Journal of Neural Transmission

, Volume 116, Issue 11, pp 1451–1455 | Cite as

Role of Reelin in the development and maintenance of cortical lamination

  • Michael FrotscherEmail author
  • Xuejun Chai
  • Hans H. Bock
  • Carola A. Haas
  • Eckart Förster
  • Shanting Zhao
Basic Neurosciences, Genetics and Immunology - Review Article


Reelin is a large extracellular matrix molecule, synthesized by early generated Cajal–Retzius cells in the marginal zone of the cortex. It plays an important role in the migration of cortical neurons and the development of cortical lamination. We recently discovered that Reelin is required not only for the formation of cortical layers during development but also for their maintenance in adulthood. Thus, decreased Reelin expression in a mouse model of epilepsy and in epileptic patients was accompanied by a loss of granule cell lamination, called granule cell dispersion, in the dentate gyrus of the hippocampal formation. Moreover, antibody blockade of Reelin in normal, adult mice resulted in granule cell dispersion. Collectively these findings point to a role for Reelin in the formation and maintenance of a laminated cortical structure. How does Reelin act on the cytoskeleton in the migration process of cortical neurons? It has been shown that Reelin signalling involves the lipoprotein receptors apolipoprotein E receptor 2 and very low density lipoprotein receptor, the adapter protein Disabled1, and phosphatidylinositol-3-kinase, but it has remained unclear how activation of the Reelin signalling cascade controls cytoskeletal reorganization. Here, we provide evidence that Reelin signalling leads to serine3 phosphorylation of cofilin, an actin-depolymerizing protein that promotes the disassembly of F-actin. Phosphorylation at serine3 renders cofilin unable to depolymerize F-actin, thereby stabilizing the cytoskeleton. Phosphorylation of cofilin in the leading processes of migrating neurons anchors them to the marginal zone containing Reelin. Our results indicate that Reelin-induced stabilization of the neuronal cytoskeleton is an important component of Reelin’s function in the development and maintenance of cortical architecture.


Neuronal migration Migration defects Reelin signalling Actin cytoskeleton Cofilin 



This work was supported by the Deutsche Forschungsgemeinschaft (SFB TR-3 to Michael Frotscher and Carola A. Haas, FO 223/6-1 to Eckart Förster and BO 1806/3-1 to Hans H. Bock, and SFB 780 to Michael Frotscher and Hans H. Bock). Michael Frotscher was supported by the Hertie Foundation.


