1999) Developing a neuronal model for the pathophysiology of schizophrenia based on the nature of electrophysiological actions of dopamine in the prefrontal cortex. Neuropsychopharmacology 21:161–194PubMedCrossRefGoogle Scholar
  146. You Z-B, Tzschentke TM, Brodin E, Wise RA (1998) Electrical stimulation of the prefrontal cortex increases cholecystokinin, glutamate, and dopamine release in the nucleus accumbens: an in vivo microdialysis study in freely moving rats. J Neurosci 18:6492–6500PubMedGoogle Scholar
  147. Young NA, Wintink AJ, Kalynchuk LE (2004) Environmental enrichment facilitates amygdala kindling but reduces kindling-induced fear in male rats. Behav Neurosci 118:1128–1133PubMedCrossRefGoogle Scholar
  148. Zaborszky L, Gaykema RP, Swanson DJ, Cullinan WE (1997) Cortical input to the basal forebrain. Neuroscience 79:1051–1078PubMedCrossRefGoogle Scholar
  149. Zhu J, Apparsundaram S, Bardo MT, Dwoskin LP (2005) Environmental enrichment decreases cell surface expression of the dopamine transporter in rat medial prefrontal cortex. J Neurochem 93:1434–1443PubMedCrossRefGoogle Scholar
  150. Zimmermann A, Stauffacher M, Langhans W, Wurbel H (2001) Enrichment-dependent differences in novelty exploration in rats can be explained by habituation. Behav Brain Res 121:11–20PubMedCrossRefGoogle Scholar
  151. Zornoza T, Cano-Cebrián MJ, Miquel M, Aragón C, Polache A, Granero L (2005) Hippocampal dopamine receptors modulate the motor activation and the increase in dopamine levels in the rat nucleus accumbens evoked by chemical stimulation of the ventral hippocampus. Neuropsychopharmacology 30:843–852PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Department of Physiology, Faculty of MedicineUniversidad ComplutenseMadridSpain
  2. 2.Department of Physiology, Faculty of MedicineUniversidad ComplutenseMadridSpain

Personalised recommendations