  1. Arber S, Barbayannis FA, Hanster H, Schneider C, Stanyon CA, Bernard O, Caroni P (1998) Regulation of actin dynamics through phosphorylation of cofilin by LIM-kinase. Nature 393:805–809CrossRefPubMedGoogle Scholar
  2. Arnaud L, Ballif BA, Förster E, Cooper JA (2003) Fyn tyrosine kinase is a critical regulator of disabled-1 during brain development. Curr Biol 13:9–17CrossRefPubMedGoogle Scholar
  3. Bellenchi GC, Gurniak CB, Perlas E, Middei S, Ammassari-Teule M, Witke W (2007) N-cofilin is associated with neuronal migration disorders and cell cycle control in the cerebral cortex. Genes Dev 21:2347–2357CrossRefPubMedGoogle Scholar
  4. Bock HH, Herz J (2003) Reelin activates SRC family tyrosine kinases in neurons. Curr Biol 13:18–26CrossRefPubMedGoogle Scholar
  5. Bock HH, Jossin Y, Liu P, Förster E, May P, Goffinet AM, Herz J (2003) Phosphatidylinositol 3-kinase interacts with the adaptor protein Dab1 in response to Reelin signaling and is required for normal cortical lamination. J Biol Chem 278:38772–38779CrossRefPubMedGoogle Scholar
  6. Chai X, Förster E, Zhao S, Bock HH, Frotscher M (2009) Reelin stabilizes the actin cytoskeleton of neuronal processes by inducing n-cofilin phosphorylation at serine3. J Neurosci 29:288–299CrossRefPubMedGoogle Scholar
  7. Cooper JA (2008) A mechanism for inside-out lamination in the neocortex. Trends Neurosci 31:113–119CrossRefPubMedGoogle Scholar
  8. D’Arcangelo G, Miao GG, Chen SC, Soares HD, Morgan JI, Curran T (1995) A protein related to extracellular matrix proteins deleted in the mouse mutant reeler. Nature 374:719–723CrossRefPubMedGoogle Scholar
  9. D’Arcangelo G, Nakajima K, Miyata T, Ogawa M, Mikoshiba K, Curran T (1997) Reelin is a secreted glycoprotein recognized by the CR-50 monoclonal antibody. J Neurosci 17:23–31PubMedGoogle Scholar
  10. Dawe HR, Minamide LS, Bamburg JR, Cramer LP (2003) ADF/cofilin controls cell polarity during fibroblast migration. Curr Biol 13:252–257CrossRefPubMedGoogle Scholar
  11. Drakew A, Deller T, Heimrich B, Gebhardt C, Del Turco D, Tielsch A, Förster E, Herz J, Frotscher M (2002) Dentate granule cells in reeler mutants and VLDLR and ApoER2 knockout mice. Exp Neurol 176:12–24CrossRefPubMedGoogle Scholar
  12. Fatemi SH, Stary JM, Araghi-Niknam M, Egan E (2005) GABAergic dysfunction in schizophrenia and mood disorders as reflected by decreased levels of reelin and GAD 65 and 67 kDa proteins in cerebellum. Schizophr Res 72:109–122CrossRefPubMedGoogle Scholar
  13. Förster E, Zhao S, Frotscher M (2006) Laminating the hippocampus. Nat Rev Neurosci 7:259–267CrossRefPubMedGoogle Scholar
  14. Frotscher M (1998) Cajal–Retzius cells, Reelin, and the formation of layers. Curr Opin Neurobiol 8:570–575CrossRefPubMedGoogle Scholar
  15. Ghosh M, Song X, Mouneimne G, Sidani M, Lawrence DS, Condeelis JS (2004) Cofliln promotes actin polymerization and defines the direction of cell motility. Science 304:743–746CrossRefPubMedGoogle Scholar
  16. Haas CA, Dudeck O, Kirsch M, Huszka C, Kann G, Pollak S, Zentner J, Frotscher M (2002) Role for reelin in the development of granule cell dispersion in temporal lobe epilepsy. J Neurosci 22:5797–5802PubMedGoogle Scholar
  17. Heinrich C, Nitta N, Flubacher A, Müller M, Fahrner A, Kirsch M, Freiman T, Suzuki F, Depaulis A, Frotscher M, Haas CA (2006) Reelin deficiency and displacement of mature neurons, but not neurogenesis, underlie the formation of granule cell dispersion in the epileptic hippocampus. J Neurosci 26:4701–4713CrossRefPubMedGoogle Scholar
  18. Howell BW, Herrick TM, Cooper JA (1999) Reelin-induced tyrosine phosphorylation of disabled 1 during neuronal positioning. Genes Dev 13:643–648. Erratum in: Genes Dev (1999) 13:1642Google Scholar
  19. Impagnatiello F, Guidotti AR, Pesold C, Dwivedi Y, Caruncho H, Pisu MG, Uzuniv DP, Smalheiser NR, Davis JM, Pandey GN, Pappas GD, Tueting P, Sharma RP, Costa E (1998) A decrease of reelin expression as a putative vulnerability factor in schizophrenia. Proc Natl Acad Sci USA 95:15718–15723CrossRefPubMedGoogle Scholar
  20. Jovceva E, Larsen MR, Waterfield MD, Baum B, Timms JF (2007) Dynamic cofilin phosphorylation in the control of lamellipodial actin homeostasis. J Cell Science 120:1888–1897CrossRefPubMedGoogle Scholar
  21. Kiuchi T, Ohashi K, Kurita S, Mizuno K (2007) Cofilin promotes stimulus-induced lamellipodium formation by generating an abundant supply of actin monomers. J Cell Biol 177:465–476CrossRefPubMedGoogle Scholar
  22. Moriyama K, Lida K, Yahara I (1996) Phosphorylation of Ser-3 of cofilin regulates its essential function on actin. Genes Cells 1:73–86CrossRefPubMedGoogle Scholar
  23. Müller MC, Osswald M, Tinnes S, Häussler U, Jacobi A, Förster E, Frotscher M, Haas CA (2009) Exogenous reelin prevents granule cell dispersion in experimental epilepsy. Exp Neurol 216:390–397CrossRefPubMedGoogle Scholar
  24. Nadarajah B, Parnavelas J (2002) Modes of neuronal migration in the developing cerebral cortex. Nat Rev Neurosci 3:423–432CrossRefPubMedGoogle Scholar
  25. Nagaoka R, Abe H, Obinata T (1996) Site-directed mutagenesis of the phosphorylation site of cofilin; its role in cofilin-actin interaction and cytoplasmic localization. Cell Motil Cytoskeleton 35:200–209CrossRefPubMedGoogle Scholar
  26. Rakic P, Caviness VS Jr (1995) Cortical development: view from neurological mutants two decades later. Neuron 14:1101–1104CrossRefPubMedGoogle Scholar
  27. Rice DS, Curran T (2001) Role of the reelin signaling pathway in central nervous system development. Annu Rev Neurosci 24:1005–1039CrossRefPubMedGoogle Scholar
  28. Soriano E, Del Rio JA (2005) The cells of Cajal–Retzius: still a mystery one century after. Neuron 46:389–394CrossRefPubMedGoogle Scholar
  29. Stanfield BB, Cowan WM (1979a) The development of the hippocampus and dentate gyrus in normal and reeler mice. J Comp Neurol 185:423–460CrossRefPubMedGoogle Scholar
  30. Stanfield BB, Cowan WM (1979b) The morphology of the hippocampus and dentate gyrus in normal and reeler mice. J Comp Neurol 185:393–422CrossRefPubMedGoogle Scholar
  31. Terashima T, Inoue K, Inoue Y, Mikoshiba K, Tsukada Y (1985) Distribution and morphology of callosal commissural neurons within the motor cortex of normal and reeler mice. J Comp Neurol 232:83–98CrossRefPubMedGoogle Scholar
  32. Terashima T, Takayama C, Ichikawa R, Inoue Y (1992) Dendritic arborization of large pyramidal neurons in the motor cortex of normal and reeler mutant mouse. Okajimas Folia Anat Jpn 68:351–363PubMedGoogle Scholar
  33. Tissir F, Goffinet AM (2003) Reelin and brain development. Nat Rev Neurosci 4:496–505CrossRefPubMedGoogle Scholar
  34. Trommsdorff M, Gotthardt M, Hiesberger T, Shelton J, Stockinger W, Nimpf J, Hammer RE, Richardson JA, Herz J (1999) Reeler/disabled-like disruption of neuronal migration in knockout mice lacking the VLDL receptor and ApoE receptor 2. Cell 97:689–701CrossRefPubMedGoogle Scholar
  35. Yang N, Higuchi O, Ohashi K, Nagata K, Wada A, Kangawa K, Nishida E, Mizuno K (1998) Cofilin phosphorylation by LIM-kinase 1 and its role in Rac-mediated actin reorganization. Nature 393:809–812CrossRefPubMedGoogle Scholar
  36. Zebda N, Bernard O, Bailly M, Welti S, Lawrence D (2000) Phosphorylation of ADF/cofilin abolishes EGF-induced actin nucleation at the leading edge and subsequent lamellipod extension J Cell Biol 151:1119–1127Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Michael Frotscher
    • 1
    Email author
  • Xuejun Chai
    • 1
  • Hans H. Bock
    • 2
  • Carola A. Haas
    • 3
  • Eckart Förster
    • 1
    • 4
  • Shanting Zhao
    • 1
  1. 1.Institut für Anatomie und ZellbiologieAlbert-Ludwigs-Universität FreiburgFreiburgGermany
  2. 2.Zentrum für NeurowissenschaftenAlbert-Ludwigs-Universität FreiburgFreiburgGermany
  3. 3.AG Experimentelle Epilepsieforschung, NeurozentrumUniversitätsklinikum FreiburgFreiburgGermany
  4. 4.Institut für Anatomie I: Zelluläre NeurobiologieHamburgGermany

Personalised recommendations